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ABSTRACT Increasing biodiversity loss profoundly affects community structure and
ecosystem functioning. However, the differences in community assembly and potential
drivers of the co-occurrence network structure of soil fungi and bacteria in association
with tree species richness gradients are poorly documented. Here, we examined soil fun-
gal and bacterial communities in a Chinese subtropical tree species richness experiment
(from 1 to 16 species) using amplicon sequencing targeting the internal transcribed spacer
2 and V4 hypervariable region of the rRNA genes, respectively. Tree species richness had
no significant effect on the diversity of either fungi or bacteria. In addition to soil and spa-
tial distance, tree species richness and composition had a significant effect on fungal com-
munity composition but not on bacterial community composition. In fungal rather than
bacterial co-occurrence networks, the average degree, degree centralization, and clustering
coefficient significantly decreased, but the modularity significantly increased with increas-
ing tree species richness. Fungal co-occurrence network structure was influenced by tree
species richness and community composition as well as the soil carbon: nitrogen ratio,
but the bacterial co-occurrence network structure was affected by soil pH and spatial dis-
tance. This study demonstrates that the community assembly and potential drivers of the
co-occurrence network structure of soil fungi and bacteria differ in the subtropical forest.

IMPORTANCE Increasing biodiversity loss profoundly affects community structure and
ecosystem functioning. Therefore, revealing the mechanisms associated with commu-
nity assembly and co-occurrence network structure of microbes along plant species di-
versity gradients is very important for understanding biodiversity maintenance and
community stability in response to plant diversity loss. Here, we compared the differen-
ces in community assembly and potential drivers of the co-occurrence network struc-
ture of soil fungi and bacteria in a subtropical tree diversity experiment. In addition to
soil and spatial distance, plants are more strongly predictive of the community and co-
occurrence network structure of fungi than those of bacteria. The study highlighted
that plants play more important roles in shaping community assembly and interactions
of fungi than of bacteria in the subtropical tree diversity experiment.

KEYWORDS bacteria, community assembly, co-occurrence network, fungi, plant
species diversity, subtropical forest

Interactions between plants and soil microorganisms play a pivotal role in biodiversity
maintenance, community stability, and ecosystem functioning (1, 2). Plants can affect

soil microbial communities via host preference and changes in plant-derived inputs,
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such as litter, rhizodeposits, and root exudates (3). In turn, soil microbes can influence
plant diversity, productivity, and community composition through changes in soil
available nutrients and the regulation of competitive interactions between plants (4).
However, global change and human activity are causing increasing biodiversity loss,
which profoundly affects community structure and ecosystem functioning (5, 6).
Therefore, revealing the mechanisms associated with community assembly and co-
occurrence network structure of microbes along plant species diversity gradients is
very important for understanding biodiversity maintenance and community stability in
response to plant diversity loss.

Previous studies demonstrated that soil fungal and bacterial community diversities
and compositions could be affected by abiotic factors, such as soil, climate, and space
in ecosystems (7–10). In addition, some studies indicated that soil bacterial species di-
versity and/or community composition were poorly or not predicted by plant species
diversity in grassland (11–14), subtropical forest (15), and tropical forest (16) ecosys-
tems, although few studies found significant relationships between them in grassland
ecosystems (17, 18). In contrast, several findings have illustrated that plant species di-
versity was significantly related to soil fungal diversity and/or community composition
in grassland (11, 19–24), oak savannas (25), temperate forest (26–28), subtropical forest
(29), and tropical forest (30) ecosystems, even though several inconsistent results were
found in grassland (12–14) and subtropical forest (15) ecosystems. Soil fungi may be
more closely associated with plants than bacteria (mainly saprotrophic) because some
fungi can form biotrophic interactions with trees in the form of root symbionts, patho-
gens, and endophytes (29–32). Additionally, fungi rely more heavily on plant-derived
nutrients because fungal decomposers can decompose lignin and cellulose in litter
and root exudates via extracellular enzymes (33, 34). In contrast, soil bacteria preferen-
tially utilize labile organic products released from complex organic substrates (35, 36),
while some bacteria, such as Nocardia, Rhodococcus, and Streptomyces viridosporus,
were able to break down lignin (37–39). Therefore, plants may have a greater impact
on the soil fungal community than on the bacterial community.

Disentangling the interactions among co-occurring organisms using ecological net-
work analysis could provide new insights into the mechanisms underlying species' coexis-
tence and community stability (40, 41). In microbial co-occurrence networks, most previ-
ous studies have focused mainly on fungi (42, 43) or bacteria (44–47) in ecosystems.
However, only a few studies have compared the structure and potential drivers of soil
fungal and bacterial co-occurrence networks simultaneously (48–50). For instance, de
Vries et al. (50) revealed that the soil fungal co-occurrence network was less connected
but more modular than the bacterial co-occurrence network during drought in a grass-
land. In another study, the co-occurrence networks of soil fungi and bacteria were found
to exhibit higher edge numbers and degree centralization in the northern region than in
the southern region in natural forests across eastern China, and geographic distance, cli-
mate, and soil properties were significantly related to the topological features of bacterial
and fungal co-occurrence networks (48). Nevertheless, the co-occurrence network struc-
ture and potential drivers of soil bacteria and fungi in relation to plant species diversity in
subtropical forest ecosystems are poorly documented.

Subtropical forests are widely distributed across South and East China, support a high
diversity of plants (51) and soil bacteria and fungi (29, 52), and make major contributions
to ecosystem services, such as carbon (C) cycling and terrestrial gross primary production
(53). However, global environmental change and human activity are causing increasing
biodiversity loss, which profoundly affects the ecosystem structure and functions (5, 6).
To understand the relationship between plant diversity and ecosystem functions, a biodi-
versity-ecosystem functioning experiment was established in a Chinese subtropical forest
(54), and studies found that increasing plant diversity strongly promoted plant stand-level
productivity (55), functional diversity (56), above ground and belowground C storage (57),
and herbivore phylogenetic diversity (58). In addition, plant diversity had a significant
effect on the soil and root fungal communities (59, 60) and the specialization and
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modularity of the tree-fungus bipartite network (61). However, the differences in commu-
nity assembly and potential drivers of the co-occurrence network structure of soil fungi
and bacteria in the subtropical tree diversity experiment are largely unknown.

To reveal the underlying mechanisms affecting the community assembly and co-
occurrence network structure of soil bacteria and fungi along a plant species diversity
gradient, we examined soil fungal and bacterial communities in a Chinese subtropical
tree species richness experiment (1 to 16 species) using amplicon sequencing targeting
the internal transcribed spacer 2 (ITS2) and V4 hypervariable region of the rRNA genes.
Because soil fungi may be more closely associated with plants than bacteria, we
hypothesize that (1) plants are more strongly predictive of the diversity and commu-
nity composition of fungi than those of bacteria, and (2) plants play a more important
role in shaping fungal than bacterial co-occurrence network structures in the subtropi-
cal tree diversity experiment.

RESULTS
General characterization of Illumina sequencing data. After controlling for sequence

quality, 3,249,819 ITS2 and 3,059,615 16S sequences were obtained from 3,897,827 and
3,852,057 raw sequences and clustered into 6,112 and 6,986 operational taxonomic units
(OTUs) at a 97% similarity level, respectively. Among the 6,112 ITS2 OTUs, 5,840 were iden-
tified as fungal. The fungal sequence number was further rarefied to 15,366 (15,366 to
59,618 sequences in all the soil samples), resulting in a rarefied data set containing 5,669
fungal OTUs (1,090,986 sequences). Among the fungi, 5,235 OTUs (93.7% of total fungal
sequences) were identified into 16 phyla and 434 OTUs into unidentified fungi (6.3%)
(Table S1). The fungal community was dominated by Ascomycota (2,596 OTUs, 52.8% of
total fungal sequences) and Basidiomycota (1788 OTUs, 27.4%) (Fig. S1A). Among the
6,986 16S OTUs, 6, 556 were identified as bacterial. The bacterial sequence number was
rarefied to 10,723 (two samples with 2,631 and 7,019 sequences were discarded in this
step), resulting in a rarefied data set containing 6,181 bacterial OTUs (739,887 sequences).
Of the bacteria, 6,038 OTUs (99.8% of total bacterial sequences) were identified into 34
phyla and 143 OTUs into unidentified bacteria (0.2%) (Table S2). The bacterial community
was dominated by Acidobacteriota (420 OTUs, 31.8% of total bacterial sequences) and
Proteobacteria (1,123 OTUs, 24.6%) (Fig. S1B). For both fungi and bacteria, rarefaction
curves of the observed OTU richness rose continuously with increasing sample numbers
at the different levels of tree species richness, suggesting that further sampling would
recover more OTUs (Fig. S2).

Communities of fungi and bacteria. The OTU richness of fungi and bacteria ranged
from 608.5 6 128.6 to 674.2 6 102.3 and 629.4 6 215.8 to 741.7 6 150.9 (means 6
SD), respectively. The Shannon diversity index of fungi and bacteria ranged from
4.352 6 0.785 to 4.770 6 0.242 and 5.480 6 0.214 to 5.610 6 0.190, respectively. The
Simpson diversity index of fungi and bacteria ranged from 0.925 6 0.099 to
0.9686 0.095 and 0.9916 0.001 to 0.9926 0.001, respectively. The linear model result
indicated that the OTU richness, Shannon diversity index, and Simpson diversity index
of fungi and bacteria were not significantly related to tree species richness and volume
and soil variables (Fig. 1; Table S3).

Permutational multivariate analysis of variance (PerMANOVA) showed that tree spe-
cies richness had a significant effect on the community composition (Bray-Curtis dis-
similarity) of fungi (R2 = 0.020, P = 0.027) but not bacteria (R2 = 0.018, P = 0.121)
(Fig. 2). Furthermore, pairwise PerMANOVA and nonmetric multidimensional scaling
(NMDS) ordination indicated that the fungal community composition of monocultures
was significantly different from that of 4-species, 8-species, and 16-species mixtures,
and the fungal community composition of 2-species was significantly different from
that of 4-species, and 16-species mixtures, but no significant difference in bacterial
community composition among the five tree species richness levels was observed
(Fig. 2; Table S4).

Variation partitioning showed that 15.7% of the variation in fungal community compo-
sition (Bray-Curtis dissimilarity) was explained by spatial distance (9.2%), soil (5.9%), tree
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community (5.2%), and tree species richness (1.3%), with corresponding pure effects of
4.9%, 3.1%, 2.3%, and 1%, respectively (Fig. 3A). In contrast, 18.7% of the variation in bac-
terial community composition was explained by spatial distance (12.6%) and soil (10.8%),
with corresponding pure effects of 7.8% and 6%, respectively (Fig. 3B). Furthermore, hier-
archical partitioning analysis showed that 12.5% of the variation in fungal community
composition (Bray-Curtis dissimilarity) was explained by soil (4.7%), spatial distance (4.0%),
tree community (3.2%), and tree species richness (0.7%), with corresponding pure effects
of 2.0%, 3.2%, 3.1%, and 0.8%, respectively (Fig. 4 and Table S5). In contrast, 12.9% of the

FIG 1 Linear regression models showing the relationships between fungal and bacterial richness, Shannon diversity index and
Simpson diversity index, and tree species richness classes. (A to C) Fungi. (D to F) Bacteria. OTU, operational taxonomic unit.

FIG 2 Nonmetric multidimensional scaling (NMDS) ordination of the community composition (Bray-Curtis
dissimilarity) of fungi and bacteria. (A) Fungi. (B) Bacteria. Ellipses in the plots denote 95% confidence intervals
for the centroids of tree species richness. Permutational multivariate analysis of variance (PerMANOVA) showed
that tree species richness had a significant effect on the community composition of fungi (R2 = 0.020, P =
0.027) but not bacteria (R2 = 0.018, P = 0.121).
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variation in bacterial community composition was explained by soil (8.9%) and spatial dis-
tance (4.0%), with corresponding pure effects of 5.9% and 2.3%, respectively (Fig. 4 and
Table S5). In addition, similar results were found in the PerMANOVA, NMDS, variation parti-
tioning, and hierarchical partitioning analyses using Aitchison matrices of bacterial and
fungal communities (Fig. S3 to S5, Table S6 and S7). These results indicate that plants exert
a stronger effect on fungal than bacterial community compositions, while low variations
of fungal and bacterial communities were explained.

Co-occurrence networks of fungi and bacteria. We produced a fungal co-occur-
rence network consisting of 72 nodes (OTUs) and 70 links; in contrast, the bacterial co-
occurrence network consisted of 104 nodes and 264 links (Table 1). In the fungal and
bacterial co-occurrence networks, the proportion of positive links was 1 and 0.864, the
average degree 2.057 and 5.077, the clustering coefficient 0.566 and 0.370, the degree
centralization 0.101 and 0.193, and the modularity 0.788 and 0.401, respectively
(Table 1). The degree values for the fungal and bacterial co-occurrence networks fol-

FIG 3 Variation partitioning analysis showing the pure and shared effects of plant and abiotic factors on the
community composition (Bray-Curtis dissimilarity) of fungi and bacteria. (A) Fungi. (B) Bacteria. Numbers
indicate the proportion of explained variation. PCoA, principal coordinate analysis for the tree community;
PCNM, spatial principal coordinates of neighbor matrices; P, soil total phosphorus; C, soil total carbon; N, soil
total nitrogen.

FIG 4 Hierarchical partitioning analysis showing the pure and shared effects of plant and abiotic factors
on the community composition (Bray-Curtis dissimilarity) of fungi and bacteria. Results from hierarchical
partitioning analysis, aimed at identifying the percentage variance of the community composition of
fungi and bacteria explained by the plant (tree species richness and community composition), space,
and soil variables. Pure and shared variance from the plant, space, and soil variables in predicting the
community composition of fungi and bacteria are merged in this figure for simplicity. An alternative
version of this figure showing the pure and shared variance of each predictor can be found in Table S5.
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lowed a power-law distribution (R2 = 0.994 and R2 = 0.971, respectively; Fig. S6), sug-
gesting a scale-free network structure. The topological features of fungal and bacterial
co-occurrence networks were greater than those of the Erdös-Réyni random networks
(Table 1), indicating a nonrandom co-occurrence pattern and a small-world topology.

Variation partitioning indicated that 40.8%, 49.0%, 30.2% and 37.2% of the varian-
ces in average degree, clustering coefficient, degree centralization and modularity of
the fungal co-occurrence network were explained by tree community (26.7%, 34.1%,
22.9% and 37.4%), tree species richness (27.0%, 31.4%, 13.7% and 14.1%) and soil
(16.3%, 20.5%, 10.3% and 7.6%) (Fig. 5A, Fig. S7A to D). In contrast, 42.3%, 16.5%,
12.7% and 29.4% of the variances in average degree, clustering coefficient, degree cen-
tralization and modularity of the bacterial co-occurrence network were explained by
soil (28.1%, 5.0%, 6.9% and 19.7%) and spatial distance (28.9%, 12.9%, 7.7% and 19.4%)
(Fig. 5B, Fig. S7E to H).

The number of nodes and links in the fungal co-occurrence network, but not the
bacterial co-occurrence network, generally decreased with increasing tree species rich-
ness (Fig. 6A and B; Table S8). Furthermore, correlation analysis showed that the aver-
age degree, degree centralization, and clustering coefficient in the fungal co-occur-
rence network significantly decreased but the modularity significantly increased with
increasing tree species richness (Fig. 6C to F). However, no significant correlations

TABLE 1 The topological features of the fungal and bacterial empirical and random co-
occurrence networksa

Fungi Bacteria

Topological feature
Empirical
network

Random
network

Empirical
network

Random
network

No. of links 72 72 264 264
No. of nodes 70 70 104 104
Positive links 72 228
Negative links 0 36
Proportion (Positive/total) 1 0.864
Average degree 2.057 2.057 5.077 5.077
Clustering coefficient 0.566 0.0296 0.023 0.370 0.0496 0.010
Degree centralization 0.101 0.0566 0.013 0.193 0.0606 0.012
Modularity 0.788 0.6456 0.029 0.401 0.3946 0.012
aThe Erdös–Réyni random networks were allocated the same number of nodes and edges as the corresponding
co-occurrence networks. The topological features of random networks were calculated as the average value
from 1,000 Erdös–Réyni random networks; Data are average value6 standard deviation.

FIG 5 Relative contribution of the variables to determining the topological features of the fungal and bacterial co-occurrence networks. (A)
Fungi. (B) Bacteria. Results from variation partitioning modeling, aimed at identifying the percentage variance of the topological features of
the fungal and bacterial co-occurrence networks explained by the plant (tree species richness and community composition), space, and soil
variables. Unique and shared variance from the plant, space, and soil variables in predicting the topological features of fungal and bacterial
co-occurrence networks are merged in this figure for simplicity. An alternative version of this figure showing the unique and shared variance
of each group of predictors can be found in Fig. S8.
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between these topological features and tree species richness were observed in the
bacterial co-occurrence network (Fig. 6C to F). These results suggest that plants play
more important roles in shaping the co-occurrence network structure of fungi than of
bacteria.

DISCUSSION

The first hypothesis is partially supported by our findings that plants had a stronger
effect on the fungal than bacterial community compositions and had no significant
effect on fungal and bacterial diversities. Similarly, some previous studies found that
plant diversity and/or community composition significantly influenced fungal but not
bacterial community compositions in grassland (11, 20–23), oak savannas (25), temper-
ate forest (26, 27), subtropical forest (29), and tropical forest (16, 30) ecosystems. The
different effects of plants on fungal and bacterial community compositions may be
because fungi are linked more tightly to plants than are bacteria because some fungi
can form biotrophic interactions with trees and take the form of root symbionts, endo-
phytes, and pathogens (30–32), but bacteria tend to have a less direct connection to
tree roots (62). Furthermore, fungi are more directly dependent on plant-derived
resources, such as plant litter and root exudates, than bacteria because fungal decom-
posers can decompose recalcitrant organic materials (e.g., lignin and cellulose) from
the plants (33, 34). In contrast, bacteria mainly utilize the products (e.g., water-soluble
sugars and phenolic compounds) released during this process (35, 36), although some
bacteria, such as Nocardia, Rhodococcus, and Streptomyces viridosporus, were able to
degrade lignin (37–39). Another possibility is that the fungal community responds
more quickly to changes in the plant community than the bacterial community (52). In
addition, we also found that fungal and bacterial community compositions were

FIG 6 Architecture and features of the fungal and bacterial co-occurrence networks in different tree species richness classes. (A) The overall fungal co-
occurrence network and changes in fungal co-occurrence networks along the tree species richness gradient. (B) The overall bacterial co-occurrence
network and changes in bacterial co-occurrence networks along the tree species richness gradient. Positive and negative correlations are indicated by red
and blue lines, respectively. The size of each node is proportional to the number of connections (that is, degree). The fungal phyla represent , 1% of the
total reads of fungi and fungi not identified to phylum level were all assigned to “Others”. The bacterial phyla represent , 5% of the total reads of
bacteria and bacteria not identified to phylum level were all assigned to “Others”. (C to F) Correlations between tree species richness and topological
features of fungal and bacterial co-occurrence networks. Red, fungi. Black, bacteria.
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affected by soil variables (pH, carbon: nitrogen ratio [C: N] or phosphorus), and spatial
distance, as reported in some previous studies (7–10).

Furthermore, the no significant effect of plants on bacterial diversity in this study is
consistent with some previous studies (11–13, 15, 16). However, although we found
that plants did not affect soil fungal diversity, a positive correlation between plant spe-
cies diversity and soil fungal diversity was found in natural forests with a stand age of
over 50 years (27, 30). This difference may be because our biodiversity experiment
(8 years) is established shortly, or the changes in fungal diversity are obscured by soil
legacy effects of the former vegetation (63). In addition, we noticed that the microbial
community was analyzed from bulk soil, while we collected soil samples near the trunk
of trees. Furthermore, rarefaction curves of the observed OTU richness showed that
our results were obtained based on the data analysis of part microbial OTUs existed in
soil. Therefore, to better make clear the plant diversity effect on soil microbes, rhizo-
sphere soil which directly interacts with plants, and more samples with deeper
sequencing should be used in a future study.

In agreement with our second hypothesis, we found that plants influenced fungal
rather than bacterial co-occurrence network structures. Plants may regulate the interac-
tions within the fungal community but not that of the bacterial community by determin-
ing the quantity and quality of plant litter and root exudates and by modifying microhabi-
tats (1, 64) because plants have a stronger relationship with fungi than bacteria, as
mentioned above. In addition, we also found that the fungal co-occurrence network
structure was affected by soil C:N, whereas the bacterial co-occurrence network structure
was influenced by soil pH and spatial distance. Similar results were found in previous
studies (46, 49). The effect of soil C:N suggests that a shift in soil nutrient status could
directly modulate the interactions of the fungal community. The soil pH may affect the
interactions of bacteria because pH is very important in determining the variation in bac-
terial community structure (65, 66) through changes in soil nutrient solubility (67). The
effect of spatial distance may be due to the dominance of dispersal limitation in bacterial
community assembly (7, 10).

Furthermore, in the fungal rather than bacterial co-occurrence networks, the average
degree, degree centralization, and clustering coefficient significantly decreased, but the
modularity significantly increased with increasing tree species richness in this study. Our
results indicated that interaction intensities between fungal species but not between bac-
terial species decreased with increasing tree species richness because previous studies
suggested that average degree, clustering coefficient, and degree centralization could
reflect interaction intensity between species in the co-occurrence network (48, 50, 68). In
addition, some studies have interpreted modules as niches (69, 70). The increased tree
species richness may lead to there being more niches and stronger niche differentiation,
possibly resulting in weaker interspecific interactions in the fungal community but not in
the bacterial community because our results revealed that the habitat niche breadth of
fungi was always lower than bacteria and decreased with increasing tree species richness
(Fig. S8). Furthermore, the higher modularity values may be linked to higher resource
availability and habitat complexity for fungi when there is high compared to low tree spe-
cies richness (64, 71) because modularity was proposed to reflect habitat heterogeneity
and divergent selection regimes (72). We speculated the modular organization might
enhance the whole network stability, especially by buffering cascades of extinction (70–
72). Therefore, plant diversity loss may affect the stability of the fungal co-occurrence net-
work, but not that of the bacterial co-occurrence network.

This study revealed the differences in community assembly and potential drivers of
the co-occurrence network structure of soil fungi and bacteria in the subtropical tree
diversity experiment. Plant species diversity and composition had significant effects on
the community of fungi, but not that of bacteria. In addition to soil, the fungal co-
occurrence network was influenced by plants, but the bacterial network was affected
by spatial distance. Furthermore, the changes in topological features of the fungal co-
occurrence network, but not those of the bacterial co-occurrence network with
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increasing tree species richness suggest that the stability of the fungal co-occurrence
network rather than that of bacterial co-occurrence network is easily disturbed by
plant diversity loss. The study highlights that the community assembly and potential
drivers of the co-occurrence network structure of soil fungi and bacteria differ and that
plants play more important roles in shaping community assembly and interactions of
fungi than of bacteria in our subtropical tree diversity experiment.

MATERIALS ANDMETHODS
Study site and sampling. The study was conducted at site A in the Biodiversity-Ecosystem

Functioning Experiment China (BEF-China), Xingangshan, Jiangxi Province, southeast China (29.08°–
29.11°N, 117.90°–117.93°E; 105 to 275 m above sea level). The site is characterized by a subtropical cli-
mate, with an annual mean temperature of 16.7°C and annual mean precipitation of 1821 mm (54). After
clear-cutting Pinus massoniana and Cunninghamia lanceolata, a pool of 24 woody plant species native to
the regional broadleaved forest was used, in 2009, to create a plantation with different tree species rich-
ness classes (54). Briefly, the site covers a total of 271 plots with monocultures and mixtures of 2, 4, 8,
16, and 24 tree species and different shrub addition treatments. Each plot is 25.8 m � 25.8 m in size
(Chinese area unit of 1 mu) and planted with 400 seedling individuals (between 1 and 2 years) arranged
in a rectangular 20 � 20 grid with 1.29 m spacing between rows and columns.

During September 2017, we selected plots, including 24 tree species at site A of the BEF-China with
monocultures and mixtures of 2, 4, 8, and 16 tree species (24-species mixtures were excluded because
there were only two replicates). We selected 16 trees (covering all tree species) evenly distributed in
each plot and collected one soil core (3.5 cm in diameter, 20 cm in depth) about 0.5 m apart from the
trunk of each tree individual after removing plant litter. A total of 16 soil cores were collected and mixed
to create one composite sample in each plot. In total, 71 soil samples were collected from 71 plots,
including 22 plots with monocultures (two plots were excluded due to high tree mortality), 22 plots
with 2-species mixtures (two plots were excluded due to high tree mortality), 12 plots with 4-species
mixtures, six plots with 8-species mixtures and nine plots with 16-species mixtures (Table S9). The soil
samples were immediately passed through a 2 mm sieve to remove roots and debris and transported to
the laboratory in an icebox. To avoid soil contamination between samples, the sieve was disinfected
using 75% ethanol after the sieving process for each soil sample. Subsamples were stored at 280°C for
DNA extraction, and the remaining subsamples were air-dried for soil physicochemical property analysis.

Soil parameters and tree volumes. Soil pH was determined using dried soil mixed with 1 M KCl at
a 1:2.5 ratio (wt/vol) using a FiveEasy pH meter (Mettler Toledo, Zurich, Switzerland). Total C and nitro-
gen (N) were measured by direct combustion using a Vario EL III C/N Element Analyzer (Elementar
Analysensysteme GmbH, Germany). Total phosphorus (P) was measured by an inductively coupled
plasma spectrometer (iCAP 6300, Thermo Fisher Scientific, Wilmington, USA) after digestion by boiling
0.2 g soil in a solution (5:3) of HNO3 and HClO4 for 75 min (73). Stand-level tree volume (as plant produc-
tivity) was determined by tree basal diameter and height in allometric equations for the 16 central trees
in each plot, which was corrected by conversion factors determined as total tree volume divided by cy-
lindrical volume (55). Information about soil parameters and tree volumes at different levels of tree spe-
cies richness is given in Table S10.

Molecular analysis. DNA was extracted from 0.25 g of each frozen soil sample using a PowerSoil
DNA isolation kit (MoBio Laboratories, Inc. USA). DNA quality and quantity of each sample were meas-
ured with a NanoDrop ND-1000 Spectrophotometer (Thermo Scientific, Wilmington, USA). The DNA con-
centration ranged from 50 to 128 ng/mL among 71 soil samples. The fungal ITS2 region of the rRNA
genes was amplified using primers 5.8SFun (forward) (59-AACTTTYRRCAAYGGATCWCT-39) and ITS4Fun
(reverse) (59-AGCCTCCGCTTATTGATATGCTTAART-39) (74) linked with 12 base barcodes for sample dis-
tinction. The PCR mixture (25 mL) contained 2.5 mL 10 � buffer, 25 mM MgSO4, 2 mM each dNTP, 10 mM
each primer, 0.5 U KOD-plus-Neo polymerase (Toyobo, Tokyo, Japan), and 10 ng DNA template.
Amplifications of ITS2 were performed with an initial denaturation at 94°C for 5 min, followed by 35
cycles of 94°C for 1 min, 56°C for 50 s and 68°C for 1 min, and a final extension at 68°C for 10 min. For
bacteria, the V4 hypervariable region of 16S rRNA genes was amplified using primers 515F (59-
GTGCCAGCMGCCGCGGTAA-39) and 806R (59-GGACTACVSGGGTATCTAAT-39) (75) equipped with 12 base
barcodes for sample distinction. The 25 mL reaction solution consisted of 2.5 mL 10 � buffer (Mg21 plus),
2.5 mM each dNTP, 10 mM each primer, 1 U Taq DNA polymerase (TaKaRa, Kyoto, Japan), and 10 ng of
template DNA. Thermal cycling conditions were as follows: 94°C for 5 min, 35 cycles of 95°C for 50 s, 56°C
for 50 s and 72°C for 1 min, followed by 72°C for 10 min. Three replicate PCR products of each sample were
pooled and purified using an E.Z.N.A Gel Extraction kit (Omega Bio-Tek, GA, USA) according to the manufac-
turer’s instructions. Sterile deionized distilled water served as negative controls in all steps of the PCR proce-
dure to test for the presence of contamination in reagents. No bands were observed in any of the negative
controls. The purified PCR products were pooled with an equal molar amount (100 ng) from each sample
and adjusted to 10 ng/mL. A sequencing library was constructed by adding an Illumina sequencing adaptor
(59-GATCGGAAGAGCACACGTCTGAACTCCAGTCACATCACGATCTCGTATGCCGTCTTCTGCTTG-39) to the PCR
products using an Illumina TruSeq DNA PCR-Free Library Preparation kit (Illumina, CA, USA) according to
the manufacturer’s instructions. The library sequencing was performed on the Illumina MiSeq PE300 plat-
form running 2 � 300 base pairs (bp) at the Environmental Genome Platform of Chengdu Institute of
Biology, Chinese Academy of Sciences, China.
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Bioinformatics analysis. Clean ITS2 (fungi) and 16S (bacteria) sequences were generated from raw
sequences after quality control using Quantitative Insights into Microbial Ecology 2 (QIIME 2) (76).
Primer and barcode sequences were excluded using q2-cutadapt (77). The fungal ITS2 region was
extracted using the q2-ITSxpress (78). Denoising, removal of chimeras, and dereplication were per-
formed with the DADA2 (79) pipeline implemented in QIIME2. The denoised ITS2 and 16S amplicon
sequence variants (ASVs) were clustered into different operational taxonomic units (OTUs) at a threshold
of 97% sequence similarity using the vsearch cluster-features-de-novo (80) in QIIME2.

A representative sequence (the most abundant) of each ITS2 and 16S OTU was selected for searching
against the entries in the unified system for the DNA based fungal species linked to the classification
(UNITE) database (version 04.02.2020) (81) for fungi and against the SILVA database (release 138.1) (82)
for bacteria, via the SINTAX algorithm (83) in VSEARCH version 2.18.0 with a confidence cutoff (P) value
of 0.65. We then excluded the 16S OTUs classified as Archaea from all the samples (2.7% of the total 16S
sequences) in further analysis. To eliminate the effect of heterogeneous sequence numbers among the
samples on the fungal and bacterial communities identified, the number of sequences per sample was
rarefied to the smallest sequence size for fungi and bacteria, respectively, using the sub.sample com-
mand in MOTHUR version 1.33.3 (84).

Statistical analysis. All the statistical analyses were conducted in R version 3.5.1 (85). The rarefaction
curves for the observed OTUs of fungi and bacteria among tree species richness levels were calculated
using the specaccum function in the vegan package (86). Linear models were implemented to reveal the
responses of fungal and bacterial diversities to plant and abiotic variables using the lm function in the
stats package (85).

The distance matrices of the communities of fungi and bacteria were constructed by calculating dis-
similarities with Bray-Curtis (87) and Aitchison (88) methods, respectively. Subsequently, nonmetric mul-
tidimensional scaling (NMDS) was carried out to visualize the community dissimilarities of fungi and bac-
teria at different tree species richness levels using the metaMDS function in the vegan package.
Permutational multivariate analysis of variance (PerMANOVA) was used to explore the relative impor-
tance of tree species richness on the fungal and bacterial community compositions using the adonis
command in the vegan package. Furthermore, pairwise PerMANOVA with a false discovery rate correc-
tion of P values was performed to compare the differences in fungal and bacterial community composi-
tions among different tree species richness using the pairwise.adonis function in the pairwise Adonis
package (89). Variation partitioning analysis was undertaken to evaluate the relative importance of
plants (richness, volume, and community), soil, and space on the community composition of fungi and
bacteria. The spatial principal coordinate of neighbor matrices (PCNM) vectors with positive eigenvalues
were obtained via transformation of geographic distance (latitude and longitude) between any plots
using the pcnm command in the vegan package. Tree community eigenvectors were derived from the
Bray-Curtis matrix based on principal coordinate analysis (PCoA) using the cmdscale command in the
vegan package. Significant variables (tree species richness, tree volume, soil properties, and PCoA and
PCNM vectors) were forward selected using the forward.sel command in the adespatial package (90).
The variations in fungal and bacterial communities were then partitioned according to the selected sig-
nificant variables using the varpart function in the vegan package. In addition, distance-based redun-
dancy analysis (db-RDA) was conducted to assess the impacts of plants (richness, volume, and PCoA vec-
tors), soil, and space (PCNM vectors) on the community composition of fungi and bacteria in the vegan
package. To avoid the effects of collinearity, hierarchical partitioning analysis was used to acquire the in-
dependent explanation of each predictor in the rdacca.hp package (91).

Levins’ niche breadth (B) index (92, 93) for fungi and bacteria in different tree species richness was
calculated using the niche.width function in the spaa package (94) according to the formula:

Bj ¼ 1
�XN

i¼1
P2ij

where Bj represents the habitat niche breadth of OTU j in each fungal or bacterial community in different
tree species richness; N is the total number of OTUs in each fungal or bacterial community in different
tree species richness; Pij is the proportion of OTU j in the community i. A high B-value for a given OTU
indicates its wide habitat niche breadth. The community-level B-value (Bcom) was calculated as the aver-
age of B-values from all the OTUs occurring in each fungal or bacterial community in different tree spe-
cies richness.

Network analysis was applied to explore co-occurrence patterns of fungal and bacterial commun-
ities. The overall co-occurrence networks of fungi and bacteria were constructed using the spiec.easi
command in the SpiecEasi package (95). The OTUs with relative abundance greater than 0.01% were
retained (48). In the analysis, the sample (row) � OTU (column) data matrix (with cell entries indicating
the OTU sequences in samples) was used to make network analysis. Data were preprocessed and cen-
tered log-ratio (CLR) transformed to ensure compositional robustness and networks were created with
the Meinshausen and Buhlmann (MB) network selection method (96) in the SpiecEasi, with a nlambda
penalty value of 20 (97). The nodes in this network represented OTUs and the links that connected these
nodes represented correlations between OTUs. The topological features average degree, clustering coef-
ficient, degree centralization, and modularity were used in this study. Average degree is a quantification
feature indicating the number of direct co-occurrence interactions (68). The clustering coefficient is a
measure of the likelihood that the adjacent species of a specific species are connected (48). Degree cen-
tralization describes a particular pattern of interaction in which it is close to 1 for a network with a star
topology and, in contrast, close to 0 for a network where each species exhibits the same links (68).
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Modularity is a measure of the extent to which the network is structured as modules (68). These four
topological features were calculated using the igraph package (98). Meanwhile, 1,000 Erdös-Réyni ran-
dom networks of an equal size were constructed to compare with the topology of the empirical net-
works (99). Networks were visualized using the interactive platform Gephi (100). Significant PCNM vec-
tors, plant and soil variables were forward-selected for subsequent statistical analyses using the
forward.sel command in the adespatial package. After the forward selection procedures, the variations
in topological features of fungal and bacterial networks were partitioned using the varpart function in
the vegan package.

To explore the relationship between tree species richness and the topological features of the fungal
and bacterial networks, we reconstructed subnetworks of fungi and bacteria in different tree species
richness classes from the overall networks with the subgraph function in the igraph package.
Subnetworks for each soil sample, maintaining OTUs associated with specific samples and all links
between them in the overall networks, were generated using the subgraph function in the igraph pack-
age, and four topological features for each soil sample were calculated with the igraph package.

Data availability. The raw data have been submitted to the Genome Sequence Archive (GSA) in
National Genomics Data Center, China National Center for Bioinformation/Beijing Institute of Genomics,
Chinese Academy of Sciences under accession number CRA006693.
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