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Abstract
Autoimmune diseases develop when the adaptive immune system attacks the body’s own antigens leading to tissue damage. 
At least 80 different conditions are believed to have an autoimmune aetiology, including rheumatoid arthritis, type I diabetes, 
multiple sclerosis or systemic lupus erythematosus. Collectively, autoimmune diseases are a leading cause of severe health 
impairment along with substantial socioeconomic costs. Current treatments are mostly symptomatic and non-specific, and 
it is typically not possible to cure these diseases. Thus, the development of more causative treatments that suppress only 
the pathogenic immune responses, but spare general immunity is of great biomedical interest. The liver offers considerable 
potential for development of such antigen-specific immunotherapies, as it has a distinct physiological capacity to induce 
immune tolerance. Indeed, the liver has been shown to specifically suppress autoimmune responses to organ allografts co-
transplanted with the liver or to autoantigens that were transferred to the liver. Liver tolerance is established by a unique 
microenvironment that facilitates interactions between liver-resident antigen-presenting cells and lymphocytes passing by 
in the low blood flow within the hepatic sinusoids. Here, we summarise current concepts and mechanisms of liver immune 
tolerance, and review present approaches to harness liver tolerance for antigen-specific immunotherapy.
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Autoimmune diseases and antigen‑specific 
immunotherapy

Autoimmune diseases are caused by a cell- or tissue-dam-
aging immune response of T or B lymphocytes recognising 
self-antigens [1]. These conditions can affect virtually any 
tissue of the body, causing a large variability of symptoms 
and injuries. Accordingly, more than 80 different autoim-
mune diseases can be distinguished depending on the tar-
get structures of the autoimmune attack [2]. Most of these 

conditions are rare diseases, but there are also more common 
diseases, such as rheumatoid arthritis, type 1 diabetes, mul-
tiple sclerosis or systemic lupus erythematosus. As a group, 
autoimmune diseases affect about 5–10% of the populations 
in Western countries [1, 2]. For unknown reasons, the preva-
lence of autoimmune diseases seems to increase [3]. While 
some autoimmune diseases can be fatal, virtually all of them 
impose major health impairments on affected individuals, 
commonly requiring lifelong medical care. As a result, these 
diseases also impose a heavy financial and emotional burden 
on patients and their families, and hence also contribute sig-
nificantly to the costs incurred by healthcare systems.

A common feature of all autoimmune diseases is the 
recognition of self-antigens by T or B cells leading to cell 
damage (Fig. 1). However, autoreactive T and B cells can 
also be found in healthy subjects, often at similar frequen-
cies as those found in patients with autoimmune disease 
[4–6]. Of note, autoreactive T cells from healthy animals 
have been demonstrated to cause autoimmune disease upon 
activation [7, 8]. Thus, autoreactive lymphocytes are part 
of the mature lymphocyte repertoire in healthy individu-
als, and autoimmune inflammation seems to be kept at bay 
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physiologically by regulating the activity of autoreactive 
lymphocytes [9]. This is mainly achieved either by restrict-
ing autoantigen presentation to levels that keep autoreac-
tive T cells ignorant of their cognate antigens [10], or by 
specialised autoreactive T cells, so-called regulatory T cells, 
that can suppress conventional autoreactive T cells [11, 12]. 
Regulatory T cells can be generated in the thymus, but also 
in the periphery [13], and notably in the liver [14]. It is 
therefore assumed that autoimmune diseases develop from 
dysfunctional immune regulation [15]. As a consequence, 
novel approaches to the therapy of autoimmune diseases aim 
at restoring immune regulation [16].

Traditional therapies for autoimmune diseases have relied 
on non-specific immunosuppression that broadly reduces the 
immune response, placing patients at increased risk of infec-
tion or cancer, notably after the required long-term treat-
ment [16]. Alternatively, immunomodulatory biologicals are 
given that often produce high costs, which can amount up 
to several tens of thousands of Euro per year. These treat-
ments usually need to be given continuously and lifelong; 

nonetheless, they do not cure the disease, but rather only 
retard disease progression. Thus, there is a high need for 
improved and ideally causative therapies, which might best 
be matched by antigen-specific immunotherapies that selec-
tively suppress only the pathogenic immune reactions, leav-
ing general immunity unaffected [17].

There has been considerable effort to develop antigen-
specific immunotherapies, as summarised in [17, 18], and 
several approaches are currently being tested in clinical 
trials. To induce antigen-specific tolerance, most of these 
approaches make use of physiological antigen presentation 
in order to promote tolerance [18]. However, autoimmune 
disease patients are not in physiological state, but in a state 
of inflammation and impaired tissue function [19], which 
can impair immune regulation and the tolerance-inducing 
function of antigen-presenting cells [20, 21]. Thus, there 
is a possible risk that these tolerogenic treatments are less 
effective, when used in a state of inflammation, or even 
might induce disease exacerbation. Therefore, it is of critical 
importance to utilise only robust tolerance mechanisms that 

Fig. 1  Liver antigen-presenting cells as regulators of autoimmunity. 
Autoimmune diseases are caused by an adaptive immune response 
to autoantigens producing damage of target cells or organs. Autoan-
tibodies produced by autoreactive B cells can cause tissue damage 
indirectly by binding to self-antigens and subsequently activating 
cytotoxic effector cells by antibody-dependent cell-mediated cytotox-
icity (ADCC). Alternatively, cell damage is directly caused by autore-
active CD8 T cells releasing cytotoxic activities upon recognition of 
self-peptides on MHC I molecules of the target cell. In some cases, 
CD4 T cells can also become cytotoxic, but they are more relevant 
for providing help to autoreactive B cells and CD8 T cells upon rec-
ognition of self-peptides on MHC II molecules. Typically, CD4 T cell 

help is required for the development of autoimmune diseases and to 
maintain damaging autoimmune responses. In homoeostatic condi-
tions, liver antigen-presenting cells, including Kupffer cells, dendritic 
cells and liver sinusoidal endothelial cells (LSECs), which take up 
and present autoantigen peptides on MHC molecules to autoreactive 
T cells, but also hepatocytes can induce T cell tolerance and suppress 
inflammatory activities, offering opportunities for therapy. However, 
under inflammatory conditions and liver injury, Kupffer cells and 
dendritic cells become critical drivers of pathogenic lymphocyte acti-
vation and inflammation. In contrast, tolerance-induction by LSECs 
and hepatocytes is considerably more robust, and it was shown that 
LSECs remain tolerogenic unless virally infected
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rely on antigen-presenting cells with low plasticity, notably 
under inflammatory or stress-associated conditions. In our 
opinion, one of the best ways to achieve that is to utilise liver 
tolerance, as explained below.

Liver tolerance

The liver is the central metabolic organ positioned to directly 
receive gut-derived blood through the portal vein, carrying 
nutrients and dietary components, but also microbes and 
microbial products (Fig. 2) [22]. It contains the largest col-
lection of scavenger cells in the body, consisting mainly of 
Kupffer cells (KCs), the liver-resident macrophages and liver 
sinusoidal endothelial cells (LSECs). Whereas KCs facilitate 
the removal of larger blood-borne particles by phagocyto-
sis, LSECs provide clearance of small particles (< 200 μm) 
and macromolecules by receptor-mediated endocytosis 
[23]. Both these cell types are central to the liver’s barrier 
function and its ability to clear the blood from gut-derived 
pathogens and dietary products, but also from a multitude of 
circulating degradation products, damaged cells and toxins 

[23]. Although many of the cleared compounds are potential 
inducers of inflammation [19], their removal by liver cells 
is typically not associated with inflammation, and inflam-
matory immune responses are actually often actively sup-
pressed [24]. Indeed, liver tolerance was first demonstrated 
by showing that immune responses to orally ingested anti-
gens are specifically suppressed in the liver, as the observed 
oral tolerance was abrogated when portal blood flow was 
diverted from the liver by portosystemic shunt [25]. Moreo-
ver, it was shown that skin allografts, which normally are 
rapidly rejected, were accepted when co-transplanted with 
allogeneic liver from the same donor [26]. Finally, it was 
shown that ectopic expression of a myelin autoantigen in the 
liver, which was facilitated by gene transfer to hepatocytes, 
provided protection from autoimmune neuroinflammatory 
disease [27]. These findings demonstrated that the liver fea-
tures a profound capacity to induce immune tolerance, which 
is mainly established through suppressive effects on T cells 
and the ability to induce regulatory T cells that will be further 
explained below in the context of the respective liver cell 
types. Presumably, liver tolerance is a necessary adaptation 
to its constant exposure to numerous dietary and microbial 

Fig. 2  Hepatic antigen-presenting cells in anatomical context. Blood 
flow (red arrows) enters the liver sinusoids through the portal vein 
(PV) and the hepatic artery (HA) and leaves through the central vein 
(CV). The hepatic sinusoids are lined by the liver sinusoidal endothe-
lial cells (LSECs), which are scavenger cells clearing the blood from 
small particles and macromolecules by receptor-mediated endocyto-
sis. LSECs present collected antigens to lymphocytes, producing a 
state of immune tolerance. CD4 effector T cells (CD4) can be trans-
formed into regulatory T cells (Treg) through TGF-beta signals. CD8 
T cells (CD8) can become tolerant or memory T cells (tol./mem.). 
Kupffer cells (KCs) reside in the lumen of the hepatic sinusoids and 

facilitate the removal of larger blood-borne particles by phagocytosis. 
They also present collected antigens to lymphocytes, producing toler-
ance. Dendritic cells (DCs) predominantly locate in the portal fields, 
and often close to bile ducts (BD), where they function as sentinels 
guarding the integrity of the biliary epithelium. DCs are antigen-
presenting cells, producing tolerance in homoeostatic conditions, but 
readily promote inflammation upon sensing of cell damage or infec-
tion. As LSECs and KCs are the predominant cells in sinusoidal 
blood, it is easier to target those than liver DCs with vectors or carri-
ers for antigen-specific immunotherapy
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derived antigens. Indeed, one might speculate that if the liver 
were more inclined towards inflammation, as other organs 
are, it would probably constantly be inflamed [24].

Liver tolerance is owed to a unique microenvironment 
rich in tolerogenic antigen-presenting cells and regulatory 
mediators [28, 29]. Moreover, the hepatic anatomy deter-
mines a relatively slow blood flow in the hepatic sinusoids 
that facilitates interactions between liver antigen-presenting 
cells and passing lymphocytes, which typically result in the 
induction of tolerance [28, 29]. Nonetheless, hepatic toler-
ance can be broken and inflammation be induced upon sens-
ing of liver infections [24, 30, 31]. The hepatic microenviron-
ment is established through mutual interactions between the 
resident cell types that determine cellular identity and zona-
tion-specific phenotype [32, 33]. The tolerogenic microenvi-
ronment of the liver is composed of several types of antigen-
presenting cells, which might qualify for being harnessed for 
antigen-specific immunotherapy. In the following, we briefly 
sum up the tolerance-inducing functions of the different liver 
cell types; for more detailed description, we refer to recent 
reviews on this subject, such as those in [24, 28, 29].

Hepatocytes

Hepatocytes are the parenchymal cells of the liver perform-
ing the multiple metabolic tasks of the liver. However, hepat-
ocytes can also interact with T cells and function as antigen-
presenting cells [34]. Although MHC I expression is low, 
hepatocytes can prime CD8 T cells, which mostly results 
in CD8 T cell death [35, 36] or profound unresponsiveness 
even in infection [37]. MHC II expression is low or absent 
in steady-state [38], but can be upregulated in inflammatory 
conditions, rendering hepatocytes functional antigen-pre-
senting cells that promote tolerance rather than inflammation 
[39, 40]. Besides direct antigen presentation by hepatocytes, 
it is conceivable that hepatocytes can also deliver antigen to 
neighbouring professional antigen-presenting cells, e.g. by 
trogocytosis or extracellular vesicles [41–43]. Indeed, it has 
been shown that tolerance to hepatocellular antigens can be 
lost following depletion of hepatic macrophages [44].

Kupffer cells (KCs)

KCs are the liver-resident macrophages, which represent 
more than 80% of all tissue-resident macrophages in humans 
[24], and account for about 20% of the non-parenchymal 
liver cells [29]. KCs reside in the lumen of the hepatic sinu-
soids (Fig. 2) where they can interact with passing lympho-
cytes and function as antigen-presenting cells. However, 
compared to conventional antigen-presenting cells, KCs 
express only low levels of MHC II and co-stimulatory mol-
ecules, and produce anti-inflammatory prostaglandins, hence 
inducing anti-inflammatory and tolerogenic activation of T 

cells [45]. Accordingly, it was demonstrated that antigen-
delivery to KCs with microparticles could induce antigen-
specific tolerance and protection from antigen-driven kidney 
inflammation [46]. Importantly, however, in a state of liver 
inflammation and injury, microparticle-mediated antigen-
delivery to KCs was no longer tolerogenic, but pro-inflam-
matory, due to plasticity and inflammatory activation of KCs 
and of monocyte-derived macrophages that were recruited to 
the inflamed liver [46]. Moreover, a KC subset was recently 
shown to revert hepatic CD8 T cell tolerance upon sensing 
of IL-2 [47]. Thus, although KCs are potent tolerance induc-
ers in homoeostatic conditions, they are not ideal mediators 
of antigen-specific immunotherapy, due to their plasticity in 
aberrant conditions (Fig. 1).

Liver dendritic cells (DCs)

The liver hosts all major DC subtypes, both of the conven-
tional (cDC) and the plasmacytoid (pDC) lineages, of which 
the pDC population is over-represented as compared to sec-
ondary lymphoid organs [28, 29]. Liver DCs reside mainly 
in the portal field and the perivenous space, along with few 
DCs scattered throughout the parenchyma [28, 29]. Thus, 
liver DCs primarily act as sentinels in the tissue (Fig. 2). 
As these sentinels are not in direct contact with the hepatic 
blood flow, they can only interact with liver-infiltrating, 
not with circulating lymphocytes. In homoeostatic condi-
tions, liver DCs are predominantly immature cells that pro-
mote immune tolerance, partly by producing IL-10 [28, 48, 
49]. However, upon perception of infection or cell damage 
through conserved pattern recognition receptors, liver DCs 
become activated and in that state promote inflammatory T 
cell responses [24, 50]. Thus, liver DCs display high plastic-
ity in perturbed tissue conditions, limiting their usefulness 
as mediators of antigen-specific immunotherapy (Fig. 1).

Liver sinusoidal endothelial cells (LSECs)

LSECs line the hepatic sinusoids, but, unlike vascu-
lar endothelial cells, do not have a basal membrane, and 
feature fenestrations facilitating substance exchange 
between blood and the hepatocytes beneath the endothe-
lium (Fig. 2). Similar to KCs, LSECs express low levels 
of MHC II and co-stimulatory molecules, but high lev-
els of co-inhibitory molecules such as programmed death 
ligand-1 [51, 52]. Accordingly, stimulation of CD4 T cells 
by LSECs typically results in the suppression of inflamma-
tory activities [53, 54]. Moreover, LSECs have been even 
found to induce a suppressive phenotype in conventional 
CD4 T cells [55]. Furthermore, owed to their ability to 
tether TGFb to their outer cell membrane, LSECs can effec-
tively induce Foxp3-expressing regulatory T cells that have 
profound immunosuppressive capacity [14]. Accordingly, 
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it has been demonstrated that nanoparticle-mediated deliv-
ery of myelin peptides to LSECs induced antigen-specific 
immune suppression and provided protection from myelin-
driven CD4 T cell–mediated neuroinflammation [56].

LSECs are also highly effective inducers of CD8 T cell 
tolerance [52, 57], owed to their remarkable capacity to 
cross-present antigens taken up by endocytosis [57, 58]. 
LSECs are also able to induce CD8 memory T cells, which 
remain non-responsive during steady-state and require 
strong signals for re-activation [59, 60]. Accordingly, nan-
oparticle-mediated delivery of MHC I–restricted autoan-
tigen peptide was found to induce antigen-specific CD8 T 
cell tolerance and protection from antigen-driven cholan-
gitis [61]. Importantly, although it was found that LSECs 
acquire enhanced immunogenicity in liver fibrosis [62], it 
was also shown that tolerance induction by LSECs was 
robust when stimulated with inflammation inducers and 
overcome only by viral infection [31]. Thus, in contrast to 
other professional antigen-presenting cells, including those 
in the liver, LSECs display a low plasticity and a high resil-
ience towards external inflammatory stimuli. Therefore, 
LSECs qualify well as mediators of tolerance induction 
in vivo; hence, antigen-delivery to LSECs is a promising 
strategy for antigen-specific immunotherapy (Fig. 1).

Antigen‑specific immunotherapies 
harnessing hepatic tolerance

Several methods have been designed that utilise liver tolerance 
for the development of antigen-specific immunotherapies. 
Current approaches can be classified into the categories ‘gene 
therapy’, ‘antigen-loaded erythrocytes’ and ‘antigen-loaded 
particles’, as elaborated below. Table 1 lists some approaches 
currently followed for translation into human therapies.

Gene therapy

Liver-targeted gene therapy has been classically explored 
for several years as a treatment for genetic disorders, such 

as haemophilia A and B [63]. Typically, adeno-associated 
virus (AAV) is used as a vector to transfer genes to hepato-
cytes that then compensate for a genetic mutation under-
lying the inherited disorder [64, 65]. Importantly, AAV-
based therapies have already been approved in Europe and 
the USA, increasing the prospects of regulatory approval 
also for AAV-based antigen-specific immunotherapies 
[65]. However, immunogenicity of vector and transgene 
are still a limitation of this method, providing an obsta-
cle to long-term transgene expression in patients [64, 
66]. In mouse models, however, immunogenicity could 
be avoided, when expression of the transferred gene was 
restricted to hepatocytes [67–70], once more illustrating 
the potential of liver tolerance.

Using a mouse model for multiple sclerosis [71], a 
seminal study demonstrated that gene transfer to hepato-
cytes can provide effective antigen-specific immunother-
apy to treat autoimmune disease [27]. Gene transfer of 
myelin antigen to hepatocytes, which was either achieved 
by microinjection of a transgene construct into fertilized 
mouse eggs, or by adenoviral or hydrodynamics-based 
gene transfer in adult mice, resulted in the generation of 
myelin antigen-specific regulatory T cells and protection 
from autoimmune neuroinflammation [27]. Subsequently, 
gene transfer of the insulin B (9–23) antigen to hepato-
cytes was successfully applied to treat nonobese diabetic 
(NOD) mice [72], which spontaneously develop type 1 
diabetes [73]. Using a liver-specific promotor, lentiviral 
gene transfer was used to transiently express  InsB9-23 spe-
cifically in hepatocytes, inducing increased numbers of 
regulatory T cells, and decreased infiltration and destruc-
tion of pancreatic islets, thus retaining normal levels of 
insulin production and normoglycemia in treated mice 
[72]. Moreover, AAV-mediated hepatic gene transfer of 
myelin oligodendrocyte glycoprotein could also induce 
induction of regulatory T cells and prevent experimental 
neuroinflammation [74]. Treatment of mild symptoms was 
also possible, whereas the treatment of severe symptoms 
required additional immunosuppression [74].

Thus, antigen-specific immunotherapy based on gene 
transfer to hepatocytes is a promising approach for the 

Table 1  Some current 
approaches to antigen-specific 
immunotherapy for autoimmune 
diseases harnessing liver 
tolerance

Company Ag-conjugation Liver target cell Clinical trial

Anokion Erythrocytes KC KAN-101 completed (celiac disease)
ANK-700 (multiple sclerosis)

Cellerys Erythrocytes KC
Cour PLGA-NP KC CNP-101 (celiac disease)

CNP-104 (primary biliary cholangitis)
Dendright Liposomes DC
Selecta PLG-NP KC/LSEC/DC
Topas PMAOD-NP LSEC TPV11 (pemphigus vulgaris)
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treatment of autoimmune diseases. However, its clinical 
application is currently limited due to immunogenicity of 
vector and transferred gene. A possible solution to these 
problems might be found in the emerging development of 
nanoparticles as vectors for gene transfer (see below) [75].

Antigen‑loaded erythrocytes

Aging erythrocytes undergo a programmed form of cell death, 
called eryptosis [76], during which they translocate phosphati-
dylserine to their outer membrane, facilitating their phagocy-
tosis by macrophages [77]. As we have argued above, Kupffer 
cells of the liver represent more than 80% of all tissue mac-
rophage in humans. Therefore, the liver is a major site of eryth-
rocyte phagocytosis, and erythrocytes might thus be a suitable 
vector to deliver autoantigens to Kupffer cells for the purpose of 
antigen-specific immunotherapy. This approach was explored 
by Kontos et al., who conjugated peptides or whole proteins to 
erythrocytes, resulting in deletion of antigen-specific T cells 
and tolerance in a diabetes model [78]. Deletional tolerance 
seemed to depend on the PD-L1 molecule [79], which is con-
stitutively expressed on Kupffer cells [80]. Importantly, this 
approach to liver tolerance has also been used to prevent the 
generation of anti-drug antibodies [81], which are a major cause 
for treatment failure of biological therapeutics [82].

Thus, antigen-specific immunotherapy based on antigen-
coupling to erythrocytes is a promising approach for the 
treatment of autoimmune diseases. However, as it mostly 
relies on Kupffer cells and other macrophages, which can 
display a high degree of plasticity under inflammatory con-
ditions, there might be a risk of disease exacerbation in some 
patients. Currently, we do not have enough clinical data to 
really assess that risk, if there is one at all. Clinical trials are 
needed to further explore this promising approach.

Antigen‑loaded nanoparticles

Nanomedicine is a rapidly emerging field utilising nanoscale 
materials for pharmaceutical or diagnostic purposes, and 
several approaches have been taken to use nanomaterials for 
antigen-specific immunotherapy of autoimmune diseases [83]. 
Their physico-chemical properties make nanoparticles ideal 
vectors for tolerance-inducing delivery of autoantigen peptides. 
Compared to erythrocytes, nanoparticles have a much larger 
surface-to-volume ratio, providing a greatly increased capacity 
to carry peptide cargo. Moreover, nanoparticles can be designed 
to facilitate targeted delivery to specific cell types [84, 85] or 
co-delivery of tolerance-inducing mediators [83].

Latex microparticles have been used to selectively target anti-
gen peptides to Kupffer cells, resulting in expansion of regula-
tory T cells and antigen-specific disease attenuation in a model 
of autoimmune kidney damage [46]. However, when subjected 

to inflammatory, liver-damaging treatments with either  CCl4 
or a methionine-choline-deficient diet, tolerance-induction was 
abrogated, mainly owed to the plasticity and inflammatory acti-
vation of the hepatic phagocytes [46]. This study is of particular 
relevance, as various other methods for tolerance induction use 
micro- or nanocarriers that are preferentially phagocytosed by 
macrophages [83]. Examples of these macrophage-targeting nano-
materials are polystyrene or poly(lactide-co-glycolide), which 
have been demonstrated to induce regulatory T cells and effec-
tive antigen-specific protection from autoimmune neuroinflamma-
tion [86] or type 1 diabetes [87]. Although not primarily designed 
to selectively target Kupffer cells, these nanomaterials strongly 
enrich in Kupffer cells, owed to their location and quantity. There-
fore, it is of utmost importance to carefully select the patients to 
be considered for treatment with such nanotherapies, and closely 
monitor their safety. Nonetheless, even when applied to patients 
with healthy livers, a safety risk remains, as extrahepatic mac-
rophages, which are likewise targeted by these nanomaterials, can 
also exhibit high plasticity [88]. Thus, these nanotherapies might 
be candidates for effective antigen-specific immunotherapy of 
autoimmune diseases, provided that they are safe.

Dendritic cell–targeting nanoparticles are also discussed 
as vectors for antigen-specific immunotherapy [89], but, 
like macrophages, dendritic cells can exhibit high plasticity. 
Thus, similar safety concerns as for macrophages apply to 
dendritic cells. In any case, liver dendritic cells are difficult 
targets for selective delivery with nanovectors, as these cells, 
as argued above, are not in direct contact with blood and 
are more secluded in the liver parenchyma, although their 
targeting by liposomes has been reported [90].

Amphiphilic polymer-coated nanocrystals have been found 
to be taken up with high selectivity by LSECs [56]. These 
LSEC-targeting nanoparticles have been reported to provide 
generation of regulatory T cells and antigen-specific protection 
from CD4 T cell–driven autoimmune neuroinflammation [56]. 
Moreover, owed to the ability of LSECs to cross-present pep-
tides that were delivered with LSEC-targeting nanoparticles, 
this approach could also be used to induce antigen-specific 
CD8 T cell tolerance and protection from CD8 T cell–medi-
ated cholangitis [61]. It is likely that also other types of 
nanoparticles, notably those that are small, can be taken up 
by LSECs [91], but thus far a high selectivity has not been 
reported. Given their relatively low plasticity, LSECs are very 
promising target cells for antigen-specific immunotherapies, as 
they offer both high efficacy and a good safety profile.

Conclusions

The liver hosts several types of antigen-presenting cells that 
are effective inducers of immune tolerance. These inher-
ently tolerogenic liver cell types can be harnessed by several 
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methods to provide effective antigen-specific immunother-
apy of autoimmune diseases, as has been demonstrated in 
various preclinical models. Personally, we currently prefer 
autoantigen delivery to hepatocytes or LSECs over delivery 
to KCs or DCs, as the latter exhibit considerably higher plas-
ticity under non-homoeostatic conditions, raising potential 
safety issues. Thus, we find nanoparticles as vectors for gene 
transfer to hepatocytes, and nanoparticles as vectors for anti-
gen peptide delivery to LSECs exciting and currently most 
promising. However, it is important to carry on exploring 
all these methods, as their efficacy and safety in humans 
will eventually only become evident in the course of their 
clinical translation.
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