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Abstract

Few universal trends in spatial patterns of wildlife crop-raiding have been found.

Variations in wildlife ecology and movements, and human spatial use have been

identified as causes of this apparent unpredictability. However, varying spatial

patterns of spatial autocorrelation (SA) in human–wildlife conflict (HWC) data

could also contribute. We explicitly explore the effects of SA on wildlife crop-

raiding data in order to facilitate the design of future HWC studies. We con-

ducted a comparative survey of raided and nonraided fields to determine key

drivers of crop-raiding. Data were subsampled at different spatial scales to select

independent raiding data points. The model derived from all data was fitted to

subsample data sets. Model parameters from these models were compared to

determine the effect of SA. Most methods used to account for SA in data attempt

to correct for the change in P-values; yet, by subsampling data at broader spatial

scales, we identified changes in regression estimates. We consequently advocate

reporting both model parameters across a range of spatial scales to help biologi-

cal interpretation. Patterns of SA vary spatially in our crop-raiding data. Spatial

distribution of fields should therefore be considered when choosing the spatial

scale for analyses of HWC studies. Robust key drivers of elephant crop-raiding

included raiding history of a field and distance of field to a main elephant path-

way. Understanding spatial patterns and determining reliable socio-ecological

drivers of wildlife crop-raiding is paramount for designing mitigation and land-

use planning strategies to reduce HWC. Spatial patterns of HWC are complex,

determined by multiple factors acting at more than one scale; therefore, studies

need to be designed with an understanding of the effects of SA. Our methods are

accessible to a variety of practitioners to assess the effects of SA, thereby improv-

ing the reliability of conservation management actions.

Introduction

One of the biggest challenges in conservation today is man-

aging situations where people and wildlife utilize the same

space and compete for similar resources (Balmford et al.

2001; Sitati et al. 2005; Woodroffe 2005). As human settle-

ments grow and protected areas become surrounded by

human-dominated landscapes, human–wildlife conflict

(HWC) increases and involves a growing number of wild-

life species, particularly large mammals (Linnell et al. 1999;

Sitati et al. 2005; Hegel et al. 2009). Large mammals gener-

ally require a large amount of space, and due to their physi-

ology and energy requirements, also need to consume large

quantities of food and water each day (Owen-Smith 1988;

Sukumar 1990). It is not surprising therefore that when

these animals live in areas surrounded by a burgeoning

human population, they frequently compete with humans

for limited resources such as space, water, and food (Hoare

2000; Conover 2002; Hegel et al. 2009). Despite an increase

in the extent of HWC situations (Hoare 1999b; Madden

2004), it is still difficult to reliably predict where conflict is

going to occur, or in the case of crop-raiding, for example,

what makes a field susceptible to attack (Smith and Kasiki

1999; Sitati et al. 2003; Hegel et al. 2009).

Crop-raiding by wild animals occurs all over the world

albeit with different species perpetrators. Studies conducted
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on a variety of wildlife species causing crop destruction

have investigated factors and determined patterns that may

help in predicting cases of HWC. Despite an array of

research techniques used, common themes arising from

such studies indicate that temporal and spatial patterns of

wildlife crop-raiding appear to vary across space and time

and may be influenced by animal density (Naughton-

Treves 1998; Hegel et al. 2009), area of cultivated land

(Tourenq et al. 2001), and/or the location of fields in rela-

tion to landscape features, such as water availability, pro-

tected areas, and wildlife habitat, (Lahm 1996; Naughton-

Treves 1998; Smith and Kasiki 1999; Hill 2000; Saj et al.

2001; Linkie et al. 2007; Cai et al. 2008; Guerbois et al.

2012). Other factors, such as, season, guarding intensity,

human density, hunting, isolation of fields, and crop type,

have also been found to effect the degree of damage a field

receives (Newmark et al. 1994; Naughton-Treves 1998; Hill

2000; Warren et al. 2007).

HWC is a spatial phenomenon and it is therefore

important to investigate the effects of spatially explicit

factors on its distribution. For example, a variety of

factors have been identified in studies in east and west

Africa, which may influence spatial patterns of crop-raid-

ing by African elephants Loxodonta africana Blumenbach

(Fig. 1) and Loxodonta cyclotis Matschie. In Kenya, farms

that had been raided in the past, were larger and bor-

dered by fences, were more likely to be raided by elephant

and farms with greater guarding effort were less likely to

be raided (Sitati et al. 2003). Both occurrence and inten-

sity could be predicted on the basis of the area under

cultivation and, for male elephant groups, proximity to

major settlements (Sitati et al. 2005). A recent study also

found that the occurrence of crop-raiding was predicted

by settlement density, distance from daytime elephant

refuges, and percentage of cultivation (Graham et al.

2010), while in Zimbabwe, distance to a protected area

was the most influential determinant (Guerbois et al.

2012). Four farming variables increased the risk of a farm

being raided by elephant in Ghana, distance to the

national park, area of cultivation, number of crops, and

degree of farm’s isolation (Barnes et al. 2005). Nutritional

stress, water availability, and mineral deficiency have also

been identified as drivers or triggers of crop-raiding

(Osborn 2004; Chiyo et al. 2005; Rode et al. 2006). It is

evident from these studies that the occurrence of elephant

crop-raiding appears to be influenced by the field loca-

tion, farmer mitigation effort, number and types of crops

planted, and the availability of water and natural forage.

However, the effects of spatial autocorrelation (SA) on

such spatially related drivers of crop-raiding have not yet

been fully addressed in terms of its impact on the regres-

sion estimates, and therefore, how influential such drivers

actually are in predicting wildlife crop-raiding.

Incidents of HWC, particularly elephant crop-raiding,

are rarely randomly distributed over space. They usually

show some degree of spatial clustering. For example, an

elephant may raid more than one field on a particular

night, and their behavior toward a field may be influ-

enced by factors from neighboring fields (i.e., mitigation

used) (Sitati et al. 2003). When such observations, drawn

from different locations, are not independent from one

another, they can be described as spatially dependent and

SA arises (Cliff and Ord 1981). Positive SA (data collected

at locations closer together are more similar) makes para-

metric statistical tests too liberal, and they can often pro-

duce more apparently significant results than the data

actually justify (Cressie 1993; Fortin and Dale 2009).

Linear estimators, correlation coefficients, and variances

can also be affected by the presence of SA (Cliff and Ord

1981; Dutilleul 1993; De Knegt et al. 2010). In order to

understand the spatial patterns of wildlife crop-raiding

incidents, one needs to be able to separate the spatial

structure of data, due to environmental factors (which are

the patterns we are interested in), from that due to SA

generated by the processes themselves (which can lead to

spuriously significant results).

Spatial patterns of wildlife crop-raiding are therefore

complex, determined by multiple factors acting at more

than one scale (Hegel et al. 2009), including field loca-

tions, the ecology of crop-raiding wildlife species, and

their heterogeneous use of habitats. To gain an under-

standing of the full extent of wildlife crop-raiding in an

area, it is necessary to collect data on all raiding incidents.

Determining the socio-ecological drivers of raiding fromFigure. 1. African Elephant Loxodonta africana
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such data can, however, be problematic due to the effects

of SA. Many studies aim to remove SA during analysis by

choosing one field raided on a particular night in a par-

ticular location (e.g., Sitati et al. 2003, 2005) or average

away SA using mixed-effects models (e.g., Guerbois et al.

2012) to correct for changes in significance levels or use

spatial statistical methods to take SA into account in tests

of statistical significance (for a complete review see

Dormann et al. 2007); however, the actual effect of SA on

such HWC data has been seldom investigated. For exam-

ple, the scale used for analyses of HWC studies could

affect the residual SA (De Knegt et al. 2010) and hence

lead to spurious conclusions about factors influencing

conflict intensity or extent.

This study aims to illustrate methods that are accessible

to a variety of practitioners (scientists and wildlife manag-

ers alike) and can be used to explore the effects of SA on

wildlife crop-raiding data in order to facilitate the design

of future HWC studies. We collected data on attributes

and position of fields, crop types grown, farmer charac-

teristics, and mitigation measures used in an attempt to

elucidate key drivers of crop-raiding by elephants in Bots-

wana. The objectives of the study were to a) examine

whether raided fields were distributed randomly in the

study area, b) identify characteristics of elephant crop-

raiding in the study area, c) investigate factors affecting

the susceptibility of a field to crop-raiding, and d) deter-

mine the effect of SA on wildlife crop-raiding data.

Materials and Methods

Study area

The study was conducted on the eastern side of the Okav-

ango Delta Panhandle (ODP), where the Okavango River

reaches the Okavango Delta in Botswana, between January

2008 and July 2010 (see Fig. 2). The eastern ODP covers

an area of 8732 km2 and consists of controlled hunting

areas NG11, NG12, and NG13. The Namibian border

marks the northern boundary, and the northern buffalo

fence marks the southern boundary (UTM Zone 34

7910000 – 7990000 South and 580000 – 710000 East).

Rainfall averages 360 - 500 mm annually and generally

falls between mid October and March. Mean monthly

maximum temperatures range from 26.1 to 35.1°C
(Department of Meteorology, 2010). Deep Kalahari sands

dominate throughout the study area, and main vegetation

types include Colophospermum mopane woodland, Termi-

nalia sericea sandveld woodland, Acacia sp. woodland,

dense Baikiaea plurijuga, and Burkea africana woodland,

and Riverine woodland (e.g., Diospyros mespiliformis; Aca-

cia nigrescens) (Mendelsohn and Obeid 2004). Subsistence

agriculture occurs on fertile soils in lower depressions

near the Okavango River and in-land <14 km from the

main road.

The 2001 census recorded 15,718 people living in the

eastern ODP (CSO 2001). There are 12 main villages

(population >500 people) in the area, extending from

Mohembo-East to Gudigwa, including Kauxwi, Xakao,

Tobera, Sekondomboro, Ngarange, Mogotho, Seronga,

Gunotsoga, Eretsha, and Beetsha, with additional settle-

ments occurring between villages. Depending on annual

rainfall, the planting of crops occurs between November

and January and harvesting occurs between April and

June. Elephants range throughout the eastern ODP. The

population was estimated to be 15,429 (� 2008 SE)

elephants in 2010 with a density of 1.77 elephants�1 km

(Songhurst and Chase 2010). Elephants use distinctive

pathways to get to the Okavango River (Loarie et al.

2009; Songhurst 2012), enabling us to investigate the role

of elephant movement as a factor in determining spatial

patterns of human–elephant conflict (HEC) in this study

area.

Independent primary HEC data

In order to establish a reliable independent conflict

reporting system for this study, we used the standardized

data collection protocol of the International Union for

the Conservation of Nature (IUCN) (Hoare 1999a) to

collect primary data on HEC. All fields raided by

elephant between January 2008 and May 2010 were vis-

ited by both the local enumerator and the principal

investigator (A.S) to ensure consistency and reliability of

data collection. Details on each damage incident were

recorded on standardized data collection forms. The

average pace size of each enumerator was measured, and

the area of all fields and damaged portions of the fields

were estimated in square meters using enumerator paces

(Hoare 1999a). Each damage incident was geo-referenced

in Universal Transverse Mercator (UTM) coordinates

using a Garmin high-sensitivity global positioning unit

(Garmin Corp., Ulathe, KA) and location details

recorded.

Spatial distribution of fields

Raided and nonraided fields from the whole study period

were plotted to examine the spatial distribution of fields.

The distribution of nearest neighbor distances was calcu-

lated as a first step in determining whether there is any

evidence to reject the null hypothesis of complete spatial

randomness of raided fields. The observed number of

raided fields was then distributed randomly across the

mapped fields, and the mean nearest neighbor distance

(MNND) from this random sample was calculated. This
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was repeated 1000 times, and the frequency distribution

of MNND plotted. This enabled us to see where in this

distribution, the observed mean distance was and deter-

mine whether fields were raided at random given the

distribution of fields in the study area. If fields are not

raided at random within the distribution of raided fields,

then it is evident that the actual locations (coordinates)

of observational data matter in explaining the spatial

arrangement. The spatial distance was plotted against

temporal distance between raided fields, to help identify

the spatial scale at which to define a raid location.

Moran’s I statistic was calculated to test whether nearby

observations tended to have similar attributes or to be

more clustered than expected from randomness alone and

significance tested with a Z-test.

Susceptibility to elephant crop-raiding

A comparative survey of raided and nonraided fields was

carried out to determine factors affecting the susceptibil-

ity of a field to being raided by elephant. All fields report-

ing elephant raids were visited over three crop seasons. At

the end of each crop season, a selection of nonraided

fields in different localities was identified by enumerators

in each village. Although this was not strictly random, it

is comparable to methods used in other studies (Tourenq

et al. 2001; Barnes et al. 2005; Chiyo et al. 2005; Sitati

et al. 2005) and was logistically feasible.

Generalized linear models (GLMs), with binomial

errors, were used to explore a range of factors affecting

the susceptibility of fields to elephant crop-raiding.

Initially, univariate analyses were carried out with all

explanatory variables. Significant variables (P < 0.05)

were then used in multivariate analysis to investigate

correlates explaining the susceptibility of a field to crop-

raiding. The maximum model for two-way interactions

was fitted and simplified by stepwise deletion of nonsig-

nificant terms (Crawley 2007). The elephant raid (suc-

cessful or not) on a particular field was used as the

independent unit of analysis in statistical analyses. Fields

were coded as raided (1) or nonraided (0), as were miti-

gation methods (1 = used, 0 = not used), crop types

(1 = present, 0 = not present), and other animals raiding

(1 = raiding, 0 = not raiding). The data were screened

for collinearity and outliers prior to analysis (using box

plots and scatter plots). Influential data points were left

out one at a time, and the model was refitted to check

whether parameter estimates or standard errors were

substantially affected. Covariates recorded were as fol-

lows: distance from field to i) permanent (river) and

semipermanent (waterhole) water, (DRV and DWH,

respectively), ii) next field (DNF), iii) main village

(DV), iv) main road (DMR), and v) main elephant path

(DEP); mitigation techniques used; number of watch

huts (NWH) and guards (NG); crop types grown; field

characteristics (age (FAGE), area (AREA), elevation

(ELEV), number of years previously raided (NYR));

farmer details (age (AG), ethnicity (ETH), gender (G),

family size (NIF), and livelihood); and predominant veg-

etation type around field.

Okavango Panhandle

Figure. 2. Map of the study area, with raided

(red points) and nonraided (green points) field

distributions in 3 years (2008–2010) illustrated.
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Effect of spatial autocorrelation

Initially, all data were used in the analyses. This, however,

assumes no SA is present in the data. One method of

removing spatial dependency among observations can be

to remove samples until spatial independence has been

attained (Cliff and Ord 1981). The total dataset was

therefore subsampled to select one field raided on a par-

ticular night in a particular location (grid cell) at different

spatial scales. Grids of varying sizes (0.5 km2, 1 km2,

1.5 km2, 2 km2, 2.5 km2, 5 km2), which would incorpo-

rate daily movement distances of elephants in the ODP

[3–6 km�1 day (Loarie et al. 2009)], were superimposed

over the study area, and one field per grid cell chosen for

the subsample (representing one field per location). This

subsampling process was replicated 500 times at each

spatial scale. The minimum adequate model (MAM)

derived from all data was then fitted to the subsampled

data. Model estimates and P-values from the MAM using

all data were compared with estimates and P-values

derived from subsampled data at different spatial scales to

determine the effect of SA on model parameters.

Data analysis

All data analysis was carried out using R 2.11.1 (R Devel-

opment Core Team. 2010). Bootstrapping and simulation

techniques were used to investigate whether a field was

raided at random within the study area. GLM model fit

was checked using chi-squared goodness-of-fit test, and

significance determined for all analyses at P < 0.05. Using

P < 0.05, however, could result in only a tiny percentage

of deviance being explained. A second set of analysis was

conducted to examine factors which explain >1% of the

variance in the model, to establish biologically significant

variables and interactions, which could be used as practi-

cal predictors of conflict in management actions.

Results

Spatial distribution of fields

Field (raided and nonraided) distribution exhibits a clus-

tered pattern in the study area (see Fig. 2). The distribu-

tion of MNND of the 1000 bootstrapped samples of

simulated randomly distributed raided fields is illustrated

in a histogram (see Fig. 3). The MNND of observed

raided fields (l = 235.59 m) lies to the left of the distri-

bution of randomly distributed fields outside of the 95%

percentiles of the distribution (2.75% = 257.62 and

97.5% = 299.67), suggesting that raiding is spatially non-

random and therefore location of fields influence raiding

patterns.

There was a correlation (rp = 0.067, P < 0.001)

between the spatial distance between raided fields and

the temporal distance between raided fields. This spatio-

temporal correlation generates SA in the data. The aver-

age length of time between raids for fields <0.5 km apart

was 16 days, while for raided fields >2 km apart, it was

32 days.

The spatial distribution of fields within the study area

is clustered, and it is, therefore, difficult to investigate the

influence of SA using geostatistical measures. Moran’s I

showed significant positive SA in all fields and raided

fields data (I = 0.328, P < 0.001 and I = 0.240, P < 0.001,

respectively). However, for raided field data subsampled

at the 0.5 km2, 1 km2, 1.5 km2, 2 km2 spatial scales,

Moran’s I decreased and then leveled out, illustrating that

SA is reduced from data when subsampled at larger spa-

tial scales.

Characteristics of elephant crop-raiding

Over 3 years, 1421 fields were assessed; 788 raided, and

633 randomly selected nonraided fields. A total of

162.12 ha of crop were recorded as damaged throughout

the 3 years with a mean amount of damage per incident

of 0.23 ha (� 0.72 ha). The median proportion of dam-

age per field was 2.02%, with a quarter of raided farms

suffering less than 0.4% and a quarter suffering more

than 10.1% damage.

Key drivers of elephant crop-raiding

In multivariate analysis, the MAM containing variables

explaining <1% of the overall variance (see Table 1a),

retained variables DV, NYR, and pumpkin growing as

having significant positive effects (fields are more likely to

be raided, if they are far from the village, have been

raided considerably in the past, and have pumpkins

Mean nearest neighbour distances for randomly distributed raided fields
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Figure. 3. Histogram of 1000 bootstrapped mean nearest neighbor

distances of simulated randomly distributed elephant raided fields.
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growing). It retained variables DWH, DEP, FAGE, and

the presence of livestock raiders as having significant neg-

ative effects (fields less likely to be raided are older, far

from waterholes, far from elephant paths, and where live-

stock also raid). The model shows that the raiding of a

field depends on a two-way interaction between the age

of a field and whether pumpkins are growing (v2 = 7.47,

P = 0.006) as having a negative effect (older fields grow-

ing pumpkin were less likely to be raided). Two influen-

tial data points (398 and 409) were removed after the

MAM was checked using residual plots.

Further chi-square analysis showed that biologically

significant variables and interactions (explaining >1% of

overall variance), which could be used as practical predic-

tors of conflict in management actions, were those which

had a chi-square test residual deviance of >11.2. Variables
retained in this analysis included DEP (v2 = 51.87,

P = 5.92e�13) explaining 4.6% of variance, DV

(v2 = 38.98, P = 4.29e�10) explaining 3.5% of variance,

and growing pumpkins (v2 = 15.77, P = 7.15e�5) explain-

ing 1.1% of variance.

Exploring the effect of spatial
autocorrelation

When subsampling data at different spatial scales to reduce

the SA in the data, coarser grid sizes ≥2 km2 had too few

data points for some variables and could not be used in

subsequent analysis. Results from four grid sizes (≤2 km2)

only are shown in Table 1b and Figures 4 and 5.

As expected, as the spatial scale for subsampling

increases, the sample size of variables decreases and the

standard errors around mean estimates increase for all

variables. It is also evident that SA affects the size of the

model estimates of different variables, with estimate val-

ues either increasing or decreasing as SA is reduced

through subsampling at different grid sizes. SA conse-

quently not only influences standard errors and P-values,

but it also influences our biological interpretation.

However, patterns of change in the size of estimates

across spatial scales were not consistent across variables

(see Fig. 4). The intercept increased with increasing

spatial scale, indicating that the average amount of raid-

ing appears to increase as spatial scale of subsampling

increases (see Fig. 4i).

For all variables, the P-value decreased as sample size

increased (spatial scale decreased), as expected (see

Fig. 5). It is evident from this graph that even at a smal-

ler sample size (larger spatial scale), the significance

(P-value) of variables such as DEP, NYR, FAGE and pres-

ence of livestock do not vary to a large extent and are still

statistically significant at P < 0.05. There does not appear

to be a strong association between patterns for theT
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estimates and patterns for the P-values. The plots of mean

intercept vs. grid size show that the intercept increases

gradually with increasing grid size.

These differences in model estimates (and P-values) of

variables are driven by the spatial distribution of fields in

an area. For example, if fields are close to one village (V1

v w e p

a

a

ry

s s s

s s s

s s s

Figure. 4. Relationships between mean

parameter estimate from generalized linear

model and grid size for all explanatory

variables of elephant crop-raiding and the

intercept.
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Figure. 5. Relationships between mean

P-value and sample size for all covariates

explaining the susceptibility of a field to

elephant raiding.
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in Fig. 6) yet spread out around another village (V2 in

Fig. 6), when subsampling one raided/nonraided field per

grid cell, the sample size will decrease dramatically for V1

(from n = 5 to n = 1 nonraided and n = 2 to n = 1

raided) but remains relatively stable for V2 (from n = 7

to n = 6 nonraided and n = 3 for raided). The model

estimates for the variable distance to village will therefore

be dramatically affected by such subsampling. When all

data are used in analyses, there will be a lot more vari-

ance in the data, but when we throw data points away

through subsampling, the intercept and slopes of model

variables change. Biologically, when we subsample data,

so they conform to statistical assumptions, we potentially

lose valuable information. We consequently advocate

reporting both regression estimates and P-values across a

range of spatial scales to help biological interpretation.

If we use the distance to village variable and investigate

what happens to model estimates and P-values where

fields are dispersed around the village (e.g., Seronga) and

compare this to a village where fields are more clumped

(e.g., Tobera), it is evident that P-values do indeed

decrease more gradually for areas with dispersed fields

compared to clumped (see Fig. 7A,B), and the model esti-

mates change at a lower grid size for Tobera than Seronga

(see Fig. 7C,D).

Discussion

Our study indicates that there is spatial variation in the

SA in crop-raiding data, and therefore, the spatial distri-

bution of fields should be considered when choosing the

spatial extent of analyses for wildlife crop-raiding studies.

Different spatial distributions of fields and explanatory

variables are affected in different ways through subsam-

pling to reduce SA in the data. Consequently, it would be

advantageous to assess HWC incidents at a village level

where clumped field distributions could be separated

from dispersed distributions. Such localized research

would facilitate the development of relevant crop vulnera-

bility models and enable effective management strategies

to be designed at a local level. It is advocated that all data

be used to find the MAM containing significant correlates

of raiding and encourage the use of subsampling data at

different spatial scales to reduce the effect of SA, thereby

avoiding the need to define an arbitrary location of a

raid. However, because SA affects both significance levels

and model estimates, it is advised that both values be

reported across a range of spatial scales for all statistically

significant explanatory variables to aid in the biological

interpretation of the data.

Effect of spatial autocorrelation in wildlife
crop-raiding data

We found that not only the P-values in regression analysis

of elephant crop-raiding data were affected by SA, but

also the regression estimates changed when data were sub-

sampled at coarser spatial scales (when SA was reduced).

This highlights the importance of using an appropriate

spatial scale in the analyses of such data, as scale mis-

matches can affect our understanding of spatial patterning

in ecological studies (De Knegt et al. 2010). Legendre

et al. (2002) found that if SA is present in both the

response and explanatory variables in regression analysis,

then the significance of correlation and regression coeffi-

cients can be disturbed. We know that SA was present in

the response variable, but results from Legendre et al.

(2002) would suggest that SA was present in the explana-

tory variables as well. When choosing one raided/nonraid-

ed field per cell, the degrees of freedom are reduced, and

therefore, the significance levels increase, but we also

found that the regression estimates changed. The regres-

sion estimates change if one excludes most of the data

with, for example, a 1 (raided) rather than a 0 (not

raided) by sampling only one point from one cell. There

is a lot more variance in the response variable (raided/not

raided) when one uses all the data, but when data points

are discarded during subsampling, the variance decreases,

meaning that the intercept changes and also the slope

(regression estimate). Many methods used to account for

SA in data attempt to correct for the change in signifi-

cance levels, yet our study shows that by subsampling data

at broader spatial scales, we can identify changes in

regression estimates as well, which is important for the

biological interpretation of wildlife crop-raiding data.

V1

V2

= Village = Non-raided field = Raided field

Figure. 6. Schematic diagram explaining change in model estimates,

and P-values of distance to village covariate when subsampling to

reduce effect of spatial autocorrelation.
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The average intercept appeared to increase at broader

spatial scales of subsampling. The intercept effectively

gives an estimate of the amount of raiding occurring, and

therefore, this result infers that there are larger amounts

of raiding occurring at broader spatial scales. It is impor-

tant to note that the amount of raiding occurring may be

inflated when subsampling in this way. It is also evident

that patterns in the changes in significance levels and

regression estimates vary for different explanatory vari-

ables depending on the spatial distribution of fields and

explanatory variables. Our results suggest that there is

spatial variation in the pattern of SA in crop-raiding data.

For areas where the fields are spatially dispersed, there is

a less dramatic effect on both P-values and regression

estimates when SA is reduced, than for areas where fields

are clumped. Extra caution is therefore needed when sub-

sampling data from fields with a clumped distribution.

Such findings indicate that models should be developed

for spatial areas that contain fields displaying similar (i.e.,

all clumped) spatial distributions rather than varied (i.e.,

dispersed and clumped), for example, at a village scale

rather than on a broader (ward/region/countrywide) scale

where field distribution is likely to vary among villages.

Previous studies investigating spatial correlates of crop-

raiding have used districts or known elephant ranges to

define the spatial extent to be used in the analysis (Hoare

1999b; Smith and Kasiki 1999; Sitati et al. 2003; Graham

et al. 2010), and it has been found that it is easier to

identify predictors of HEC at broader spatial extents

(Sitati et al. 2003; Graham et al. 2010). Graham et al.

(2010) suggested that if resources are limited, then the

use of such parameters to define spatial extent in the

analysis of HEC data is adequate for identifying broad

priorities for management intervention. Our results illus-

trate, however, that caution should be exercised when

defining spatial extents for analysis based on the above

criteria, because the effect of SA in the data varies

depending on the spatial distribution of fields, and there-

fore, field distribution in an area should also be consid-

ered when choosing the spatial extent for analysis.

What is a “location” of a raid?

One method to remove SA and avoid pseudoreplication is

to take a subsample of data (Hurlbert 1990; Hoare 1999b).

In the case of crop-raiding data, a suitable subsample

would be to select one field raided on a particular night in

a particular location (Sitati et al. 2005). However, it is dif-

ficult to determine what a “location” of an independent

raid is. For example, from an elephant’s perspective, the

location of a raid on a particular night could incorporate

fields within the nights foraging expedition or movement

route to available water. In the ODP, elephants can move

up to 40 km/day roundtrip, with average daily movements

varying in the dry (6 km/day) and wet seasons (3 km/day)

(Loarie et al. 2009). A location of one elephant foray on a

particular night could therefore be considered to include

all raided fields within a 3–40 km2 radius. Yet, it is also
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likely that more than one elephant herd are responsible

for crop-raiding incidents on any particular night, and

therefore, even fields within a 500 m2 radius could be con-

sidered independent raids because they were conducted by

different groups of elephants.

For management purposes, a “location” or sampling

unit could be considered to be an individual field as used

by Graham et al. (2010). We therefore included data from

all elephant raiding incidents in initial analyses to derive

correlates of crop-raiding at the field level. Using all data,

however, assumes no SA is present in the data, and there-

fore, it is advised that subsampling at different spatial

scales be used when using GLMs to analyze HWC data to

reduce the effects of SA without having to define an arbi-

trary “location” of a raid.

Robust key drivers of elephant crop-raiding

In the ODP, elephant crop-raiding was spatially nonran-

dom indicating that the location of fields influenced the

pattern of raiding and SA was present in our raided field

data. We found that not only the presence of an elephant

pathway, as previously found by Guerbois et al. (2012),

but also the actual distance of a field to an elephant path-

way influenced elephant crop-raiding patterns. Fields fur-

ther from elephant pathways were less likely to be raided

by elephants, and fields that had been raided frequently

in the past were more likely to be raided again. Elephants

have long memories (McComb et al. 2001) and often

utilize traditional movement routes to get to watering or

foraging sites. One explanation for both these results

could therefore be that elephants are returning to fields

they remember having raided successfully in the past,

which were either close to these traditional movement

paths, or movement paths have been altered to travel

close to these foraging sites. At finer spatial scales, the age

of a field had been raided in the past also affected the

likelihood of a field being raided by elephant during the

study period, which could also indicate that elephants are

remembering older fields raided in previous years. Similar

patterns, where fields raided in the past were more likely

to be raided, have also been identified in Kenya (Sitati

et al. 2005). Naturally, there is an increased likelihood of

elephants using elephant pathways to encounter fields clo-

ser to these pathways than fields further away. Therefore,

it could also be opportunistic foraging behavior (e.g.,

Osborn (1998), which explains why fields closer to

elephant pathways are more likely to be raided.

Recommendations for management

Understanding spatial patterns of crop damage is para-

mount for designing better mitigation and land-use

planning strategies. Our study revealed that varying pat-

terns in spatial autocorrelation drive the varying relation-

ships between crop-raiding and independent explanatory

variables that Graham et al. (2010) highlighted. We agree

with Guerbois et al. (2012) and Graham et al. (2010) that

future spatial analysis of HEC should be conducted at

varying spatial extents to reveal broad and local level

patterns, however, it is important to consider the spatial

distribution of fields when choosing such extents due to

the variation of SA in crop-raiding data. To identify

robust key drivers of elephant crop-raiding, incidents

should be assessed where clumped and dispersed field dis-

tributions can be separated for analyses, and therefore, a

village level assessment would be advantageous. If SA is

not taken into account during both the planning and

analyses stage of an HWC study, explanatory variables

may appear more influential in driving crop-raiding inci-

dents than they really are. Such spurious conclusions

could lead to farmer mitigation efforts being concentrated

in less affected areas or misinformed management recom-

mendations being given to wildlife management and land

authorities, which will result in a waste of limited

resources and farmer effort.

We identified key drivers of elephant crop-raiding in

the ODP to be distance from elephant pathways and

history of raiding, which will facilitate both the short-

and long-term management of HEC in this area. Miti-

gation efforts can target higher risk fields close to path-

ways and those raided frequently in the past, in order

to focus time and resources. In addition, elephant path-

ways that are frequently used should be allocated a free

movement buffer zone along their route, where arable

land allocation should be prohibited, thereby reducing

the likelihood of fields being allocated closer to main

elephant pathways, and subsequently, their likelihood of

being raided. Such land-use interventions will certainly

reduce field vulnerability to crop-raiding and ensure free

elephant movement along critical routes in agricultural

landscapes.
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