
micromachines

Review

Review of Microfluidic Photobioreactor Technology
for Metabolic Engineering and Synthetic Biology of
Cyanobacteria and Microalgae

Ya-Tang Yang * and Chun Ying Wang †

Department of Electrical Engineering, National Tsing Hua University, Hsinchu 30013, Taiwan;
chun-ying.wang@synmikro.mpi-marburg.mpg.de
* Correspondence: ytyang@ee.nthu.edu.tw; Tel.: +886-3-574-2434
† Current address: Max Planck Institute for terrestrial Microbiology, Karl-von-Frisch-Str. 16,

D-35043 Marburg, Germany

Academic Editors: Nam-Trung Nguyen and Seyed Ali Mousavi Shaegh
Received: 27 April 2016; Accepted: 16 August 2016; Published: 11 October 2016

Abstract: One goal of metabolic engineering and synthetic biology for cyanobacteria and microalgae
is to engineer strains that can optimally produce biofuels and commodity chemicals. However,
the current workflow is slow and labor intensive with respect to assembly of genetic parts and
characterization of production yields because of the slow growth rates of these organisms. Here,
we review recent progress in the microfluidic photobioreactors and identify opportunities and
unmet needs in metabolic engineering and synthetic biology. Because of the unprecedented
experimental resolution down to the single cell level, long-term real-time monitoring capability,
and high throughput with low cost, microfluidic photobioreactor technology will be an indispensible
tool to speed up the development process, advance fundamental knowledge, and realize the full
potential of metabolic engineering and synthetic biology for cyanobacteria and microalgae.
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1. Introduction

Recent emphasis on CO2 reduction and biosustainability has brought attention to photosynthetic
microalgae. The microalgae, particularly cyanobacteria, are efficient organisms for producing biomass
from inorganic carbon as well as important feedstocks for production of a wide range of useful
compounds, including biofuels [1–4]. Cyanobacteria have the advantages of high growth rates, low
nutritional requirements, and the potential for large-scale cultivation in open ponds and waters.
The overall oxygenic photosynthesis process employed by cyanobacteria converts CO2 and water
into an organic form of a carbon product with the assistance of light [5]. At the thylakoid membrane,
cyanobacteria capture energy from sunlight in natural environments and generate the high-energy
intermediates or cofactors, adenosine triphosphate (ATP) and nicotinamide adenine dinucleotide
phosphate (NADP+), respectively. The ATP and NADP+ are utilized for the assimilation of essential
nutrients in the Calvin–Benson cycle, in which the ribulose-1,5-bisphosphate carboxy/oxygenase
enzyme (RuBisCo) located in carboxysome catalyzes CO2 fixation, as shown in Figure 1. For example,
the most widely used intermediate metabolite engineers like to utilize pyruvate, the key precursor in
central metabolism and product of the glycolytic pathway. “Tapping” metabolism at pyruvate allows
the accumulation of large titers of ethanol [6], butanediol [7], L-lactic acid [8], D-lactic acid [9], and
isobutyraldehyde [10].
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Figure 1. Metabolic engineering of cynaobacteria to synthesize commoidity products [3]. The carbon 
flux through various metabolic points is displayed. The ribulose-1,5-bisphosphate carboxylase/oxyenase 
enzyme (RuBisCo) catalyzes CO2 fixation by converting ribulose 1,5-biphosphate (RuBP) into 3PG 
within the carboxylsome, as indicated by the hexagon in the Calvin Bassham Benson cycle (CBB). In 
particular, pyruvate shows caron flux for ethanol, isobutyraldehyde, 2,3-butanediol, and lactic acid. 
The diameter of the circle shows the carbon flux through the respective metabolites. Reproduced 
with permission from Trends in Biotechnology; published by Elservier, 2015. 

Over the past decade, synthetic biology has found potential applications in diverse fields, 
including pharmaceuticals, biofuels, and chemical commodities An example of two successful 
metabolic engineering projects is the production of 1,3-propanediol (PDO) in Escherichia coli (E. coli) 
developed by Genencor and DuPont [11] and 1,4-butanediol (BDO) by Genomatica [12]. As time 
progresses, we expect similar approaches will be employed to engineer and optimize synthetic 
pathways for cyanobacteria. However, despite these success stories, the field of synthetic biology 
faces challenges in workflow automation, particularly with respect to scale up from single 
development projects to large, commercially viable development processes [13,14]. 

By definition, photobioreactors are cultivation devices for photosynthetic organisms (Figure 2a) 
that convert CO2 and light into biomass. Commercially available photobioreactors, such as 
Photobioreactor FMT150 from Photo System Instruments, come with different reactor volumes and 
allow culture growth to be monitored with integrated sensors that measure optical density and pH 
(Figure 2b) [15]. CO2 and air can also flow through the photoreactors. For example, sparging and 
bubbling can be used to dissolve gas into the medium. These benchtop photobioreactors have the 
advantages of providing rich metabolic data during the growth process, but have limited 
throughput. Moreover, extensive efforts are needed for sterilization, assembly, cleaning, and 
calibration of sensors. Advances in microfluidics cultivation technology have provided researchers 
in biology and biotechnology unprecedented opportunities to perform various analyses with small 
reagent volumes, high throughput, better spatial and temporal control over the chemical 
environment, and single cell resolution. The integration of microfluidics with optics has led to the 
field of optofluidics [16–18]. Erickson, Sinton, and Psaltis delineated optofluidic opportunities in 
sunlight-based fuel production in photobioreactors and photocatalytic systems, as well as solar 
energy collection systems [17]. In a typical bioprocess involving development for strain screening 
and evaluation, thousands of strains are screened by cultivation on plates and tubes, and a reduced 

Figure 1. Metabolic engineering of cynaobacteria to synthesize commoidity products [3]. The carbon flux
through various metabolic points is displayed. The ribulose-1,5-bisphosphate carboxylase/oxyenase
enzyme (RuBisCo) catalyzes CO2 fixation by converting ribulose 1,5-biphosphate (RuBP) into 3PG
within the carboxylsome, as indicated by the hexagon in the Calvin Bassham Benson cycle (CBB).
In particular, pyruvate shows caron flux for ethanol, isobutyraldehyde, 2,3-butanediol, and lactic acid.
The diameter of the circle shows the carbon flux through the respective metabolites. Reproduced with
permission from Trends in Biotechnology; published by Elservier, 2015.

Over the past decade, synthetic biology has found potential applications in diverse fields,
including pharmaceuticals, biofuels, and chemical commodities An example of two successful
metabolic engineering projects is the production of 1,3-propanediol (PDO) in Escherichia coli (E. coli)
developed by Genencor and DuPont [11] and 1,4-butanediol (BDO) by Genomatica [12]. As time
progresses, we expect similar approaches will be employed to engineer and optimize synthetic
pathways for cyanobacteria. However, despite these success stories, the field of synthetic biology faces
challenges in workflow automation, particularly with respect to scale up from single development
projects to large, commercially viable development processes [13,14].

By definition, photobioreactors are cultivation devices for photosynthetic organisms (Figure 2a) that
convert CO2 and light into biomass. Commercially available photobioreactors, such as Photobioreactor
FMT150 from Photo System Instruments, come with different reactor volumes and allow culture growth
to be monitored with integrated sensors that measure optical density and pH (Figure 2b) [15]. CO2 and air
can also flow through the photoreactors. For example, sparging and bubbling can be used to dissolve
gas into the medium. These benchtop photobioreactors have the advantages of providing rich metabolic
data during the growth process, but have limited throughput. Moreover, extensive efforts are needed
for sterilization, assembly, cleaning, and calibration of sensors. Advances in microfluidics cultivation
technology have provided researchers in biology and biotechnology unprecedented opportunities to
perform various analyses with small reagent volumes, high throughput, better spatial and temporal
control over the chemical environment, and single cell resolution. The integration of microfluidics with
optics has led to the field of optofluidics [16–18]. Erickson, Sinton, and Psaltis delineated optofluidic
opportunities in sunlight-based fuel production in photobioreactors and photocatalytic systems, as
well as solar energy collection systems [17]. In a typical bioprocess involving development for strain
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screening and evaluation, thousands of strains are screened by cultivation on plates and tubes, and
a reduced number of strains are selected for scale up culture in shake flasks. Microfabricated photo
bioreactors can be utilized for subsequent characterization and screening. Han et al. argued that
microfabricated lab-on-a-chip systems provide both cost-effective and time-efficient opportunities for
analyzing microbe-mediated bioenergy synthesis [18].
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digital microfluidics (DMF) based on electrowetting. mLSI is largely based on polydimethylsiloxane 
(PDMS) material with multilayer soft lithography [20] and offers the researchers to design the fluidic 
circuits of almost arbitrarily complexity. In multilayer soft lithography, one layer typically serves as 
the flow layer and another as the control layer, with channels pressurized by an external pressure 
source. The integration of the control layer and flow layer with valves forms the building block of 
mLSI [20]. Droplet-based microfluidics involves the generation and manipulation of discrete 
droplets at high throughput [21]. This method produces droplets in the picoliter to microliter 
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vessel with high surface-to-volume ratio. Unlike mLSI, droplet microfluidics has the capacity to 
perform a large number of reactions in a repetitive manner and train format without increasing chip 
complexity. Parallel processing and experimentation can easily be achieved to allow the acquisition 
of large amounts of data because a large number of droplets can be formed. The term digital 
microfluidics is used to describe the control of droplet position based on electrowetting [22,23]. In 
electrowetting, a fluid is placed on an electrode coated with an insulator that has a surface treated to 
be hydrophobic. A potential is applied across the insulator to make it charged and therefore 
attractive for the fluid to wet the surface. Currently, digital microfluidics has been used for a wide 
range of laboratory analyses. Similar to mLSI, DMF enjoys the same benefits of low reagent volume 
(in the picoliter to microliter range) and high capacity for parallelization and automation. Moreover, 
it can be easily integrated with other analytic techniques. However, the droplets in DMF devices are 
often exposed to ambient conditions; therefore, the evaporation of reagents is a problem, especially 
during long-term cultivation of cells. 
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Figure 2. (a) Conceptual diagram of a photobioreactor [17]. The cyanobacteria convert CO2 via
photosynthesis to produce useful products such as biofuel. Reproduced with permission from Nature
Photonics; published by Nature Publishing Group, 2011; (b) Picture of a commercial photobioreactor
produced by Photo System Instruments [15]. The reactor has a volume of 400 mL and a sensor
for optical density measurement; (c) Single Botryococcus braunii (B. braunii) colony trapping in the
microfluidic photobioreactor array [19]. Reproduced with permission from Lab on a chip; published by
Royal Society of Chemistry, 2014. Left and right panels show the autofluorescence from cholorophyll
and lipid-stained images after Nile red treatment. Reproduced with permission from Lab on a chip;
published by Royal Society of Chemistry, 2012.

Here, we focused on the subsets of microfluidics that are most relevant to cultivation of algal
cells; namely, flow-based microfluidic large-scale integration (mLSI), droplet microfluidics, and digital
microfluidics (DMF) based on electrowetting. mLSI is largely based on polydimethylsiloxane (PDMS)
material with multilayer soft lithography [20] and offers the researchers to design the fluidic circuits
of almost arbitrarily complexity. In multilayer soft lithography, one layer typically serves as the
flow layer and another as the control layer, with channels pressurized by an external pressure
source. The integration of the control layer and flow layer with valves forms the building block
of mLSI [20]. Droplet-based microfluidics involves the generation and manipulation of discrete
droplets at high throughput [21]. This method produces droplets in the picoliter to microliter diameter
range, which can be transported, merged, and analyzed. Each droplet serves as a reaction vessel
with high surface-to-volume ratio. Unlike mLSI, droplet microfluidics has the capacity to perform
a large number of reactions in a repetitive manner and train format without increasing chip complexity.
Parallel processing and experimentation can easily be achieved to allow the acquisition of large
amounts of data because a large number of droplets can be formed. The term digital microfluidics
is used to describe the control of droplet position based on electrowetting [22,23]. In electrowetting,
a fluid is placed on an electrode coated with an insulator that has a surface treated to be hydrophobic.
A potential is applied across the insulator to make it charged and therefore attractive for the fluid to
wet the surface. Currently, digital microfluidics has been used for a wide range of laboratory analyses.
Similar to mLSI, DMF enjoys the same benefits of low reagent volume (in the picoliter to microliter range)
and high capacity for parallelization and automation. Moreover, it can be easily integrated with other
analytic techniques. However, the droplets in DMF devices are often exposed to ambient conditions;
therefore, the evaporation of reagents is a problem, especially during long-term cultivation of cells.
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2. Review of Main Body of Research

2.1. General Comments on Microfluidic Photobioreactors

Here, we provide a review of the recent progress in opportunities afforded by microfluidics for
cyanobacteria and microalgae from the perspective of metabolic engineering and synthetic biology.
This paper primarily focuses on microfluidic cultivation technology because this is most relevant
for investigation of the physiology and metabolism of cyanobacteria. Key factors for design of
microfluidic photobioreactors includes the light illumination, CO2 gas delivery, nutrient medium
supply, and mechanical form factors of the reactor. The parameters for light illumination include the
intensity, wavelength, and temporal and spatial patterns. In addition, monitoring the growth of the
cells during the cultivation and end point detection of the desired product are also crucial. As the exact
device design and experimental protocol depends on the model organisms used, one need to consult
the existing literature [4]. We also review the progress in microfluidic photobioreactor technology for
metabolic engineering and the synthetic biology of cyanobacteria and microalage. Before reviewing
the microfluidic photobioreactor, we noticed that the majority of the work on microfluidic cultivation
has involved non-photosynthetic bacteria. Extensive efforts have been made to design microfluidic
bioreactors for non-photosynthetic microbial cultivation [24] and cell culture [25] in the form of
microchemostats [26–28], serial dilution bioreactors [29], flow-based chemostats [30–32], biofilm flow
reactors [33–35], and droplet reactors [36]. Here, we review microfluidic photobioreactors and separate
them according to different platform technology.

2.2. Microfluidic Photobioreactor Based on Microplate and Agar

Chen et al. used a 96-well microplate integrated with a LED light source for high-throughput
studies of light-dependent growth rates and characterized photosynthetic efficiency in the model
organism Dunaliella tertiolecta, a lipid-producing algae as shown in Figure 3a [37]. They claimed to
reduce the screening time from two years using conventional tools to less than two weeks by conducting
96 photoirradiance experiments in parallel. However, it is reported that growth of cyanobacteria in
96 well is poor as compared to 6 well plates or 24 well plates [4]. Teng et al. elucidated the mechanism
for robust circadian oscillations in growing Synechococcus elongatus (S. elongates) [38]. To accomplish
this, they used a single-cell chemostat based on an agarose pad [31,39] patterned with submicron
grooves to monitor the oscillation of a wild-type strain and identify the role played by a transcription
translation regulation (TTR) circuit in enhancement of stability of circadian clocks.

2.3. Microfluidic Photobioreactor Utilizing Flow-Based mLSI Technology

We next described a photobioreactor based on PDMS mLSI technology. PDMS has the advantage
of gas permeability; therefore, CO2 can diffuse into the culture chamber. The PDMS material can
also prevent the evaporation of the medium for an extensitve time period for cultivation of cells if
the chip is kept in a humidified environment. Holcomb et al. demonstrated the biocompatibility of
PDMS devices with microalgae by culturing microalgae and used fluorescent dye for lipid staining [40].
With a power-free valve, the device can support culture of Tetraselmis chuii (T. chuii) for up to 3 weeks.
Han et al. demonstrated a high-throughput microfluidic microalgal photobioreactor array capable
of applying 64 different light conditions for Botryococcus braunii [19]. The device is composed of four
poly(dimethylsiloxane) (PDMS) layers stacked on top of each other, a microalgae culture layer, a light
intensity control layer, a light–dark cycle control layer, and a light-blocking layer. By co-flowing
deionized (DI) water and black dye through the light intensity layer, the gradient generator produces
eight different concentrations of black dye and hence eight different light intensity conditions. Similarly,
the control of light–dark cycles is based on selectively filling each microfluidic channel in the light–dark
cycle control layer with either DI water or black dye. They measured the growth and oil production
of B. braunii for 12 days under 16 different light exposure conditions. Subsequently, the same group
refined the device design and reported a high throughput microfluidic single-cell screening platform
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as shown in Figure 3b [41]. The developed platform consists of 1024 single-cell trapping units for the
unicellular microalga Chlamydomonas reinhardtii (C. reinhardtii) and measured the growth rates using
chlorophyll as an authofluorescence marker and intracellular lipid accumulation by staining the cell
with Nile red fluorescenct dye. The doubling time of C. reinhardtii was determined to be 6–8 h, which
was consistent with conventional bulk measurement results.

A very similar perfusion platform was also developed by Eu et al. to cultivate motile microalgal
cells. The platform consists of a 2 × 4 array of perfusion chambers with 2-µm-tall pillar structures
to prevent cells from escaping [42]. The chemical environment in each chamber was independently
controlled and used to monitor lipid production under nitrogen depletion, phototaxis behavior in the
absence of calcium ion and cytotoxic effects due to herbicides. Luke et al. developed a Dial-a-Wave
(DAW) microfluidic platform for long term monitoring of cyanobacteria and microalgae [43]. In their
system, cells are confined in a microfluidic chamber with height slightly lower than the dimensions of
the cell and allowed to grow under the perfusion of nutrient medium. Such monolayer confinement
avoids the shading effect typically encountered in macroscopic photobioreactors and ensures the
efficient illumination of cells. The reported doubling times in microfluidic devices are similar or shorter
than those in bulk culture under the same light intensity. For example, S. elongates PCC 7942 can grow
via phototrophic metabolism, although the phototropic growth rate is relatively lower, ~0.12 h−1, with
a corresponding doubling time of ~6 h. Their devices also track circadian rhythms in S. elongatus using
yellow fluorescence protein (YFP) as the reporter from gene expression under the control of kaiBC
promoter, as shown in Figure 4b. Dynamic stimulation is also demonstrated by pulsing of 100 ppm
ammonia at different periods and observing the chlorophyll authofluorescence, as shown in Figure 4c.
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Figure 3. High throughput screening microfluidic platform (a) 96-well microplates [37]. An array of
LEDs is utilized in conjunction with a microcontroller to provide light illumination; Reproduced with
permission from Lab on a chip; published by Royal Society of Chemistry, 2012; (b) Single-cell capture
sites [41]. Single-cell resolution growth profile of C. reinhardtii showing cell division inside the cell trap
site for a 15-h period; Reproduced with permission from Lab on a chip; published by Royal Society
of Chemistry, 2015; (c) Liquid crystal display (LCD) pixel-based photobioreactors [44]. The platform
consists of a PDMS-on-glass cell culture chip, a programmable LCD screen and an LED array backlight
to deliver the multiplexed illumination to cyanobacteria. The irradiance intensity, time variance and
spectral composition can be individually controlled for each experiment. Reproduced with permission
from Lab on a chip; published by Royal Society of Chemistry, 2015.
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respectively; (c) Chlorophyll fluorescence of Chlorella sorokiniana (C. sorokiniana) under dynamic 
simulation with pulses of ammonia. Chlorophyll fluorescence (green line) decreased when ammonia 
was introduced with medium void of nitrogen. The total cell area is indicated by the blue line. 
Reproduced with permission from ACS Synthetic Biology; published by American Society of 
Chemistry, 2016. 
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Figure 4. Microfluidic platform for long term monitoring of algae in a dynamic environment [43].
(a) Time-lapse image of S. elongates in a microfluidic chamber to show growth; (b) The fluorescence
level of YFP of 134 cells from single cell tracking of circadian rhythms of gene expression of S. elongates.
The blue line and yellow shaded region are the mean and the standard deviation, respectively;
(c) Chlorophyll fluorescence of Chlorella sorokiniana (C. sorokiniana) under dynamic simulation with
pulses of ammonia. Chlorophyll fluorescence (green line) decreased when ammonia was introduced
with medium void of nitrogen. The total cell area is indicated by the blue line. Reproduced with
permission from ACS Synthetic Biology; published by American Society of Chemistry, 2016.

2.4. Microfluidic Photobioreactor Based on Droplet and Digital Microfluidics

The microfluidic photobioreactor based on droplet format in PDMS materials has also been
developed for very high throughput screening experiments. For example, microfluidics is ideally
suited for single cell electroporation, because it can be used to overcome several inherent drawbacks
of bulk electroporation. First of all, only a relatively low potential is needed to generate a high
electric field strength with microelectrodes and therefore minimized the joule heating. Secondly,
heat dissipation is fast in microfluidic channel owing to the large surface area-to-volume ratio and
as a result increase the cell viability. Both effects can minimize the temperature increase during
the electroporation and increase cell viability. Qu et al. developed a PDMS-glass to perform
electroporation for C. reinhardtii [45]. The device consists of a flow focusing microstructure to generate
cell-encapsulating droplets and a serpentine channel to enhance fluidic mixing. The transformation
efficiency was shown to be more than two orders of magnitude higher for the wild-type cell than bulk
phase electroporation. The maximum transmembrane potential for on-chip electroporation is about
~295 mV and for comparison, 0.75 kV is used for a commercial electroporator (Bio-Rad).

Abalde-Cela et al. have developed a screening platform based on droplets for ethanol producing
cyanobacteria that utilizes a customized enzyme detection assay and fluorescence [46]. The technique
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is based on an enzyme assay that converts ethanol into a highly fluorescent compound. The growth
kinetics for Synechocystis sp. PCC6803 were measured in microdroplets. A fully integrated chip based
on droplet microfluidics was also developed by Han et al. [47]. The device consists of a culturing
region, an on-chip staining region, and a rinsing and analysis region. After cell cultivation, the cells
encapsulated in the microdroplets are synchronized and merged with Nile red droplets to stain the
lipids. Finally, the droplets pass through a rinsing region for oil quantification. Hammar et al. have
developed a droplet microfluidic workflow for single cell analysis and sorting of L-lactate-producing
strains of Synechocystis sp. PCC 6803 [48]. A UV mutagenized population was sorted using
fluorescent-activated droplet sorting and the separation of low- and high-producing strains is
demonstrated. More importantly, the experimental data with single cell resolution revealed population
heterogenity in photosynthetic growth and lactate production as well as the metabolically stalled cells.

Now, we discuss the microfluidic photobioreactors based on DMF. Au, Shih and Wheeler have
developed a DMF platform as a micro bioreactor and reported 5-day culture of algae [49]. This platform
has been future optimized with several design features to allow fully automated, multiplexed analysis
with significant reductions in pipette steps [50]. The device features an active reservoir structure to
maintain homogeneous cell density and a customized device layout for controlling a wide range of
various droplet sizes. The readout is conducted in the detection zone using a standard multiwell plate
reader to allow parallel optical measurement. For confirmation of its functionality, the device is used
to identify the optimal illumination conditions for biofuel production from Cyclotella cryptica.

2.5. Microfluidic Photobioreactor with Alternative Illumination Method

One research direction is to explore alternative ways to illuminate cyanobacteria. In this regard,
researchers have resorted to ideas from micro and nano optics (Figure 5). Erickson et al. demonstrated
slab waveguide photobioreactors for S. elongates PCC 7942 [51,52]. These reactors use an evanescent
wave to improve the illumination uniformity for cyanobacteria. They coupled a laser light with
a wavelength of 660 nm to the slab waveguide, which is actually the coverslip substrate of thickness
150 µm in the PDMS microfluidic chip. They then characterized the growth rate by measuring the
optical density at 750 nm off chip and concluded that there was a 12-fold improvement in volume
productivity. One possibility is to use the surface plasmon resonance [53,54]. Surface plasmon is the
collective oscillation of electrons typically in metallic materials and properly engineered plasmonic
nanostructures can effectively confine the optical field well below the optical wavelength using
localized optical modes. The local surface plasmon fields are also enhanced by a factor of Q when under
external excitation (Q is defined in terms of the real and imaginary parts of the metal’s permittivity
(εm) as Q = −Re·εm/Im·εm). For noble metals, the maximal value of Q ranges from 10 up to 100.
Sinton et al. showed that the surface plasmon resonance evanescent field can be used to enhance
the growth of S. elongatus biofilm [55,56]. They coupled laser light at a wavelength of 633 nm via
a glass prism in Kretschmann configuration to grow a thick biofilm. The high-intensity evanescent
field penetrated less than 1 µm into the media, but led to an improvement in the volume density of the
cyanobacteria cells. In a similar study, Sinton et al. demonstrated that excitation of photosynthetic
Synechococcus bacillaris biofilms can provide electricity directly [57]. The biofilm was attached with
an electrode and placed on a gold film for plasmonic excitation via the Kretschmann configuration
at λ = 670 nm. Sinton et al. demonstrated a microfluidic photobioreactor with LED pixels as the
illumination source [44]. The platform consists of a PDMS culture chip, a programmable LCD screen
and an LED array backlight to individually control the irradiance intensity, time variance and spectral
composition of each individual chamber.
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Figure 5. Light coupling mechanisms. (a) Direct illumination from a LED [37]. Reproduced with
permission from Lab on a chip; published by Royal Society of Chemistry, 2012; (b) Surface plasmon
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the Kretschmann configuration; Reproduced with permission from Applied Physics Letter; published
by American Institute of Physics, 2012; (c) Localized surface plasmon resonance (LSP) coupling [56].
Cyanobacteria are placed on an array of gold nanoparticles, which are designed to optically resonate
near the absorption maxima of pigments to reflect useful light to these microorganisms. Reproduced
with permission from Applied Physics Letter; published by American Institute of Physics, 2014.

3. Future Perspectives

3.1. Integration with Current Workflow of Synthetic Biology

Genome engineering of cyanobacteria is critical to metabolic engineering and synthetic
biology [58]. Currently, the development of genome engineering tools for cyanobacteria lags far behind
that of other model organisms such as E. coli. Standardized components such as promotors require
extensive characterization to produce predictable results. Current automation for gene assembly
relies on robotic technology, which is prohibitively expensive [58–60]. For example, the consumable
cost and hands on time for DNA assembly and cloning using traditional liquid-handling robotic
automation is still prohibitively expensive, and significant capital investment is required. In contrast,
modest infrastructure and inexpensive microfluidic devices are suitable platforms for widespread
use. Lin et al. reported the use of digital microfluidics for DNA ligation with single DNA fragment
insertion [60]. Linshiz et al. used valve-based channels to carry out Golden gate and Gibson assembly
with insertion of up to eight DNA fragments [61]. More recently, Shih et al. reported a versatile
microfluidic device to conduct DNA assembly based on three commonly used DNA assembly protocols
that combined digital and droplet microfluidics [62]. The DNA assembly region consists of digital
microfluidic devices with 76 electrodes, while the incubation and queuing takes place in a serpentine
channel. Electroporation is used to transform the microbes using electrodes. In particular, the field
intensity is varied in the range of 1000−2000 V/cm to optimize the intensity that will result in the
highest transformation efficiency for our microfluidic setup. For Escherichia coli a maximum efficiency
4.58 × 103 cfu/ng is achieved at 1800 V/cm. For yeast, lower fields (~1200 V/cm) yielded a maximum
efficiency of 1.90 × 103 cfu/ng of DNA.

3.2. Synthetic Photobiology and Optogenetics

Optical means to control genetic circuits provide a more precise method than chemical effectors,
which are the current standard, for controlling gene circuits in synthetic biology [63]. Parameters such
as wavelength and intensity can be precisely tuned to achieve the desired control over the gene
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expression. Light sensing microorganisms can be engineered by taking existing sensors from
a light-sensing organism such as cyanobacteria or plants and fusing them into two component systems
in the host microorganisms. In natural environments, cyanobacteria possess sensors used for chromatic
adaption to optimize their light utilization, and such sensors can be used for light sensing. Voigt et al.
created a light sensor that functions in E. coli by engineering a chimaera protein that uses a phytochrome
from a cyanobacterium [64,65]. Tabor et al. subsequently created and optimized a few light sensing
E. coli using green/red light and red/infrared light [66]. Ohlendorf et al. also created a one-plasmid
system using blue light to regulate gene expression [67,68]. Although there has been significant
progress in developing and optimizing such optically addressable genetic circuits, the current standard
protocol is still too cumbersome and labor intensive. For example, Tabor’s group created a light
tube array to conduct measurements using a procotol that involves microbial cultivation under the
illumination of light, freezing the metabolic activity at low temperature and antibiotic and fluorescent
measurement in a flow cytomoter [69]. The aforementioned microfluidic photobioreactors can serve
as ideal platforms to characterize such light-sensing microorganisms in automated fashion and with
single cell resolution.

3.3. End Point Titration and Metabolic Flux Measurement

In the current standard process flow, the end product titration relies on HPLC (high-performance
liquid chromatography), which requires significant amounts of sample (~100 µL). The results are also
limited to end point detection. Real-time profiling of metabolic activity has been demonstrated with
direct injection of living bacteria into a high-resolution mass spectrometer [70], but such a capability is
only available in a very limited fashion. The metabolic flux of cyanobacteria has also been measured
using isotope-labeling techniques [71]. Moreover, the absolute concentration of metabolites has
been measured to obtain a global understanding of the metabolome for E. coli [72]. These recent
developments are very exciting, but they all employ techniques that are cumbersome and require
expensive equipment. Accordingly, it is desirable to have low cost, in situ monitoring of product
production integrated with microfluidics. For example, a single-cell Raman spectra-based approach
is rapid, label-free, non-invasive, low-cost, and potentially able to simultaneously track multiple
metabolites in individual live cells; therefore, such a method should enable many new applications.
This method also bypasses the slow, cumbersome culture step of microalgae. Zhang et al. described
a method for direct, quantitative, in vivo lipid profiling of microalgae using single-cell laser-trapping
Raman spectroscopy for several oil-producing algal species of interest, including B. braunii, Neochloris
oleoabundans, and C. reinhardtii [73,74]. This technique afforded in vivo quantitative spectroscopy
from single living cells without any preparation step and is much more convenient than conventional
Raman measurement technique performed on bulky, dried, or immobilized algal samples. Huang et al.
used the starch-producing unicellular microalga C. reinhardtii as a model and employed a customized
Raman spectrometer to capture the Raman spectra of individual single cells [74].

4. Conclusions

In conclusion, microfluidics can bring a great deal to the field of metabolic engineering and
synthetic biology of cyanobacteria. The main driving force will be to develop a platform for identifying
highly valued strains with rapid turnaround times. First of all, as the light is necessary ingredient
for cyanobacteria and microalgae, optimization of light illumination for photosynthesis have been
explored extensively and form a line of research direction on its own [51–55]. Unlike the macroscopic
photobioreactors, for which self shading is almost avoidable, the microfluidic photobioreactor can be
designed with uniform light intensity across the cultivation volume. Although advances have been
made to make microfluidic photobioreactors in several microfluidic technologies, this field is still in
its fledging phase. So far, each microfluidic technology such as mLSI, droplet microfluidics, DMF
has their own unique advantages as well as their shortcomings. For example, if the throughput for
screening is the major concern, the droplet microfluidics is the winner [46,47]. However, the cells are
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cultivated within the droplet with a fixed amount of nutrient medium and will not be in a well-defined
constant chemical environment as the metabolic waste accumulated. The flow based reactors based
mLSI technolgy with PDMS material provide well-defined chemical environments and with single cell
resolution is still the most ideal choice to obtain the characterization of genetic circuit [43]. DMF seems
to be a unnatural choice for cultivation of cyanobacteria and microalgae mainly because prevention
of the evaporation of medium require extensive engineering [50]. However, it will be most likely
be winner solution for gene assembly [60,62]. Still, current research efforts in microfluidics are
focused on demonstrating proof of concept devices and experiments. The results reported in the
literature remain isolated from the actual workflow of strain improvement through synthetic biology
approaches. Filling this gap will be important to advancing microfluidic technology. For example,
a microfluidic device capable of testing the cell culture condition under a large number of conditions
with different CO2 gas and medium composition will be very desirable and has been lacking although
there are reports using Dertinger mixing devices to create gradient [75]. In Table 1, we summarize the
challenges in the current synthetic biology workflow and potential solutions provided by microfluidic
technology. The current cumbersome workflow to insert and verify a synthetic pathway or a genetic
circuit via gene assembly technique into the cyanbacteria presents tremendous opportunities for
microfluidic technology. One fundamental bottleneck in turnaround time is the long cultivation time
for cyanobacteria. This can be overcome by either bypassing the cultivation step using sensitive
spectroscopy tools or monitoring the cyanobacteria at the single cell level. On one hand, it seems that
this field has a clear roadmap to follow and there is no need to reinvent the wheel, as many microfluidic
device designs are well characterized and readily available for specific experimental needs. On the other
hand, the microfluidic technology can offer unprecedented experimental resolution to advance our
fundamental understanding of genetic circuits of cyanobacteria [37,43], which will subsequently help
realize the full potential of syntheic biology and metabolic engineering of cyanobacteria. For example,
the effect of molecular fluctuation at the single enzyme level on growth has been demonstrated for
E. coli using microfluidic devices [76]. It would be interesting to see if the same effect could be measured
for individual cyanobacteria. Another example is to utilize the microfluidic technology to understand
the cellular heterogeneity. It is known genetically identical cell can exhibit phenotypic heterogeneity
and such effects can be monitored with microfludic devices with single cell resolution and high
throughput [47,77]. Another example is the development of a high-efficiency synthetic carbon fixation
pathway to replace the Calvin–Benson cycle based on the RuBisCo enzyme. Milo et al. investigated
the possibility of a synthetic carbon fixation pathway, and experimental processes along this line are
ongoing [78,79]. Microfluidic devices can offer high throughput platforms to test cyanobacteria under
a variety of growth conditions. Although there is still a long way to go, we believe that the results of
these efforts will be very rewarding. Genetically modified microorganisms hold great promise from
a biotechnological point of view, and may become a green production technology for biofuel and
commodity chemical production under controlled conditions.

Table 1. Key microfluidic technologies for investigation of challenges present in the metabolic
engineering and synthetic biology workflow.

Work Flow Challenges Microfluidic Technology References

Gene assembly
Fast, accurate,
construction of large
genetic devices

Microfluidics DNA synthesis and
assembly with integrated bacterial
transformation

[60,62]

Verification
Large scale screening
Dynamic chemical
environment

Microfluidic photobioreactor
supporting long term cell growth
and single cell monitoring

[41–43]

End production titration
Low cost, in situ
measurement to replace
current technology

1. Enzyme assay with
fluorescent detection
2. Spectroscopy such as Raman
integrated with microfluidics

[46,48,73,74]
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