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Abstract

Single-cell genomics will enable studies of the earliest events in kidney development, although it 

is unclear if existing technologies are mature enough to generate accurate and reproducible data on 

kidney progenitors. Here we designed a pilot study to validate a high-throughput assay to measure 

the expression levels of key regulators of kidney development in single cells isolated from 

embryonic mice. Our experiment produced 4,608 expression measurements of 22 genes, made in 

small cell pools and 28 single cells purified from the RET-positive ureteric bud. There were 

remarkable levels of concordance with expression data generated by traditional microarray 

analysis on bulk ureteric bud tissue with the correlation between our average single cell 

measurements and GUDMAP measurements for each gene of 0.82-0.85. Nonetheless, a major 

motivation for single cell technology is to uncover dynamic biology hidden in population means. 

There was evidence for extensive and surprising variation in expression of Wnt11 and Etv5, both 

downstream targets of activated RET. The variation for all genes in the study was strongly 

consistent with burst-like promoter kinetics. Thus, our results can inform the design of future 

single-cell experiments, which are poised to provide important insights into kidney development 

and disease.
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The development of each kidney depends on precise spatiotemporal interactions between the 

ureteric bud (UB) and the metanephric mesenchyme beginning at about five weeks of 

gestation in humans and 10.5 days post-coitum (e10.5) in mice[1]. These interactions trigger 

a highly coordinated developmental program between the derivatives of epithelial, 

mesenchymal and endothelial progenitors that ultimately give rise to the mature kidney. In 

order to create or sustain a native or synthetic kidney it is therefore essential to create a 

molecular narrative of kidney development that should include the timing and location of 

changes in gene expression, chromatin and protein activity and cellular metabolism. The 

field of genomics is currently exploding with ingenious new techniques to measure these 

cellular processes, mostly empowered by the availability of low-cost DNA synthesis and 

high throughput sequencing[2, 3]. Furthermore, a revolution in microfluidics now allows us 

to apply these genomic techniques to nanoliter reaction volumes, enabling measurements to 

be made at the level of single cells[4]. This convergence has made it feasible, in principle, to 

describe the genomic program of kidney development at a single cell level, so that molecular 

events during early kidney development can be deciphered.

In order to implement and validate single cell genomic technology for the study of 

individual cells of different lineages during kidney development, we selected the branching 

ureteric bud cells as our model system. These cells have high expression of the Receptor 

tyrosine kinase (Ret), a gene that is critical for kidney formation and in specification of the 

collecting system lineage[5]. Ret is highly expressed in the ureteric epithelium in the UB tip 

during branching morphogenesis and abnormal Ret expression or activity results in a diverse 

spectrum of renal malformations [5-8]. We designed a pilot experiment to analyze the 

expression profiles of 24 kidney development genes from Retlabeled single cells during 

branching morphogenesis using RET-EGFP reporter mice[9]. We addressed the following 

questions: (a) are single cell gene expression measurements reproducible for this biological 

system model, (b) do (average) single UB cell gene expression measurements reproduce 

match published expression levels measured from pooled UB cells, (c) what is the 

variability among genes and cells in single UB cell expression levels?

We used FACS to populate 48 wells of a microtiter plate with EGFP-positive cells 

originating from ten E13.5 metanephroi (Methods, Figure 1). In total, 32,020 cells were 

EGFP-positive, an average of about 3,000 cells per metanephros, comprising 7.9% of the 

total cell population of each metanephros. Cells were distributed across the 48 wells as 

follows: 28 single cells, two standard dilution series of (2,4,8,16) cell pools and one standard 

series of (2,4,8,100) cell pools. Four wells were kept empty as negative controls. cDNA was 

synthesized in each well and loaded into an integrated microfluidic circuit (IFC). We used 

qPCR to measure the expression level of 24 genes, selected to represent high (15) or low/

absent in the UB (9) based on their known expression in these regions[10] (Supplementary 

Table 1). Additional rationale for these genes include: 1) Their important roles in kidney 

development, 2) Several of these interact with RET signaling (GDNF, GFRα1, WNT11, 

ETV4, ETV5, SPRY1, BMP7, PAX2), 3) They include genes that are known to be 

expressed exclusively in the UB (example, RET, WNT11, WNT9b), or in the cap 

mesenchyme (example, GDNF, SIX2, SALL1), or in the stroma (FOXD1), or in the renal 

vesicle (WNT4) or in more than one of these regions (example, GFRα1 in cap mesenchyme 
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and UB; BMP7 in UB and renal vesicle; PAX2 in UB and cap mesenchyme). Each primer 

pair was assayed in duplicate, resulting in 2 × 24 × 48 = 2304 expression measurements per 

experiment. Finally, the same plate of starting cDNA was assayed in duplicate, by two 

different scientists, allowing us to quantify the technical measurement error for each 

experiment. We performed rigorous quality control on each qPCR measurement that 

subsequently left us with 1562/2304 (68%) measurements that passed in both runs. Two 

primer sets failed as a whole and all results for these assays were excluded as a result from 

the QC (Methods).

Following within-plate median normalization, we performed analysis of variance (ANOVA) 

on the Ct values from the single cell measurements and found highly significant variance 

components associated with well number and primer set, but the variance between plate 

replicates was not significant (Table 1). The average variance in expression level between 

cells was over four times greater than within cells (F=8.23 vs F=1.95) with the highest 

variance, as expected, present among expression levels of different genes (F=156). These 

results clearly demonstrate that our system allows comparison of gene expression levels 

between individual cells, and importantly, that there is significant heterogeneity in 

expression profile among single UB cells.

We next examined the dynamic range and calibration of our qPCR platform. For all 14 

genes expressed in UB, we fit linear models relating observed expression (Ct) to cellular 

copy number using the three dilution series of 2, 4, 8 and 16 cells (Supplementary Figure1). 

We obtained a mean slope of -1.05, indicating an excellent linear quantitative agreement 

between cell number and expression level from each gene. Interpolating the single cell 

measurements with these fitted models produced a mean interpolated cell count of 1.06 

across all 14 genes × 28 cells = 392 interpolations. These studies confirmed that our 

platform is quantitative down to single cell level.

To determine if, at a population level, our single cell measurements agree with pooled cell 

measurements from the same tissue, we obtained published GUDMAP microarray data for 

14 of our genes, generated from expression profiling bulk UB cell pools (Methods)[10]. 

When comparing expression average values of our single cells to GUDMAP data, we 

observed remarkable concordance: the correlation coefficients between GUDMAP E11.5 

UB stalk and our averaged single cell measurements were 0.82 and 0.85, for run 1 and run 2 

respectively (Figure 2A). We interpret this finding as clear validation of our single cell 

system for performing reliable measurements on developing renal cell populations.

One of the primary motivations for performing gene expression analysis at the single cell 

level is that pooled cell measurements potentially obscure substructure and biology in 

populations of nominally identical cells, either due to stochastic or programmed variation in 

expression among cells[11]. Previous single-cell studies of gene expression have suggested 

that most mammalian promoters display “bursty” kinetics- points of intense transcription 

separated by long intervals of silence [12, 13]. To determine whether it would also be the 

case in our population, we examined the cell-to-cell variation in expression levels for each 

of our genes. We observed a quadratic scaling between mRNA variance and mean, 

consistent with “burst”-like transcriptional activation (Figure 2B). Next, hierarchical 
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clustering of the full data demonstrated three groups of genes and two groups of cells 

(Figure 3). The three gene groups correspond to (a) 8 genes that are robustly expressed 

across all cells – EGFP, GAPDH, HNF1B, PAX2, GFRA1, GATA3, FGFR2, and WNT9B; 

(b) 8 genes that are lowly expressed in all cells - FGF9, VEGFR2, SIX2, WNT4, GDNF, 

SALL1, FOXD1, FOXC2 (non UB genes); (c) 6 genes with coordinated, variable (and 

nearly bi-modal) expression across cells – RET, WNT11, ETV5, LHX1, BMP7 and SPRY1.

The two cell-type clusters that we observed were totally defined by their expression of genes 

in group (c). Formal significance testing for the presence of two distinct clades of cells, 

using multiscale bootstrap resampling on the full set of expression data, did not reject the 

null hypothesis at a significance of 0.05 (observed p = 0.26, Supplementary Figure2). 

However, support for these 2 distinct cellular groupings increased when clustering only 

those genes that are expressed in UB (Supplementary Figures3, 4). In 97% of bootstrap 

samples, all cells with high group (c) expression were more closely clustered to another cell 

with high group (c) expression than to one of 7 cells with low group (c) expression (cells 

1,12,15,16,18,21,24).

We were somewhat surprised to see that one of these two cell populations included 

apparently EGFP+, RET- cells, as expression of our EGFP reporter is driven by the RET 

promoter. It is likely that we observe these EGFP+, Ret- cells due to differences in the half-

life of EGFP protein, which is about 24 hours, and that of Ret transcripts, which is less than 

4 hours [14, 15]. Consistent with the qPCR data, we also observed a small fraction of cells 

that express EGFP but not Ret (Supplementary Figure 5). Among the 4 other genes in group 

(c), expression of WNT11 and ETV5 is upregulated by activated RET[6]. However, we 

observe RET-, ETV5+, WNT11- and RET+, ETV5-, WNT11+ and RET+, ETV5+, 

WNT11- cell populations that could only be identified through single analysis and missed in 

pooled analysis. This suggested to us that two cell populations defined by group (c) genes 

might represent cells in different biological states, perhaps cells that are in transition from an 

undifferentiated UB tip cell to becoming a stalk cells. The different expression patterns at a 

single cells level are also supported by expression of Ret and Bmp7 that show high level of 

expression in most of the cells except a few in which there is low Ret and high Bmp7 

(Supplementary Figure3, cells 16 and 24). This is further confirmed by 

immunohistochemistry where intensity of Ret expression changes from high to low from UB 

tip to stalk and Bmp7 remains highly expressed (Figure 4A). Immunofluorescence 

experiments also support that most cells in the UB coexpress high levels of Ret and Wnt11 

but there are also rare cells that show high Wnt11 and low Ret (Figure 4B). While the small 

number of replicates deployed (2 inter-user replicate groups, 29 single cell replicates) limits 

the assessment of variability of the system our studies provide the necessary validation of 

single cell analysis on Ret-positive UB cells.

In summary, we have used microfluidic processing for the first time to make accurate 

measurements of single cell gene expression from Ret-positive UB and validated these by 

data from standard array-based profiling of bulk cell populations. The data strongly support 

the conclusion that different combination of genes identify subpools of cells among a large 

group of cells from the same lineage and the knowledge of these is critical for rationally 

programming progenitors towards more differentiated cell types. For example, in delineating 
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the early molecular events that underlie differentiation of the nascent UB tip cell to mature 

collecting duct cells. Even greater potential for this line of research will be realized with 

scaling up single cell analysis to profile entire transcriptomes with RNAseq, and to use the 

resulting datasets to build better computational models for the molecular processes 

underlying kidney development. Our results provide the necessary proof of concept towards 

this goal.

Materials and Methods I (for main letter)

Isolation of cells from ureteric bud

All animal studies were conducted in accordance with Institution approved protocols. E13.5 

embryonic metanephroi were dissected from five Ret-EGFP embryos (two from each, total 

10 metanephroi) and collected in 1.5ml tube. Collected metanephroi were suspended with 

Trypsin-EDTA solution (Sigma, T3924) with 200μg/ml DNase I (Sigma) and incubated for 

10 min at 37 °C. After the incubation the specimens were triturated with a P-200 pipette and 

rinsed once with DMEM/F12 containing 10% FCS to inactivate Trypsin. The cell 

preparation was then treated with collagenase dissolved in DMEM/F12 (1mg/ml) and 

incubated at 37 °C for 10 min. The specimens were again triturated and fully dissociated 

cells were rinsed twice in 500μl of PBS/ 5% FCS and subjected to Fluorescence active cell 

sorting (FACS).

Fluorescence active cell sorting

We isolated EGFP-positive single cells originating from single cell suspension of the UB via 

FACS using a Beckman Coulter MoFlo Cell Sorter (tip size 70μm) at the Siteman Cancer 

Center. The EGFP-positive cells were sorted into 96 well microtiter plates with each well 

containing 5 μl CellsDirect 2x reaction mix (Invitrogen, PN11753-100). Each microtiter 

plate contained 56 single cells, four dilution series of 2, 4, 8 and 16 cells, and 2 dilution 

series of 2, 4, 8 and 100 cells. On each plate 8 wells were kept empty as negative control.

Microfluidic qPCR

Prior to qPCR we specifically amplified the transcripts of 24 genes (Fgf9, Vegfr2, Six2, 

Wnt4, Gdnf, Sall1, Foxc2, Foxd1, Etv4, Wnt11, Lhx1, Spry1, Ret, Bmp7, Etv5, Hnf1b, 

Gapdh, Egfp, Pax2, Gfra1, Gata3, Fgfr2 and Wnt9b) according to a protocol from Fluidigm 

(South San Francisco, CA) (Supplementary Methods). All gene expression levels were then 

measured by qPCR in duplicate using the Fluidigm BioMark HD platform with a 48.48 

Dynamic Arry IFC according to manufacturer's protocol (Supplementary Methods, 

Fluidigm, PN 100-4109 C1).

Quality control

Using the Fluidigm Real-Time PCR Analysis version 3.1.3 software we obtained Ct values 

and melting curves for each chamber of each Fluidigm chip in which a qPCR reaction was 

performed. For each primer set we calculated the median melting curve temperature and we 

excluded all measurements for subsequent analysis that deviated at least 0.7 °C from that 

value. In addition we excluded all measurements for further analysis that had Ct values of 

over 35 (indicative of a failed qPCR). We excluded completely the data for two qPCR 
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primer sets, those for ETV4 and SHH, which both failed to work. In the case of ETV4, our 

primers were designed against a splice isoform that is not present in kidney. We also 

excluded all measurements from one single cell and one two-cell inputs, as these wells were 

not populated with cells during FACS.

Statistics

All statistical analyses were performed in excel or the R statistical package. ANOVAs and 

linear models were fit using the “anova” and “lm” functions, interpolation of single cell 

expression data was performed using “predict”, and hierarchical clustering analyses were 

performed using the “heatmap” and functions, all in R. P-values were generated for 

observed features in the hierarchical clustering analysis by bootstrap analysis with 1000 

samples, using the “pvclust” package, also in R.

Analysis of promoter kinetics

We converted all individual single cell Ct measurements into real space, assuming the 

maximal Ct measure possible is 40; in other words we create a new value Ct' = 2(40-Ct). This 

is important as we want to estimate arithmetic rather than geometric summary statistics. 

Using these transformed Cts we then calculate means and variances for each gene, and these 

summary statistics appear as points in panel 2B.

Validation of qPCR measurements

We downloaded seventeen normalized probe intensities from the GUDMAP database from 

the Affymetrix Mouse 430 2.0 array measurements on E11.5 Ureteric bud “Stalk” and E15.5 

Ureteric bud “tip” (Potter lab submissions, GUDMAP) to compare these intensities to the 

average single gene Ct values of our qPCR measurements.

Immunofluorescence microscopy

Immunofluorescence confocal microscopy was performed essentially as described [9]. 

Antibodies used were as follows: Ret (primary, goat 1:50 Neuromics GT15002; secondary, 

Cy5 or Cy3, bovine 1:200), Bmp7 (primary rabbit 1:100, Sigma AV32329-100UG; 

secondary, Cy3, donkey 1:200), EGFP is described in [9] and Wnt11 (primary, rabbit, 1:100, 

GeneTex GTX105971; secondary, biotin conjugated donkey antirabbit IgG 1:200 and 

DyLight 649-conjugated Streptoavidin). All secondary antibodies were from Jackson 

ImmunoResearch labs.

Supplementary Material

Refer to Web version on PubMed Central for supplementary material.
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Figure 1. 
Overview of the study.
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Figure 2. 
Expression dynamics at the single cell level. (A) When we compared the average single-cell 

expression levels measured in our experiments to those obtained by pooled cell analysis of 

E11.5 UB in GUDMAP, we observed remarkable concordance between the two: the 

correlation coefficients were 0.82 and 0.85, for run 1 and run 2 respectively. The average 

single-cell expression levels showed lower correlation to E15.5 ureteric tip (data not plotted, 

R=0.6 and R=0.55). (B) The nature of gene expression variation at the single-cell level is an 

active area of experimental and theoretical research [11]. A simple constant-rate model of 

transcription predicts a linear scaling between the mean and variance of expression levels 

(the light grey hashed line, σ2 = μ), while a model of punctuated, explosive, “burst-like”, 

transcription predicts a quadratic scaling (the black hashed line, σ2 = μ2). We observed 

quadratic scaling between the mean and variance of all genes in our single-cell expression 

measurements, consistent with “bursty” promoter kinetics. Here, we use a single point to 

represent the observed mean and variance of transformed CT values for a single gene, 

calculated across all 28 single cells (Methods). Blue triangles, first technical replicate; 

yellow triangles, second technical replicate).
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Figure 3. 
Hierarchical clustering of single cell qPCR measurements shows population structure. We 

performed hierarchical clustering on 22 single gene qPCR measurements generated from 28 

single cells, averaging over replicates of primer sets and plates, producing a matrix of 616 

values (Methods). The data show three gene clusters and two cell clusters. The three gene 

clusters correspond to genes with consistently (A) high expression, (B) consistently low 

expression, or (C) variable expression across cells. A surprising result was discordant 

expression of genes that are typically thought to act in concert. For example, Wnt11 and 

Etv5 are considered downstream targets of Ret and expected to have concordant expression. 

While this is true in most of the single cells in this group, however, we saw in few cells 

where their expression was inversely related (Figure 3, cells 1, 2, 12, 15, 16, 21, 23 and 24). 

What these variations mean or their effect on the net phenotype of a particular sequence of 

events from an immature UB tip cell to a more differentiated or daughter cell requires 

further studies.
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Figure 4. 
Expression of Ret, Bmp7 and Wnt11 in the ureteric bud. Images from confocal 

immunofluorescence microscopy to localize the indicated markers are shown from E13.5 

Ret-EGFP mice. (A) Ret and Bmp7 are coexpressed in majority of the cells in the UB tip, 

but a clear gradient of Ret expression can be seen in the UB tip (green arrows, high near tip; 

red arrows, low near the node) Bmp7 is expressed throughout the UB and also in the renal 

vesicle-S-shaped body region (RV), consistent with GUDMAP microarray expression data. 

(B) Ret and Wnt11 are coexpressed at high levels in the UB tip with rare cells with 

relatively low Ret and high Wnt11 expression (red arrows).
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