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ABSTRACT A bioinformatics approach was employed to identify transcriptome al-
terations in the peripheral blood mononuclear cells of well-characterized human
subjects who were diagnosed with early disseminated Lyme disease (LD) based on
stringent microbiological and clinical criteria. Transcriptomes were assessed at
the time of presentation and also at approximately 1 month (early convales-
cence) and 6 months (late convalescence) after initiation of an appropriate anti-
biotic regimen. Comparative transcriptomics identified 335 transcripts, represent-
ing 233 unique genes, with significant alterations of at least 2-fold expression in
acute- or convalescent-phase blood samples from LD subjects relative to healthy
donors. Acute-phase blood samples from LD subjects had the largest number of dif-
ferentially expressed transcripts (187 induced, 54 repressed). This transcriptional pro-
file, which was dominated by interferon-regulated genes, was sustained during early
convalescence. 6 months after antibiotic treatment the transcriptome of LD subjects
was indistinguishable from that of healthy controls based on two separate methods
of analysis. Return of the LD expression profile to levels found in control subjects
was concordant with disease outcome; 82% of subjects with LD experienced at least
one symptom at the baseline visit compared to 43% at the early convalescence time
point and only a single patient (9%) at the 6-month convalescence time point. Using
the random forest machine learning algorithm, we developed an efficient computa-
tional framework to identify sets of 20 classifier genes that discriminated LD from
other bacterial and viral infections. These novel LD biomarkers not only differenti-
ated subjects with acute disseminated LD from healthy controls with 96% accuracy
but also distinguished between subjects with acute and resolved (late convalescent)
disease with 97% accuracy.

IMPORTANCE Lyme disease (LD), caused by Borrelia burgdorferi, is the most com-
mon tick-borne infectious disease in the United States. We examined gene expres-
sion patterns in the blood of individuals with early disseminated LD at the time of
diagnosis (acute) and also at approximately 1 month and 6 months following antibi-
otic treatment. A distinct acute LD profile was observed that was sustained during
early convalescence (1 month) but returned to control levels 6 months after treat-
ment. Using a computer learning algorithm, we identified sets of 20 classifier genes
that discriminate LD from other bacterial and viral infections. In addition, these
novel LD biomarkers are highly accurate in distinguishing patients with acute LD
from healthy subjects and in discriminating between individuals with active and re-
solved infection. This computational approach offers the potential for more accurate
diagnosis of early disseminated Lyme disease. It may also allow improved monitor-
ing of treatment efficacy and disease resolution.
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Lyme disease (LD), a multisystem inflammatory disorder caused by Borrelia burgdor-
feri, is the most common tick-borne infectious disease in the United States, with an

average of �25,000 reported cases per year during the past decade and an estimated
annual incidence possibly as high as 300,000 cases per year (1). Diagnosis of early
infection is primarily based on recognition of the characteristic skin lesion, erythema
migrans (EM) (2–4). Treatment with appropriate antibiotics at this stage of infection is
generally effective at preventing the development of later clinical manifestations (5–7).
If left untreated, however, extracutaneous clinical manifestations may develop that can
include neurologic manifestations (e.g., facial palsy), arthritis, or carditis (8–10).

Currently, detection of antibodies to B. burgdorferi is the mainstay of laboratory
diagnosis of LD (11–13). However, there are several limitations of serologic testing,
including lack of sensitivity in patients with EM and the inability of these tests to assess
treatment response or to distinguish active from resolved infection (11, 14, 15).
Transcriptional profiling of an infected host holds promise as an alternative to serologic
testing for rapid and accurate diagnosis of recent infection. In studies unrelated to LD,
both common transcriptional activation programs and pathogen-specific alterations in
gene expression have been identified (16, 17), and several studies have demonstrated
that this approach can discriminate between specific microbial infections, as well as
predict disease outcome (18–22). Importantly, gene expression profiles have been used
to differentiate between active and resolved infection (23–26). This technology offers
the promise of overcoming certain limitations of LD serologic testing.

Here, we report on transcriptional profiling of patients with early LD who had
objective evidence of disseminated infection and were evaluated both before and after
antibiotic therapy. The random forest machine learning algorithm was employed to
identify classifier gene sets that discriminate LD from other microbial infections. These
novel gene sets differentiated subjects with acute disseminated LD from healthy
controls with 96% accuracy. Notably, subjects with acute infection were also discrim-
inated from those with resolved (late convalescent) disease with 97% accuracy.

RESULTS
Characteristics of study subjects. The study included blood samples from 39

subjects with disseminated LD and from 21 healthy controls (Table 1). Different
numbers of samples were included in the three time points used for evaluation of the
LD subjects due to the following: some subjects failed to return for both of the
follow-up visits, the amount and/or quality of RNA obtained from some blood samples
was insufficient for analysis, and 6-month blood samples were collected only during the
final 2 years of the study. Subjects who presented with physician-diagnosed EM from
late May through early October were enrolled in the study, and an EM skin biopsy was
performed. Confirmation of disseminated LD consisted of multiple erythema migrans
(MEM) and/or isolation of B. burgdorferi from blood. The only exception was a study
subject who presented with facial palsy, a sign of disseminated infection, and who was
seropositive by two-tier serologic testing. Serologic testing by a first-tier whole-cell
sonicate enzyme-linked immunosorbent assay (ELISA) was conducted at each sample
collection time. All EM subjects except one were either seropositive by ELISA at
presentation or seroconverted during the course of the study. B. burgdorferi was
cultivated from the blood of 29 subjects with EM (Table 1).

B. burgdorferi infection elicits a distinct gene expression signature during
acute disease and early convalescence that resolves by 6 months following
treatment. To characterize the host response to B. burgdorferi infection, we compared
gene expression in PBMCs from subjects with acute disseminated LD (n � 28), early
convalescent LD (1 month; n � 27), and late convalescent LD (6 months; n � 10) with
PBMCs from healthy donors (n � 21) using whole-genome oligonucleotide arrays.
Principal-component analysis was performed using all samples. Figure 1 shows that the
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first principal component (x axis) accounts for 37.7% of the variability in the data and,
with few exceptions, clearly separates the healthy donor and late convalescent LD
blood samples from the acute and early convalescent LD blood samples. No further
separation of samples within each of these groups occurs when the second (y axis) or
third (z axis) principal component is applied.

Significant differentially expressed transcripts (DETs) were defined as those having
a P value of �0.05 and at least a 2-fold change in expression at any time point relative
to the healthy donor group. A total of 335 DETs, representing 233 unique genes, were
identified (see Table S1 in the supplemental material). The greatest number of DETs
(241 total; 187 induced, 54 repressed) was observed in the acute phase blood samples
of the LD subjects (Fig. 2). The 1-month convalescent phase samples contained 142
DETs (142 total; 84 induced, 58 repressed); most of these (92; 65%) were also differen-
tially expressed during acute LD. Only 56 DETs (56 total; 45 induced, 11 repressed) were
identified in 6-month convalescent-phase samples; of these, an overwhelming majority
(51; 91%) were unique to this group. A list of the DETs with the greatest change in
expression (at least 2.5-fold) is provided in Table 2, along with the corresponding fold
change values for each time point.

In order to visualize temporal gene expression changes occurring during different
disease states, a profile plot was generated using the normalized intensity values of the
335 DETs. Healthy donors displayed a relatively broad range in intensity values (Fig. 3);
this likely reflects normal variation in gene expression in the population (27, 28). The
range of normalized intensities appeared to be more restricted in the acute LD samples
relative to samples from the healthy controls, likely reflecting a common response to B.

TABLE 1 Clinical characteristics of human subjects

Parameter Lyme disease subjects Healthy donors

Total no. of subjects 39 21

Gender, no. (%)
Male 22 (56) 9 (43)
Female 17 (44) 12 (57)

Age, no. (%)
�60 yr 28 (68) 16 (76)
�60 yr 11 (28) 3 (14)

EM rash
Median size, cm2 (range) 104 (11–1,440)
Median duration, days (range) 5 (1–60)
MEM, no. (%) 26 (67)

No. (%) seroreactivea for B. burgdorferi
Initial visit 28/38 (74) 0/21 (0)
One-month return visit 33/35 (94)
Six-month return visit 6/11 (55)b

Skin culture for B. burgdorferi
No. (%) positive 22 (56)
No. (%) negative 9 (23)
No. (%) contaminated 1 (3)
No. (%) not done 6 (15) 21 (100)

Blood culture for B. burgdorferi
No. (%) positive 29 (74)
No. (%) negative 7 (18)
No. (%) not done 3 (8) 21 (100)

Disseminated infection
No. (%) with MEM and/or positive blood culture 38/39 (95)c

aThat is, the number of subjects seroreactive/number of subjects examined. Whole-cell sonicate ELISA was
used for Lyme disease subjects, and IgG immunoblotting was used for healthy donors.

bIncludes four equivocal results.
cThe remaining patient had facial palsy from Lyme disease.
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burgdorferi infection among subjects. Consistent with the Venn diagrams, the profiles
for acute LD and 1-month convalescent LD samples were found to be strikingly similar;
however, the intensity of many of the transcripts was slightly reduced in the 1-month
convalescent samples. Importantly, expression intensities for the 6-month convalescent
LD samples showed greater variability in general, as was observed in healthy donors
(Fig. 3). Interestingly, at 6 months convalescence, the expression levels of some tran-
scripts that had been repressed during acute LD exceeded values observed in healthy
controls. This may indicate a “rebound effect” as immune cells returned to homeostasis
following clearance of the infection.

Numerous genes involved in innate immune mechanisms are differentially
expressed during acute and early convalescent LD but not during late convales-
cence. To further identify transcriptional patterns characteristic of disease states, the
335 DETs were used for unsupervised hierarchical clustering. As shown in Fig. 4,
samples separated into two main clusters. Consistent with the principal-component
analysis, all healthy donor and late-convalescent-phase samples clustered together
(group A), while the majority of the acute-phase (22 of 28) and early-convalescent-
phase (20 of 27) samples from LD subjects comprised a second group (group B). Four

FIG 1 Principal-component analysis distinguishes subjects by disease state. Principal-component anal-
ysis of Lyme disease patients at three time points and healthy controls based on 335 differentially
expressed transcripts (DETs).

FIG 2 Venn diagram depicting common and unique patterns of differential gene expression among
Lyme disease patients during acute LD and at 1 month or 6 months after the initiation of an appropriate
antibiotic regimen. Venn diagrams were generated using a total of 335 DETs that had a fold change of
at least 2, with P value of �0.05, relative to healthy controls. DETs for acute, 1-, and 6-month samples are
represented by colored ellipses. The sizes of the ellipses are adjusted for the number of DETs in each
group.
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of the remaining six acute LD samples formed a small subcluster immediately adjacent
to group B. One acute LD sample was distinctly separated from the other acute LD
samples; this sample had been collected from the only LD subject who did not have
serologic evidence of B. burgdorferi infection at any time point during the course of the
study and was culture negative from skin and blood; the diagnosis of LD was based
solely on the presence of MEM.

TABLE 2 Top 40 genes with greatest fold changes in LD subjects relative to healthy donors

Gene symbol(s) Gene title(s) Entrez gene(s)

Fold change

Acute 1 mo 6 mo

DEFA1/DEF1B/DEF3A Defensin, alpha 1/defensin, alpha
1B/defensin, alpha 3, neutrophil specific

1667/1668/728358 5.21 3.73 3.24

LCN2 Lipocalin 2 3934 3.95 2.59 1.00
FCGR3B Fc fragment of IgG, low-affinity IIIb,

receptor (CD16b)
2215 3.86 2.67 –1.07

MYL9 Myosin, light chain 9, regulatory 10398 3.42 2.35 –1.74
FCGR1A Fc fragment of IgG, high-affinity Ia,

receptor (CD64)
2209 3.34 1.38 1.25

CLU Clusterin 1191 3.12 2.06 –1.76
RRM2 Ribonucleotide reductase M2 6241 3.06 1.29 –1.27
GMPR Guanosine monophosphate reductase 2766 2.88 2.03 –1.15
IGHM Immunoglobulin heavy constant mu 3507 2.84 2.05 –1.71
PF4 Platelet factor 4 5196 2.83 2.56 –1.27
SPARC Secreted protein, acidic, cysteine-rich

(osteonectin)
6678 2.77 2.09 –1.45

PPBP Pro-platelet basic protein (chemokine
[C-X-C motif] ligand 7)

5473 2.82 2.48 –1.22

C21orf7 Chromosome 21 open reading frame 7 56911 2.70 2.41 –1.27
TNFSF10 Tumor necrosis factor (ligand)

superfamily, member 10
8743 2.77 1.87 1.43

HSPA6/HSPA7 Heat shock 70-kDa protein 6/heat shock
70-kDa protein 7

3310/3311 2.76 2.12 1.25

C6orf25 Chromosome 6 open reading frame 25 80739 2.75 2.06 –1.17
HIST1H2BK Histone cluster 1, H2bk 85236 2.74 2.11 –1.67
MYL9 Myosin, light-chain 9, regulatory 10398 2.72 1.86 –1.45
CXCR2/CXCR2P1 Chemokine (C-X-C motif) receptor

2/chemokine (C-X-C motif) receptor 2
pseudogene 1

3579/3580 2.72 1.87 –1.12

FCGR1B Fc fragment of IgG, high-affinity 1b,
receptor (CD64)

2210 2.70 1.23 –1.06

SLC25A37 Solute carrier family 25, member 37 51312 2.68 1.88 –1.29
GBP1 Guanylate binding protein 1, interferon

inducible, 67 kDa
2633 2.68 1.80 1.56

HP Haptoglobin 3240 2.68 1.32 1.07
AIM2 Absent in melanoma 2 9447 2.67 2.19 1.42
CA2 Carbonic anhydrase II 760 2.63 2.41 –1.18
HIST1H2AG Histone cluster 1, H2ag 8969 2.62 2.16 1.37
PTGS1 Prostaglandin-endoperoxide synthase 1

(prostaglandin G/H synthase and
cyclooxygenase)

5742 2.61 2.15 –1.01

THBS1 Thrombospondin 1 7057 –4.30 –5.64 1.49
IL8 Interleukin 8 3576 –3.44 –3.88 1.79
EGR1 Early growth response 1 1958 –3.40 �2.87 1.14
G0S2 G0/G1 switch 2 50486 –3.10 –3.77 1.02
PPP1CB Protein phosphatase 1, catalytic subunit,

beta isozyme
5500 –3.02 �2.71 �1.04

NR4A2 Nuclear receptor subfamily 4, group A,
member 2

4926 �2.80 –2.85 1.16

HBEGF Heparin-binding EGF-like growth factor 1839 –2.96 –3.46 1.15
RGS1 Regulator of G-protein signaling 1 5996 –2.94 –2.70 1.12
EPPK1 Epiplakin 1 83481 –2.94 –2.44 �1.22
TNFAIP3 Tumor necrosis factor, alpha-induced

protein 3
7128 –2.79 –2.51 1.08

NAMPT Nicotinamide phosphoribosyltransferase 10135 –2.75 –3.98 1.84
CD69 CD69 molecule 969 –2.67 –2.50 �1.04
CD83 CD83 molecule 9308 �2.67 �2.50 1.29
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DETs separated into five gene clusters (Fig. 4 and see Table S1 in the supplemental
material). Cluster 1 (54 genes, 76 probe sets) and cluster 3 (38 genes, 45 probe sets)
contained genes that were strongly or moderately induced in the 42 acute and early
convalescent LD samples in group B relative to healthy controls. However, increased
expression of these genes was not observed in the six acute LD subjects that clustered
in group A. Cluster 1 was characterized by genes involved in innate immune processes
(Table S1). Significant gene ontology (GO) terms associated with cluster 1 included
platelet alpha granule (P � 3.15E– 08), wound healing (P � 3.28E– 04), blood coagula-
tion (P � 0.001), hemostasis (P � 0.001), and response to stress (P � 0.005). Cluster 3
featured genes involved in fatty acid catabolism (Table S1). Significant GO terms
included carnitine O-palmitoyltransferase activity (P � 2.72E– 04), choline kinase activity
(P � 2.72E– 04), ethanolamine kinase activity (P � 2.72E– 04), and intracellular lipid
transport (P � 5.32E– 04).

The majority of acute LD subjects showed a significant induction of genes in cluster
4. This result contrasted with that for clusters 1 and 3, where different responses were
observed for the acute LD subjects in group A and group B. Of the 69 transcripts in
cluster 4, 28 (41%) are involved in innate immune cell functions, including pathogen
recognition, phagocytosis, neutrophil activation, chemotaxis and cell migration, and
inflammation. The most highly induced transcript encodes DEFA1/DEFA1B/DEFA3 (de-
fensin, alpha 1/defensin, alpha 1B/defensin, alpha 3, neutrophil specific), microbicidal
proteins of neutrophil granules that effectively kill B. burgdorferi in vitro (29) (Table 2).
With the single exception of DEFA1/DEFA1B/DEFA3, which was upregulated at all time
points, genes in cluster 4 were significantly induced only during acute and early
convalescent LD and returned to levels observed in the healthy donors within 6 months
(Table 2).

Cluster 2 contained 22 genes (26 probe sets) that, with three exceptions, were not
significantly changed during acute or early convalescent LD but were significantly
induced in the late convalescent LD (6 months) subjects. Cluster 5 consisted of tran-
scripts for 50 genes that were significantly repressed in the majority of acute and early
convalescent LD patients relative to healthy subjects. Significant GO terms for these
genes included immune system process (P � 4.98E– 06), response to wounding (P �

1.21E– 05), and cell migration (P � 2.92E– 04).
Interferon-regulated genes characterize the response to acute disseminated B.

burgdorferi infection. Interferome (http://www.interferome.org/interferome/home
.jspx), a database of interferon (IFN)-regulated genes (30), was employed to analyze the
genes dysregulated during acute LD. The following parameters were applied to the
analysis: human (species), hematopoietic/immune (system), and blood (organ). Totals of
106 of 131 (81%) induced genes (encoded by 187 transcripts) and 25 of 30 (83%) of the

FIG 3 Profile plots of temporal gene expression changes in Lyme disease patients and controls. Profile
plots were generated using the normalized intensities of the 335 DETs. Lines representing transcripts are
colored based on the normalized expression of each transcript (blue, low; red, high) relative to the mean
expression value of all transcripts in acute LD subjects.
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repressed genes (encoded by 54 transcripts) were identified as interferon regulated.
These included 32 of the 40 genes with the greatest expression changes (Table 2).

Normalization of transcriptome following treatment is concordant with reso-
lution of symptoms. LD subjects were questioned regarding symptoms at each visit.
Symptoms that had existed due to a preexisting condition were not included in the

FIG 4 Hierarchical clustering distinguishes between disease states. Heat map with the dendrogram
resulting from unsupervised hierarchical clustering performed using 335 transcripts (representing 233
genes) that were differentially expressed (at least a 2-fold change, with a P value of �0.05) relative to
healthy controls. The values shown are normalized intensities relative to the mean. Red or blue indicates
high or low expression, respectively, of the normalized intensities relative to the mean. The heat map
displays five distinct clusters, three containing induced genes and two containing repressed genes.
Boldfacing indicates genes that were later identified as classifiers for disease states (Tables 4 and 5). A list
of the top 40 genes with greatest changes in LD subjects is presented in Table 2, and all dysregulated genes
are provided in Table S1 in the supplemental material.
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analysis. At the initial visit, 82% of subjects with acute LD reported experiencing at least
one symptom (Table 3). Fatigue was the most commonly reported symptom (68%),
followed by headache (47%), arthralgia (42%), myalgia (40%), and stiff neck (34%).
Strikingly, only approximately one-half as many subjects (43%) reported experiencing
any symptoms at the second visit. Fatigue remained the most commonly reported
symptom (23%), followed by arthralgia (11%), myalgia (11%), and stiff neck. Only 3% of
subjects at the second visit reported headache. Of 11 evaluable subjects at 6 months
after antibiotic treatment, only 1 (9%) reported experiencing any symptoms (arthralgia).

Identification and validation of predictor genes. One major limitation of sero-
logical tests is the inability to detect infection prior to the appearance of antibodies. A
predictive model was developed based on application of the random forest algorithm
to the 2004 most highly variable genes in three data sets (acute LD, 6-month conva-
lescent LD, and healthy controls). In the first comparison, the capability of this model
to correctly distinguish between subjects with acute LD and healthy controls was
determined and the top 20 genes with the highest random forest importance levels
were identified (Table 4). Hierarchical clustering using only these 20 genes accurately
separated acute LD subjects and healthy controls into two distinct clusters (Fig. 5A).
Moreover, this 20-gene classifier set correctly distinguished subjects with acute LD from
healthy donors with 100% sensitivity and 96% accuracy (correct predictions/test set

TABLE 3 Reported symptoms of LD subjects before and after antibiotic therapy

Symptom

No./total no. (%)

Acute LD

Convalescent LD

1 mo 6 mo

Arthralgia 16/38 (42) 4/35 (11) 1/11 (9)
Dizziness 7/38 (18) 1/35 (3) 0/11 (0)
Fatigue 26/38 (68) 8/35 (23) 0/11 (0)
Headache 18/38 (47) 1/35 (3) 0/11 (0)
Myalgia 15/38 (40) 4/35 (11) 0/11 (0)
Stiff neck 13/38 (34) 4/35 (11) 0/11 (0)
Any symptom present 31/38 (82) 15/35 (43) 1/11 (9)

TABLE 4 Top 20 classifier genes that discriminate subjects with acute LD from healthy
controls

Gene symbol Gene title RFIL (%)a

PSMB8 Protease subunit �8 9.14
SLAMF7 SLAM family member 7 7.58
RAB24 RAB24, member RAS oncogene family 7.11
FCGR1B Fc fragment of IgG, high affinity 1b, receptor (CD64) 6.52
MPP1 Membrane protein, palmitoylated 1, 55 kDa 5.86
CSF2RB Colony stimulating factor 2 receptor, beta, low affinity

(granulocyte-macrophage)
5.55

TNFSF10 Tumor necrosis factor (ligand) superfamily, member 10 4.75
BTG1 B-cell translocation gene 1, antiproliferative 4.72
GPR183 G protein-coupled receptor 183 4.54
ATG16L2 Autophagy-related 16-like 2 4.50
ACOT7 Acyl-CoA thioesterase 7 4.37
TCIRG1 T-cell, immune regulator 1, ATPase, H� transporting V0

subunit a3
4.25

CHKB_CPT1B CHKB-CPT1B readthrough (NMD candidate) 4.20
DYNLL1 Dynein light chain LC8-type 1 4.13
LCN2 Lipocalin 2 4.05
HSPA6_HSP70B= Heat shock protein family A (Hsp70) member 6 4.02
FCGR1A Fc fragment of IgG, high-affinity 1a, receptor (CD64) 3.85
RCAN3 RCAN family member 3 (calcipressin 3) 3.74
HK3 Hexokinase 3 3.65
AP1G2 Adaptor-related protein complex 1 �2 subunit 3.48
Total 100
aRFIL, random forest importance level.
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size) (Fig. 6). In comparison, only 22/27 of these subjects tested positive by ELISA for B.
burgdorferi-specific antibodies at the initial visit, resulting in 81% sensitivity for the
serology-based test. Four of the five patients who were seronegative by ELISA at the
initial visit seroconverted by the time of the second visit.

Another major limitation of most serologic diagnostic tests is the inability to
distinguish between active and prior infection as circulating antibodies are present
long after the pathogen is cleared. Application of the random forest algorithm to
samples from LD subjects at baseline and at 6-month convalescence resulted in a
separate distinct set of 20 classifier genes (Table 5). Hierarchical clustering of samples
using this unique 20-gene classifier set correctly categorized the preponderance of
samples from these two groups (Fig. 5B). In addition, acute LD could be discriminated
from 6-month convalescent subjects with 100% sensitivity and 97% accuracy (Fig. 6).

Validation of the specificity of the classifier gene set was performed by applying the
prediction model to a published microarray data set generated using peripheral blood
mononuclear cells (PBMCs) from patients with acute infections caused by common
bacterial and viral pathogens: Staphylococcus aureus, Streptococcus pneumoniae, Esch-

FIG 5 Twenty-gene classifier sets identified by random forest analysis accurately distinguish between disease
states. (A) Hierarchical clustering was performed with samples from acute LD subjects (orange) and healthy donors
(green) based on normalized expression intensities of 20 genes having the highest random forest importance levels
for these groups (shown on right and in Table 4). (B) A second unique set of 20 genes (shown on the right and in
Table 5) having the highest random forest importance levels when comparing acute LD subjects (orange) and
6-month convalescent LD subjects (green) was used for hierarchical clustering of samples from these groups.
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erichia coli, or influenza A virus (17). First, the top 10% of genes with the greatest
variance were selected. Next, iterations (n � 10) of the random forest algorithm were
run to identify the top 20 genes associated with each infectious agent that had the
highest importance levels (Table 6). Using these 20-gene classifier sets, random forest
analysis correctly identified patients with specific infections with prediction accuracies
of 100% (influenza A virus), 98% (B. burgdorferi), 95% (S. pneumoniae and S. aureus), and
94% (E. coli). Comparison of the 20-gene sets revealed that acute infections due to E.
coli, S. aureus, and S. pneumoniae shared multiple classifiers; the greatest number
(eight) of shared classifiers was between E. coli and S. aureus infections (Table 6). The
gene lists were analyzed for IFN-responsive genes using Interferome as described
above. The only classifier sets that contained more than one IFN-regulated gene were
those for B. burgdorferi (n � 15) and influenza A (n � 6) (Table 6). Remarkably, however,
all 20 classifier genes for acute infection with B. burgdorferi were unique to that
organism; none was shared with any of the other bacterial infections or with infection
due to influenza A.

DISCUSSION

In this study, multiple approaches were used to identify a peripheral blood signature
that would enable reliable detection of early disseminated LD at a time point when

FIG 6 Performance of 20-gene classifier sets identified by random forest analysis. Separate leave-one-out
cross-validation experiments were performed using the distinct 20-gene classifier sets shown in Tables
4 and 5, respectively, for comparison of subjects with acute LD to (A) healthy controls and (B) 6-month
convalescent LD subjects. The results are presented as confusion matrices with boldfacing indicating the
samples that were correctly classified.

TABLE 5 Top 20 classifier genes that distinguish between acute and 6-month
convalescent LD subjects

Gene symbol Gene name RFIL (%)a

TAF10 TATA-box binding protein associated factor 10 9.96
CTSA Cathepsin A 9.26
EXOC3L2 Exocyst complex component 3-like 2 6.77
RRM2 Ribonuclease reductase regulatory subunit M2 5.99
PSMA7 Proteasome subunit alpha 7 5.91
KCNQ1OT1 KCNQ1 opposite strand/antisense transcript 1 (nonprotein

coding)
5.55

CKMT1B Creatine kinase, mitochondrial 1B 5.34
ANKRD13A Ankyrin repeat domain 13A 4.86
UBA7 Ubiquitin-like modifier activating enzyme 7 4.71
CDK2AP1 Cyclin-dependent kinase 2 associated protein 1 4.53
TYMS Thymidylate synthetase 4.51
FSIP1 Fibrous sheath interacting protein 1 3.92
KIAA0754 Microtubule-actin crosslinking factor 1 3.79
HIST1H2BH Histone cluster 1 H2B family member H 3.76
FCGR1B Fc fragment of IgG, high-affinity Ib, receptor (CD64) 3.73
WAS Wiskott-Aldrich syndrome gene 3.71
CPNE5 Copine 5 3.48
C21orf7 Chromosome 21 open reading frame 7 3.46
GMPR Guanosine monophosphate reductase 3.38
PSMD13 Proteasome 26S subunit, non-ATPase 13 3.36
Total 100
aRFIL, random forest importance level.
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standard serologic testing may be suboptimally sensitive. A 20-gene classifier set that
correctly distinguished subjects with acute LD from healthy donors with 96% accuracy,
100% sensitivity, and 90% specificity was identified. A second major limitation of
antibody-based tests is the inability to differentiate between acute infection and
resolved infection (after antibiotic treatment) due to specific circulating antibodies that
may persist for years after the microbe has been eliminated. The identified 20-gene
classifier set was able to discriminate acute LD from 6-month convalescent subjects
with 97% accuracy, 100% sensitivity, and 90% specificity. Notably, gene expression
changes corresponded to reported symptoms. The greatest number of genes with
altered expression was present in the acute LD group; symptoms were reported by 82%
of all acute LD subjects in this study and by 93% of the 28 subjects whose blood was
analyzed for gene expression. In contrast, return of the gene expression profile to that
observed in the healthy donors corresponded with resolution of symptoms: only one
6-month LD convalescent subject (9%) reported having any symptom. Thus, the
identified classifier set has the potential for serving as a test for disease resolution.

The algorithm used to generate the classifier gene set for acute B. burgdorferi
infection was applied to published microarray data sets for PBMCs collected from
patients with acute infections caused by three common bacterial pathogens or by
influenza A virus. Importantly, all 20 classifier genes for acute B. burgdorferi infection
were completely unique and were not associated with any of these four pathogens.
Therefore, the gene classifier sets described here not only demonstrated high sensi-
tivity for acute LD relative to healthy donors and convalescent LD patients, but the
20-gene classifier set for acute LD distinguished B. burgdorferi infection from the other
tested bacterial or viral infections with 100% specificity.

In sharp contrast to the gene classifiers for the other three bacterial pathogens, the
classifier gene sets for B. burgdorferi and influenza A infection were both characterized
by an IFN-regulated signature, although the individual genes comprising each set were
unique. IFI27 (interferon alpha inducible protein 27) is the classifier gene for influenza
A that has the highest random forest importance value. IFI27 has been described in a
separate study as a novel single-gene biomarker in patient blood that was able to
discriminate, with 88% diagnostic accuracy and 90% specificity, between influenza
virus- and bacterium-associated respiratory infections (31). We have previously dem-
onstrated that B. burgdorferi induces numerous IFN-regulated genes in skin at the site

TABLE 6 Twenty-gene classifier sets distinguish B. burgdorferi infection from acute infections caused by other bacterial and viral
pathogensa

E. coli S. aureus S. pneumoniae B. burgdorferi (acute LD) Influenza A virus

ELANE ELANE SERPINB2 PSMB8* IFI27*
CEACAM8 DEFA1/DEFA1B/DEFA3 RNASE3 SLAMF7* SIGLEC1*
IL8 C21orf59 DEFA4 RAB24* OTOF
MMP8 MGAM CHIT1 FCGR1B* RSAD2*
OLFM4 ADM* ELANE MPP1* CD1C
DEFA1/DEFA1B/DEFA3 LTF AZU1 CSF2RB* IFI44L*
MGAM MPO CXCL2 TNFSF10* RPS4Y1
FOSB BPI RNASE2* BTG1* AKR7A2
AHSP SCN3A FCGBP GPR183* IFIT3*
HBG1/HBG2/ CCDC99 CEACAM8 ATG16L2* CACNA2D3
SELENBP1 AHSP CAMP ACOT7* LAMP3*
AKR1C3 DUSP3 ANXA3 TCIRG1 EPHB2
CXCL2 MMP8 DEFA1/DEFA1B/DEFA3 CHKB_CPT1B MCM10
ALAS2 CEACAM8 PGLYRP1 DYNLL1 ABHD8
LMAN2L CD14 IL8 LCN2 KIF23
LTF OLFM4 CEACAM6 HSPA6_HSP70B= HLA-DQA1/LOC100507718/LOC100509457
RRP1 NPL EPHA4 FCGR1A* MX2
CCL27 MARCO COL9A3 RCAN3* BTF3P11
HBD ANXA3 CHI3L1 HK3* AKR1B10
ZNF639 PLBD1 MPO AP1G2* PLK1S1
aGenes are listed in order of random forest analysis importance level (highest to lowest). *, interferon-regulated gene. Genes that appear on the classifier list for more
than one infectious agent are designated in boldface.
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of an EM lesion (32), many of which were also dysregulated in Lyme disease patient
PBMCs in the present study. Of note, the 20-gene classifier set for B. burgdorferi
infection included 15 IFN-regulated genes; five were also significantly induced in EM
skin biopsy specimens from patients with disseminated Lyme disease (32). Several of
these genes encode proteins involved in pathogen recognition and phagocytosis, and
antigen processing, including: the Fc gamma receptors FCGR1A and FCGR1B (Fc
fragment of IgG, high-affinity 1a and 1b, receptor [CD64]), TNFSF10 (tumor necrosis
factor [ligand] superfamily, member 10), and PSMB8 (proteasome subunit beta 8).
Interestingly, the classifier gene sets for infections caused by each of the other three
bacterial pathogens evaluated were nearly devoid of IFN-regulated genes, with none
associated with E. coli infection and one IFN-regulated gene each associated with S.
aureus and S. pneumoniae infections. Collectively, these results confirm and extend our
previous observation that B. burgdorferi elicits an IFN-dominated transcriptional signa-
ture during early infection, a sharp distinction from the immunological footprints
generated by the other bacterial pathogens examined. In addition, the 20-gene clas-
sifier set clearly distinguishes B. burgdorferi infection from that caused by influenza A,
although both pathogens potently stimulate the interferon signaling pathway (33).

Bouquet and colleagues also examined the transcriptional profile in PBMCs of LD
patients with EM before antibiotic treatment, 3 weeks later, and then 6 months after the
completion of antibiotic therapy (34). There is general consensus between Bouquet
et al. and a major finding of the present study: acute infection with B. burgdorferi elicits
a distinct gene expression profile in patient blood that persists for at least 3 weeks after
infection. However, in contrast to Bouquet et al., we observed that the majority of
differentially regulated genes return to healthy donor levels by 6 months posttreat-
ment. There are several differences between the two studies that might explain the
discrepancies in the findings. The most significant difference may be in the patient
population under investigation. The present study was restricted to subjects with
definitive early disseminated LD. A total of 95% of enrolled LD subjects had either MEM
(67%) and/or positive blood culture for B. burgdorferi (74%); the remaining subject had
facial palsy, a sign of disseminated LD. The inclusion criteria of Bouquet et al. were less
stringent and consisted of a physician-documented EM of �5 cm with at least one
concurrent nonspecific symptom (headache, fever, chills, fatigue, and/or new muscle or
joint pains). Cultivation of B. burgdorferi from any clinical samples was not reported, and
only 43% of LD subjects had MEM. Of the 29 subjects with LD in the Bouquet et al.
study, 8 did not seroconvert, and 1 was not tested. In addition to the enrollment
criteria, the definition for altered gene expression differed between the studies; Bou-
quet et al. used a 1.5-fold change cutoff compared to the 2-fold change in the present
study. Significantly, in the present study, random forest analysis was employed to build
predictive models. Classifier gene sets that could separately distinguish healthy controls
from patients with acute disseminated infection, and between such patients and those
with resolved infection, were identified.

It is important to note the limitations of the current investigation. It was not
completely longitudinal and included a relatively small sample size for the 6-month
visit. This was primarily due to the fact that 6-month samples were not collected during
the first 2 years of the study; the 6-month convalescent time point was added when it
became apparent that transcript levels had not returned to normal by 1 month post-
treatment. In addition, some study subjects were lost to follow-up, and some RNA
samples did not meet the quality requirements for microarray hybridization. A sample
size of 10, however, has proven to be sufficient for rigorous statistical comparison with
earlier time points and with healthy donors in other studies (18). Since only one of the
10 subjects reported having any symptoms at 6 months, the small sample pool was
insufficient for identifying potential transcriptome alterations associated with persisting
symptoms. Another limitation is the specific focus on patients with definitive evidence
of disseminated infection. An optimal diagnostic test for LD should be able to detect
infection at its earliest stages, when B. burgdorferi is still localized to the skin. Current
studies are under way to test the sensitivity of the diagnostic biomarker set using
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samples from subjects with EM, but without evidence of dissemination. It should also
be noted, that the use of published data sets rather than prospectively collected
samples (as in Table 6) could potentially lead to artifacts in the cross-comparisons.

In conclusion, we report the development, using gene expression data, of an
efficient computational framework to generate a 20-gene classifier set that detects
disseminated B. burgdorferi infection with high sensitivity and specificity. This unique
classifier set may have a critical advantage over current serologic tests in that it
accurately discriminated between active and resolved infection. This computational
approach offers the potential for more accurate diagnosis of early disseminated Lyme
disease. It may also allow improved monitoring of treatment efficacy and disease
resolution.

MATERIALS AND METHODS
Study subjects. All subjects were adult volunteers of at least 18 years of age and provided written

informed consent prior to sample collection, in accordance with the study protocol approved by the
Institutional Review Board of New York Medical College (NYMC). Healthy donors were recruited from
NYMC staff, excluding members of the investigators’ laboratories, and met the following inclusion
criteria: no history of LD, no receipt of a Lyme disease vaccine, no evidence of a current infectious disease,
not pregnant, and no usage of an immunosuppressive medication. Patients were recruited from the
Lyme Disease Diagnostic Center of NYMC during the summer seasons of 2005 to 2006 and 2010 to 2013.
Blood samples were collected at the time of diagnosis (acute LD) and at approximately 1 and 6 months
after the initiation of a recommended course of antibiotics (7). Serologic testing of LD subjects for
antibodies to B. burgdorferi was performed by a whole-cell sonicate ELISA. Serologic testing of healthy
controls for antibodies to B. burgdorferi was performed once by IgG immunoblot. Analysis was restricted
to samples collected from individuals with objective evidence of dissemination, most often based on the
presence of multiple erythema migrans (MEM) skin lesions and/or the cultivation of B. burgdorferi from
blood, as previously described (35).

Blood collection and RNA isolation. Venous blood was collected directly into BD-Vacutainer CPT
tubes (Becton Dickinson, Franklin Lakes, NJ). PBMCs were isolated by centrifugation, according to the
manufacturer’s protocol, no later than 3 h after blood collection. PBMCs were washed with Hanks’
balanced salt solution without calcium, magnesium, or phenol red (Gibco-BRL, Grand Island, NY), and
RNA was isolated immediately thereafter under RNase-free conditions using the PureScript total RNA
isolation kit (Gentra, Minneapolis, MN) or the Ambion ToTALLY RNA isolation kit (Life Technologies,
Grand Island, NY), according to the manufacturers’ instructions. Contaminating DNA was removed using
the DNA-free kit (Ambion, Austin, TX). RNA was eluted in 20 �l RNase/DNase-free water and stored at
– 80°C after the addition of 32 U of RNase inhibitor (Promega, Madison, WI). RNA integrity was assessed
by electrophoresis using an Agilent Bioanalyzer 2100 (Agilent, Palo Alto, CA) prior to cDNA synthesis for
microarray hybridization. Samples having an RNA integrity number below 6 were excluded from further
analysis.

Microarray hybridization. Between 5 and 20 ng of total RNA from each PBMC sample was used to
generate high-fidelity cDNA using an Ovation RNA amplification system (NuGEN Technologies, Inc., San
Carlos, CA) according to the manufacturer’s protocol. The amplified cDNA was fragmented to 50 to 100
nucleotides, labeled with biotin, and hybridized to the Affymetrix GeneChip.HG-U219 high-density
oligonucleotide array (Affymetrix, Santa Clara, CA). After hybridization, the arrays were stained with
streptavidin-phycoerythrin and washed in an Affymetrix fluidics module using standard Affymetrix
protocols. The detection and quantitation of target hybridization was performed using a GeneArray
Scanner 3000 (Affymetrix). All procedures were performed at the Bionomics Research and Technology
Center, Rutgers University, Piscataway, NJ.

Microarray data analysis. Microarray data were analyzed using GeneSpring GX14.9 software
(Agilent Technologies, Santa Clara, CA). Raw expression values in CEL file format were normalized by
robust multiarray analysis (RMA) and quantile normalization, filtered to include only those with intensity
values above the 20th percentile, and baseline transformed to the median of all samples. Statistical
analysis was performed using one-way analysis of variance with Benjamini-Hochberg multiple testing
correction to reduce false positives (36). Differentially expressed transcripts, defined as those having a P
value of �0.05 and a fold change of at least 2 relative to the healthy donor group, were subjected to
hierarchical clustering and principal-component analysis.

Predictive modeling. A generic predictive modeling framework was developed and applied to two
comparisons: acute LD (n � 28) versus healthy donors (n � 21) and acute LD versus 6-month convales-
cent LD (n � 10). In the first step, the distribution of the gene expression variance across all experimental
groups was computed, and genes with variance at or above the 90th percentile were identified. This
threshold is a parameter of the framework and can be appropriately set based on the variance
distribution in a considered cohort of samples. In the second step, expression data containing the top
10% of variance in each experimental group were subjected to iterations (n � 50) of random forest
analysis, a well-established machine learning algorithm (37). An importance value for each gene was
generated following each iteration of random forest analysis, and a final importance value for each gene
was computed by averaging the importance values across all 50 iterations. Averaged importance values
were used to rank all top selected genes. Finally, for each experiment, leave-one-out predictive modeling
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was performed, as well as tested using incrementally expanding sets of the most significant genes (top
20 through top 2004), to assess the changes in accuracy performance across different sets of predictors.

Comparison of classifier genes for LD and other infectious diseases. Microarray-based transcrip-
tome data set GSE6269, containing gene expression profiles from PBMCs from patients with acute
infections due to Escherichia coli, Staphylococcus aureus, Streptococcus pneumoniae, or influenza A virus
(17) was downloaded from the GEO database and subjected to random forest analysis using the same
framework and parameters that were applied to the LD data.

Data availability. The transcriptome data obtained in this study have been submitted to the Gene
Expression Omnibus (GEO) data repository under accession number GSE145974.

SUPPLEMENTAL MATERIAL
Supplemental material is available online only.
TABLE S1, DOCX file, 0.04 MB.
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