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Abstract

Background: Infection by the pandemic influenza A (H1N1/09) virus resulted in significant pathology among specific ethnic
groups worldwide. Natural Killer (NK) cells are important in early innate immune responses to viral infections. Activation of
NK cells, in part, depend on killer-cell immunoglobulin-like receptors (KIR) and HLA class I ligand interactions. To study
factors involved in NK cell dysfunction in overactive immune responses to H1N1 infection, KIR3DL1/S1 and KIR2DL2/L3
allotypes and cognate HLA ligands of H1N1/09 intensive-care unit (ICU) patients were determined.

Methodology and Findings: KIR3DL1/S1, KIR2DL2/L3, and HLA -B and -C of 51 H1N1/09 ICU patients and 105 H1N1-
negative subjects (St. Theresa Point, Manitoba) were characterized. We detected an increase of 3DL1 ligand-negative pairs
(3DL1/S1+ Bw6+ Bw42), and a lack of 2DL1 HLA-C2 ligands, among ICU patients. They were also significantly enriched for
2DL2/L3 ligand-positive pairs (P,0.001, Pc,0.001; Odds Ratio:6.3158, CI95%:2.481–16.078). Relative to St. Theresa
aboriginals (STh) and Venezuelan Amerindians (VA), allotypes enriched among aboriginal ICU patients (Ab) were: 2DL3
(Ab.VA, P = 0.024, Pc = 0.047; Odds Ratio:2.563, CI95%:1.109–5.923), 3DL1*00101 (Ab.VA, P,0.001, Pc,0.001),
3DL1*01502 (Ab.STh, P = 0.034, Pc = 0.268), and 3DL1*029 (Ab.STh, P = 0.039, Pc = 0.301). Aboriginal patients ligand-
positive for 3DL1/S1 and 2DL1 had the lowest probabilities of death (Rd) (Rd = 28%), compared to patients that were 3DL1/
S1 ligand-negative (Rd = 52%) or carried 3DL1*029 (Rd = 52%). Relative to Caucasoids (CA), two allotypes were enriched
among non-aboriginal ICU patients (NAb): 3DL1*00401 (NAb.CA, P,0.001, Pc,0.001) and 3DL1*01502 (CA,NAb,
P = 0.012, Pc = 0.156). Non-aboriginal patients with ligands for all three KIRs (3DL1/S1, 2DL2/L3, and 2DL1) had the lowest
probabilities of death (Rd = 36%), compared to subjects with 3DL1*01502 (Rd = 48%) and/or 3DL1*00401 (Rd = 58%).

Conclusions: Specific KIR3DL1/S1 allotypes, 3DL1/S1 and 2DL1 ligand-negative pairs, and 2DL2/L3 ligand-positive pairs
were enriched among ICU patients. This suggests a possible association with NK cell dysfunction in patients with overactive
immune responses to H1N1/09, leading to severe disease.
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Introduction

The recent pandemic influenza A (H1N1/09) virus, relative to

seasonal influenza, was observed to have higher transmissibility,

albeit with lower mortality rates [1,2]. Although there were more

than 622,482 reported cases worldwide as of November 2009

[3,4], overactive immune responses to H1N1/09 infections leading

to significant pathology were reported to be highly prevalent

among youths and young adults. Recently, the basis for this

observation was suggested to be a lack of antigenic site recognition

for the hemagglutinin structure among those age groups [5,6].

Nonetheless, those of specific ethnic backgrounds were also ob-

served to be disproportionately affected, namely aboriginal and

minority groups [7–11]. Although the factors behind the dis-

proportionate impact of H1N1/09 remain to be fully elucidated,

there is some evidence to suggest a role for natural killer (NK) cells

in the control of influenza viral loads.

The importance of NK cells was suggested in a recent study,

where NK cell frequencies were found to be significantly reduced

in patients with severe responses to H1N1/09 infections, relative

to mild cases and healthy controls [12]. On the other hand, CD8+

effector T cells, regardless of patient disease status, were detected

at normal levels. A study of NK cells in infected mice also showed

that reduced NK cell activity in the earlier stages led to

significantly increased viral growth [13].

NK cells function as the primary innate immune response against

viruses and tumours and are capable of inducing stimulatory and

regulatory effects on the adaptive immune response [14–16]. Their

functions are determined by a broad array of activating and

inhibitory receptors [17]. Killer-cell immunoglobulin-like receptors
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(KIR) are a large family of receptors comprised mainly of those with

inhibitory capacities that recognize HLA Class I ligands [18,19],

along with a few variants that possess activating functions. In the

context of all known KIR variants in humans, the KIR3DL1/S1

subset is widespread and encode for both an inhibitory (3DL1) and

activating (3DS1) receptor [19]. KIR3DL1 receptors recognize class

I HLA-B proteins that carry a Bw4 motif [20], while HLA-B Bw4-

80I proteins are the putative ligands of KIR3DS1 [21]. Analogous

inhibitory KIR subsets, such as KIR2DL1 and KIR2DL2/L3,

recognize HLA-C2 and HLA-C1 ligands, respectively [22,23].

Given the independent diversities of KIR and HLA, there likely

exist combinations which can variably influence the efficacy of NK

cell responses in the control of viral infections due to the presence of

certain NK cell receptor/ligand pairs [24–26].

To date, there have been no published reports pertaining to

KIR receptors and their ligands, in relation to NK cell

dysfunction, in severe cases of H1N1/09 infections. Identification

of potential associations of specific KIR allotypes and their ligands

with severe responses to H1N1/09 infections may assist in the

predetermination of populations most at risk via information on

frequencies of molecular immune response allotypes. In this study,

we compared H1N1/09 ICU patients with H1N1-negative

subjects from St. Theresa Point and similar world populations.

We investigated KIR3DL1/KIR3DS1 and KIR2DL2/KIR2DL3

in this study, as each pair share the same locus, encode for both

inhibitory and/or activating receptors, and their HLA ligands are

highly polymorphic [27].

Results

KIR3DL1/S1 allotype and KIR2DL2/L3 frequencies of
H1N1/09 ICU patients

The KIR3DL1/S1 and KIR2DL2/L3 frequencies of ICU patients

are summarized in Table 1. In total, fourteen 3DL1 and two 3DS1

allotypes were detected. 3DS1*01301 was the most prevalent (26.5%),

followed by 3DL1*00101(15.7%), 3DL1*01502(15.7%), 3DL1*00401

(9.8%), and 3DL1*00501(8.8%). Three allotypes, 3DS1*01301, 3DL1

*00101, and *01502, were found to account for 70% of allotypes

among ICU patients of aboriginal descent (Ab). Greater diversity was

found among patients of non-aboriginal descent (NAb), as five allotypes

accounted for a combined frequency of 77%: 3DS1*01301, 3DL1

*00401, *00101, *01502, *002.

KIR2DL2/L3 were detected in all patients, with a high number

of patients carrying only 2DL3 allotypes (Ab, 70%; NAb, 54.8%).

Patients with only 2DL2 were rare among both ICU subgroups

(Ab, 5%; NAb, 3.2%). These results were consistent with another

study on First Nations KIR gene profiles [28]. Differences in

2DL2/L3 distributions between Ab and St. Theresa Point (STh)

subjects were not statistically significant.

Enrichment of KIR3DL1/S1 allotypes in H1N1/09 ICU
patients of aboriginal descent

In order to further characterize the diversity and distribution of

allotypes among Ab patients, we compared those with high

frequencies to St. Theresa Point subjects. This was a viable group

Table 1. KIR3DL1/S1 allele frequencies of ICU patients and St. Theresa aboriginals.

ICU Patients, C

All (2n = 102) Ab (2n = 40) NAb (2n = 62) STh (2n = 210) P (Pc)

KIR Allele 2n AF 2n AF 2n AF 2n AF Ab vs STh

3DL1*00101 16 15.7% 8 20.0% 8 12.9% 46 21.9% 0.486

3DL1*002 7 6.9% 0 0.0% 7 11.3% 1 0.5% 1.000

3DL1*00401 10 9.8% 0 0.0% 10 16.1% 0 0.0% -

3DL1*00402 2 2.0% 0 0.0% 2 3.3% 0 0.0% -

3DL1*00501 9 8.8% 3 7.5% 6 9.7% 38 18.1% 0.108

3DL1*007 4 3.9% 1 2.5% 3 4.8% 0 0.0% 0.163

3DL1*008 1 1.0% 0 0.0% 1 1.6% 0 0.0% -

3DL1*009 1 1.0% 0 0.0% 1 1.6% 0 0.0% -

3DL1*01501 0 0.0% 0 0.0% 0 0.0% 0 0.0% -

3DL1*01502 16 15.7% 8 20.0% 8 12.9% 16 7.6% 0.034 (0.268)1

3DL1*019 0 0.0% 0 0.0% 0 0.0% 0 0.0% -

3DL1*020 1 1.0% 0 0.0% 1 1.6% 0 0.0% -

3DL1*029 4 3.9% 4 10.0% 0 0.0% 5 2.4% 0.039 (0.301)2

3DL1*051 1 1.0% 1 2.5% 0 0.0% 1 0.5% 0.300

3DS1*010 3 2.9% 3 7.5% 0 0.0% 5 2.4% 0.119

3DS1*01301 27 26.5% 12 30.0% 15 24.2% 98 46.7% 0.055

3DL1 72 70.6% 25 62.5% 47 75.8% 107 51.0% 0.227

3DS1 30 29.4% 15 37.5% 15 24.2% 103 49.0%

2DL2 22 21.6% 7 17.5% 15 24.2% 31 14.8% 0.635

2DL3 80 78.4% 33 82.5% 47 75.8% 179 85.2%

AF, allele frequency; Ab, Aboriginal; NAb, Non-aboriginal.
STh, St. Theresa aboriginals; C, H1N1 confirmed cases.
1Odds Ratio:3.031(CI95%:1.199–7.663);
2Odds Ratio:4.556(CI95%:1.167–17.779).
doi:10.1371/journal.pone.0029200.t001
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for comparison, as STh subjects were highly susceptible to severe

responses during the first wave of the pandemic [29,30]. Because

aboriginal ICU patient samples were derived from hospitals across

the country, they were assumed to be more ethnically diverse than

St. Theresa aboriginals. This was confirmed when their distribu-

tions of HLA-B and C were compared.

Nine different allotypes were detected between Ab and STh

(Table 1). 3DS1*01301 and 3DL1*00101 were especially

widespread among both groups. Similar to Ab patients, a lack of

diversity was detected among the STh subjects, as three allotypes

(3DS1*01301, 3DL1*00101, and *00501) accounted for a

combined frequency of 86.7%.

Prior to correction for multiple comparisons, two allotypes were

found to be significantly enriched among Ab patients:

3DL1*01502 (Ab.STh, P = 0.034, Pc = 0.268; Odds Ratio:3.031,

CI95%:1.199–7.663) and 3DL1*029 (Ab.STh, P = 0.039,

Pc = 0.301; Odds Ratio:4.556, CI95%:1.167–17.779). 3DS1*010

was detected at a higher frequency in Ab patients, but the

difference was not statistically significant (Ab.STh, P = 0.119).

Lack of KIR3DL1/S1 and HLA-B Bw4 ligand pairs in H1N1/
09 ICU patients

In the absence of cognate ligands, the presence and function of

KIR3DL1/S1 receptors are deemed negligible, due to their

inability to elicit a relevant response within NK cells [18,20,21].

Subjects detected as KIR3DL1/S1+ HLA-B Bw6+ Bw42 were

considered to be ligand-negative. To determine the relative degree

of ligand-negative pairs present among ICU patients, we

determined the prevalence of 3DL1/S1 and their cognate ligands

(Bw4+), among the ICU patients and St. Theresa subjects. Overall,

compared to STh subjects, 3DL1 ligand-negative pairs were found

to be proportionally higher in H1N1/09 ICU patients

(ICU.STh, P = 0.093) (Table 2), albeit not statistically different

due to the small sample size. In contrast, 3DL1/S1-Bw4+ pairs

were common among the healthy STh subjects (81%). Of the

highly prevalent 3DL1/S1 allotypes that were common among

both groups, the frequencies of several ligand-negative pairs

(3DL1*00101, 3DL1*01502, 3DS1*010, and 3DS1*01301) were

much higher among the H1N1/09 patient groups.

Enrichment of KIR2DL2/L3 and HLA-C C1 ligand pairs
among H1N1/09 ICU patients

In order to further determine the frequency of other functional

KIR allotype-ligand relationships, the distribution of KIR2DL2/

L3 and HLA-C1/C2 were determined. Subjects with 2DL2/L3+

C1+ C2+/2 were considered to be ligand-positive (Table 2). All

NAb patients were ligand-positive. Compared to STh subjects,

ligand-positive pairs were significantly higher in H1N1/09 ICU

patients overall (P,0.001, Pc,0.001; Odds Ratio:6.3158,

CI95%:2.481–16.078). Conversely, there was a significant lack

of C2 allotypes (KIR2DL1 ligands) among NAb patients, as

compared to both Ab and STh subjects (NAb (12.9%),Ab

(50.0%),STh (68.1%), PNAbvsAb,0.001, Pc,0.001; PNAbvsSTh,

0.001, Pc,0.001).

Comparison of KIR3DL1/S1 and KIR2DL2/L3 frequencies
between H1N1/09 ICU subgroups and world populations

During the initial waves of the H1N1/09 pandemic, several

populations were disproportionately affected by overactive im-

mune responses to infections. We compared the frequencies of

KIR3DL1/S1 allotypes enriched among the ICU subgroups (Ab

and NAb) to that of analogous populations in the world; the

Venezuelan Amerindians (VA) and Caucasoids (CA) of various

countries [31]. The VA group consisted of three Amerindian

tribes: the Yucpa, Bari, and Warao [32]. The CA group consisted

mainly of six different populations: England, Georgia, Spain,

Turkey, USA California, and USA European [33,34].

The Amerindian tribes were similarly found to lack diversity in

3DL1/S1 and their most prevalent allotypes were 3DS1*01301,

3DL1*005, and *01502 (Table 1, 3). 3DL1*00101, common to

both Ab and STh subjects, was absent in VA subjects (VA,Ab,

Table 2. Comparison of KIR3DL1/S1 allotypes in the presence
or absence of their ligands within H1N1- confirmed ICU
patients and St. Theresa aboriginals.

ICU patients, Confirmed

KIR Allele Ab Nab STh

3DL1*00101

Bw4+ 5 (71.4%) 5 (62.5%) 37 (86.0%)

Bw6+, Bw42 2 (28.6%) 3 (37.5%) 6 (14.0%)

3DL1*002

Bw4+ 0 (0%) 4 (66.7%) 1 (100%)

Bw6+, Bw42 0 (0%) 2 (33.3%) 0 (0%)

3DL1*00501

Bw4+ 2 (66.7%) 4 (66.7%) 25 (69.4%)

Bw6+, Bw42 1 (33.3%) 2 (33.3%) 11 (30.6%)

3DL1*01502

Bw4+ 4 (57.1%) 5 (71.4%) 15 (93.7%)

Bw6+, Bw42 3 (42.9%) 2 (28.6%) 1 (6.3%)

3DS1*10

Bw4+ 1 (33.3%) 0 (0%) 5 (100%)

Bw6+, Bw42 2 (66.7%) 0 (0%) 0 (0%)

3DS1*01301

Bw4+ 9 (90.0%) 9 (75.0%) 56 (77.8%)

Bw6+, Bw42 1 (10.0%) 3 (25.0%) 16 (22.2%)

3DL1

Bw4+ 13 (72.2%) 18 (64.3%) 63 (79.8%)

Bw6+, Bw42 5 (27.8%) 10 (35.7%) 16 (20.3%)

3DS1

Bw4+ 10 (76.9%) 9 (75.0%) 61 (79.2%)

Bw6+, Bw42 3 (23.1%) 3 (25.0%) 16 (20.8%)

3DL1*

Bw4+ 31 (67.4%) 85 (81.0%)

Bw6+, Bw42 15 (32.6%) 20 (19.0%)

2DL2

C1+ 4 (66.7%) 14 (100%) 14 (45.2%)

C12, C2+ 2 (33.3%) 0 (0%) 17 (54.8%)

2DL3

C1+ 13 (68.4%) 30(100%) 57 (54.3%)

C12, C2+ 6 (31.6%) 0 (0%) 48 (45.7%)

2DL2/L3**

C1+ 45 (88.2%) 57 (54.3%)

C12, C2+ 6 (11.8%) 48 (45.7%)

Ab, Aboriginal; NAb, Non-aboriginal; STh, St. Theresa aboriginals.
**P,0.001, Pc,0.001.
*P,0.10.
doi:10.1371/journal.pone.0029200.t002
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P,0.001, Pc,0.001; Odds Ratio:infinite). In Ab patients,

KIR2DL2 and KIR2DL3 allotypes were found to be significantly

reduced and enriched, respectively, in comparison to VA subjects

(Ab.VA, P = 0.024, Pc = 0.047; Odds Ratio:2.563, CI95%:1.109–

5.923).

World Caucasoids were highly diversified for 3DL1/S1

(Table 3). Eighty-seven percent of NAb ICU patients were

Caucasoids and when compared to the CA group, 3DL1*00401

was significantly found to be enriched (CA,NAb, P,0.001,

Pc,0.001; Odds Ratio:5.460, CI95%:2.717–10.970). Prior to

correction for multiple comparisons, 3DL1*01502 was also

markedly enriched in NAb (CA,NAb, P = 0.012, Pc = 0.156;

Odds Ratio:2.163, CI95%:1.019–4.593). Differences in 2DL2/L3

between NAb patients and the CA group were not statistically

significant.

APACHE II score comparison between H1N1/09 ICU
subgroups and allotype/ligand pairs

APACHE II is a severity of disease classification system,

commonly used for ICU patients, which calculates risk of hospital

death on the basis of twelve routine physiologic measurements and

their degree of divergence from typical thresholds [35]. Total

APACHE II scores were calculated for all H1N1/09 ICU patients

and probabilities of death (Rd) were determined (Table 4). Because

KIR3DS1 has only been shown to bind to Bw4-80I ligands [26],

3DS1+/3DL12 Bw4-80T+ 80I2 pairs were considered to be

ligand-negative, when correlating allotype-ligand pairs with

APACHE II scores.

Among Ab patients, the mean probability of death was 38%

(Range: 8%–75%). Low death rates were consistently observed in

subjects that were 3DL1/S1 Bw4+ ligand-positive and in

combination with HLA-C2 (Rd = 28%). No notable differences

were found based solely on the presence of 2DL2/L3 C1+/2 pairs.

Of the 3DL1 allotypes enriched in aboriginal patients, only

3DL1*029, which was rare in most ethnic groups with exception

to the Yucpa Amerindians from Venezuela [31], was associated to

a higher probability of death (Rd = 52%). Because of the variations

in binding affinity of 2DL2 and 2DL3 to HLA-C1 [36], the disease

severities between patients with these allotypes were compared.

Differences in death rates were found between 2DL2+ (Rd = 21%)

and 2DL3+ 2DL22 patients (Rd = 46%).

Non-aboriginal ICU patients had slightly higher probabilities of

death with a mean of 40% (Range: 8%–80%). All NAb patients were

2DL2/L3 C1+ ligand-positive. Contrary to Ab patients, low

probabilities of death (Rd = 39%) were found in 3DL1/S1 Bw6+

ligand-negative pairs. However, a comparable death rate (Rd = 36%)

was also observed in 3DL1/S1 Bw4+ HLA-C2+ subjects, which may

indicate either a lack of effect by 3DL1/S1 on disease severity in non-

aboriginals, or confounding due to an absence of 2DL2/L3 C1+

ligand-negative patients. Patients with ligands for all three KIRs

Table 3. Comparison of KIR3DL1/S1 allele frequencies between ICU patients and analogous world populations.

ICU Patients, C Ethnic Groups P (Pc)

KIR Allele Ab NAb Vaa,b Caa,c Ab vs VA NAb vs CA

3DL1*001 0.200 0.129 0.0006 0.1626 ,0.001 (,0.001)1 0.603

3DL1*002 0.000 0.113 0.000 0.120 - 1.000

3DL1*00401 0.000 0.161 0.002 0.034 1.000 ,0.001 (,0.001)2

3DL1*00402 0.000 0.033 0.000 0.119 - 0.029

3DL1*005 0.075 0.097 0.1286 0.1456 0.455 0.841

3DL1*007 0.025 0.048 0.002 0.033 0.154 0.167

3DL1*008 0.000 0.016 0.005 0.051 0.222 1.000

3DL1*009 0.000 0.016 0.000 0.020 - 0.562

3DL1*01501 0.000 0.000 0.000 0.004 - 1.000

3DL1*01502 0.200 0.129 0.373 0.064 0.038 0.012 (0.156)3

3DL1*019 0.000 0.000 0.000 0.001 - 1.000

3DL1*020 0.000 0.016 0.000 0.008 - 0.386

3DL1*029 0.100 0.000 0.065 0.001 0.336 1.000

3DS1*01301 0.300 0.242 0.407 0.233 0.239 0.878

3DL1 0.625 0.758 0.578 0.802d 0.619 0.424

3DS1 0.375 0.242 0.422 0.198d

2DL2 0.175 0.242 0.352 0.320d 0.024 (0.047)4 0.220

2DL3 0.825 0.758 0.648 0.680d

Ab, Aboriginal; NAb, Non-aboriginal; VA, Venezuelan Amerindian; CA, Caucasoid.
3DL1*051, 3DS1*010 comparisons not available.
aAllele frequencies derived from Allele frequency net (28).
b2n = 460;
c2n = 4056;
d2n = 17,680.
6Frequencies derived from low-resolution data.
1Odds Ratio:infinite;
2Odds Ratio:5.460(CI95%:2.717–10.970);
3Odds Ratio:2.163(CI95%:1.019–4.593);
4For 2DL2, Odds Ratio:0.390(CI95%:0.169–0.902); For 2DL3, Odds Ratio:2.563(CI95%:1.109–5.923).
doi:10.1371/journal.pone.0029200.t003
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(2DL1, 2DL2/L3, and 3DL1/S1) had the lowest probability of death

(Rd = 36%). 3DL1*01502 and 3DL1*00401, allotypes enriched in

non-aboriginal patients, were correlated with high disease severity

(Rd = 48%; and Rd = 58%, respectively). There were no significant

differences in disease severity between 2DL2+ (Rd = 38%) and 2DL3+

2DL22 (Rd = 42%) patients.

Discussion

The objective of this study was to identify KIR3DL1/S1 and

KIR2DL2/L3 allotypes, and corresponding ligands, enriched in

aboriginal and non-aboriginal H1N1/09 ICU patients from the initial

2009 H1N1 pandemic waves. The premise was that specific allotypes

and/or ligand combinations could predispose patients towards severe

responses to H1N1/09 infections. In a general population, only a

small proportion of individuals will develop such overactive immune

responses [37–39]. The enrichment of specific KIR allotypes was

evident when viewed in comparison to an H1N1-negative control

population, St. Theresa Point; a First Nations community that was

severely impacted during the first and second wave of the pandemic

[29,30]. Specific KIR allotype enrichment was also present, relative to

Amerindians and world Caucasoids. Despite the small sample size of

the ICU patients, several significant differences between groups were

observed. As this is an exploratory study, further confirmation of the

findings in future studies will be necessary.

In general, patients and populations of aboriginal descent were

all found to lack 3DL1/S1 diversity, relative to world Caucasoids

and ICU non-aboriginal patients. Although nine allotypes were

detected, four allotypes accounted for the majority among all

aboriginal subjects. This relatively low degree of diversity may

nonetheless confer a greater susceptibility to infectious diseases, in

general [11]. Additionally, 2DL3 allotypes were prevalent among

ICU and St. Theresa subjects, in addition to a lack of 2DL2/2DL2

(homozygous) allotype carriers, especially among St. Theresa

subjects. Enrichment of 2DL3 was also detected in aboriginal

patients, in comparison to Venezuelan Amerindians. However, the

2DL2/L3 distributions between all other groups were similar and

were consistent with the report from a study on KIR profiles in

First Nations and Caucasoids of European Descent [28].

Highly expressed allotypes of KIR3DL1 (3DL1*001, *002,

01502), defined by their expression levels and/or inhibitory

capacities [40–42], were common to both healthy St. Theresa

and H1N1/09 ICU subjects. Yet among the ICU patients, these

allotypes were frequently found ligand-negative. Overall, there was

a larger proportion of 3DL1 ligand-negative ICU patients, relative

to St. Theresa subjects. Although presumptive, it is highly possible

then that, in conjunction with their cognate ligands, KIR3DL1

may play a partial role in preventing infection or inhibiting the

development of severe responses.

Conversely, the significant enrichment of 2DL2/L3 ligand-

positive pairs in ICU patients, in comparison to St. Theresa

subjects, may imply that 2DL2/L3-ligand interactions contribute

to greater disease severity. APACHE II scores (probability of

hospital death) and available KIR/ligand data further suggested

this possibility. Interestingly, correlations between disease severity

and absence of 3DL1/S1 ligands and 2DL2 allotypes, were

evident in aboriginal ICU patients only. The lack of clarity among

non-aboriginal patients may be due to a lack of C2 ligands that

was specifically observed in non-aboriginal ICU patients, and the

expected high prevalence of their corresponding 2DL1 allotypes in

both First Nations and Caucasoids of European descent [28,31].

Nonetheless, the small proportion of non-aboriginal patients with

ligands for all three KIR subtypes had the least severe responses.

Taken together, severe responses to H1N1/09, among other

factors, may be dependent on 3DL1/S1, 2DL1, and 2DL2 ligand

interactions, at least in the case of aboriginal patients. On the

other hand, non-aboriginal patients may be affected by specific

3DL1 allotypes and a lack of 2DL1 allotype-ligands interactions.

In future studies, it would be interesting to determine the

distribution of specific 2DL1 and 2DL2/L3 allotypes, in

conjunction with their ligands, for a larger sample of H1N1/09

ICU patients. This would allow for further clarification and

characterization of the function, or lack thereof, of NK cells in

patients with severe responses.

Lastly, marked differences were found in the frequencies of two

synonymous allotypes, 3DL1*00401 and 3DL1*00402, between non-

aboriginal ICU patients and Caucasoids. Although highly speculative,

the mutations could produce two different proteins, possibly via

changes in mRNA stability or alternative splice sites [43,44]. Their

phenotypic effects, if any, will need to be further investigated.

In summary, among ICU patients with severe responses to

H1N1/09, 3DL1*00101, 3DL1*01502, and 3DL1*029, were

enriched in aboriginal ICU patients, while 3DL1*00401 and

3DL1*01502 were enriched in non-aboriginals ICU patients.

Likewise, the ligand-negative pairs KIR3DL1/S1+ Bw6+ Bw42

and KIR2DL1 C22 C1+, and ligand-positive pair KIR2DL3 C1+,

were also observed to be proportionally higher in ICU patients,

relative to healthy St. Theresa controls. As such, the study shows

that the enrichment of specific allotypes and a disproportional

distribution of cognate HLA class I ligands are likely factors that

mediated NK cell dysfunction and lead to the development of

severe responses to H1N1/09 in ICU patients.

Table 4. Comparison of average probabilities of death
among H1N1 ICU patients based on APACHE II severity of
disease classification system.

Aboriginal Non-Aboriginal

Allele/Ligand n
Death
Rate (%) n

Death
Rate (%)

2DL2/L3 C1het 8 (40%) 36 9 (29%) 40

2DL2/L3 C1hom 6 (30%) 43 22 (71%) 40

2DL2/L3 C2hom 6 (30%) 38 - -

2DL2/L3 C1+ 14 (70%) 39 9 (29%) 40

2DL2+ C1+ 3 (15%) 21 12 (39%) 38

2DL2+ 2DL32 C1+ 10 (50%) 46 19 (61%) 42

3DL1/S1 Bw4het 10 (50%) 29 15 (48%) 41

3DL1/S1 Bw4hom 4 (20%) 41 2 (7%) 48

3DL1/S1 Bw6hom 6 (30%) 52 11 (36%) 39

3DL1/S1 Bw4+ 14 (70%) 34 17 (55%) 43

Bw4+ and C12 5 (25%) 35 - -

Bw42 and C1+ 5 (25%) 52 10 (32%) 38

Bw4+ and C2+ C1+/2 9 (45%) 28 6 (19%) 36

Bw42 and C2+ C1+/2 4 (20%) 51 1 (3%) 55

Bw4+ and C1+ C2+ 5 (25%) 27 6 (19%) 36

3DL1*00101 Bw4+ 5 (25%) 40 5 (16%) 37

3DL1*01502 Bw4+ 4 (20%) 33 5 (16%) 48

3DL1*029 Bw4+ 3 (15%) 52 - -

3DL1*00401 Bw4+ - - 5 (16%) 58

3DS1*01301 Bw4-80I+ 9 (45%) 32 8 (26%) 48

het, heterozygous; hom, homozygous.
doi:10.1371/journal.pone.0029200.t004
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Materials and Methods

Study Population
The study used data from two separate cohorts with a total of

156 subjects (125 Aboriginal, 27 Caucasoid, 2 South Asian, and 2

unknown/mix ethnics). The first cohort consisted of 51 H1N1/09

intensive-care unit (ICU) patients with severe cases of infection.

The second included 105 aboriginal H1N1-negative subjects from

St. Theresa Point. Screening of the St. Theresa Point population

was undertaken by analyzing DNA samples obtained in 2007–09,

in the context of a study evaluating the prevalence of rheumatoid

arthritis (RA) risk factors in the community. Individuals aged 18–

55 were randomly selected from the community at large based on

their willingness to participate in the RA study. All ICU patients

were H1N1-confirmed by RT-PCR testing.

Ethics Statement. Permission to use the St. Theresa Point

samples for the H1N1/09 study was specifically obtained from the

Research Ethics Board of the University of Manitoba and from the

leadership of the community through the Band Council. The study

of ICU patients was approved using a full consent process through

the Research Ethics Board of the University of Manitoba. The

data were analyzed anonymously.

KIR3DL1/S1 and HLA Genotyping
Genomic DNA was isolated from whole blood samples that

were stored in PAXgene Blood RNA tubes (PreAnalytix) using a

QIAmp DNA Mini Kit and the EZ1 BioRobot (QIAgen Inc,

Mississauga, Ontario, Canada).

PCR amplification. KIR3DL1/S1 exons 1–5, 7, and 9,

KIR2DL2/3 exon 4 [45], and HLA-B exons 2 and 3 [46] were

amplified using genomic DNA with gene-specific primers (Table 5).

PCR amplifications were confirmed by 1% agarose gel

electrophoresis with ethidium bromide. PCR products were

purified using Agencourt AMPure XP Kits (Beckman Coulter)

and resuspended in Tris-EDTA buffer (pH 8.0).

Sequencing. PCR products were sequenced using BigDyeTM

Terminator Cycle Sequencing Kits (Applied Biosystems) V1.1.

Purified PCR products were analyzed using an ABI PRISM

31306l Genetic Analyzer (Applied Biosystems) and genotyped

using Codon ExpressTM, a taxonomy-based sequencing analysis

software, with the KIR and HLA databases from IMGT/HLA

and IPD/KIR, respectively [47–49].

Statistical Analysis
Frequency analysis was performed using SPSS 13.0 for

Windows. The statistical significance of difference between allele

frequencies were calculated using Fisher’s Exact Test for small

numbers via Microsoft Research and VassarStats [50,51].

Correct P values (Pc) were obtained using the Sidak method by

calculating 1-(1- P)n, where n is the number of alleles analyzed in

each group. A P value of less than 0.05 was considered

significant.

Table 5. Amplification and sequencing primers for KIR3DL1/S1 typing.

Name Specificity Primer Sequence (59 39) Location Annealing Temperature

L1S1-1FPCR 59 Exon 1 CGAGGTGTCAATTCTAGTGAGAG Intron 1 61 to 51uCc

L1S1-1RPCR 39 Exon 1 CACTTCAGGCCCATAACTCCAC Intron 2 61 to 51uCc

L1S1-1FSEQ Exon 1 CGAGGTGTCAATTCTAGTGAGAG Intron 1 53.0uC

L1S1-1RSEQ Exon 1 CTAGGCCCATATCTTTACCTCC Intron 2 55.0uC

L1S1-2-3FPCR 59 Exon 2 GAGATCCTTGTTCCTGGGG Intron 2 56.2uC

L1S1-2-3RPCR 39 Exon 3 CGTCTCCCTCCCACTACAC Intron 3 56.2uC

L1S1-2FSEQ Exon 2 CAGCGAGGGTGAGTTTAC Intron 2 56.9uC

L1S1-2RSEQ Exon 2 GAGGGTCCCCTCTTCCTAGTG Intron 3 55.0uC

L1S1-3FSEQ Exon 3 GTGGAAATGGGGAGAATCTTCTGG Intron 3 55.0uC

L1S1-3RSEQ Exon 3 CAGAAGCTCTGGGATTCAG Intron 4 58.0uC

L1S1-4FPCR 59 Exon 4 CATGCAGCCTGTCCTCTTC Intron 4 57.6uC

L1S1-4RPCR 39 Exon 4 ACACGGCATCTGTAGGTGG Intron 5 57.6uC

L1S1-4FSEQ Exon 4 GGGAGGAGAGAGACAGACACG Intron 4 53.0uC

L1S1-4RSEQ Exon 4 CAGACCTCACCAAGTCAC Intron 5 52.0uC

L1S1-5FPCR 59 Exon 5 GACAGAGAGGCAGACAGAGAGG Intron 5 64 to 54uCc

L1S1-5RPCR 39 Exon 5 CTGACTCCGCCCTCACACCTG Intron 6 64 to 54uCc

L1S1-5FSEQ Exon 5 GAGAGAGAGAGAGAGAGCATTAG Intron 5 55.0uC

L1S1-5RSEQ Exon 5 CTCTGCATCTGTCCATGCTTTTC Intron 6 55.0uC

L1S1-7-9FPCRa 59 Exon 7 GCTATAACTGAGAAAGCAGGAGG Intron 7 64 to 54uCc

L1S1-7-9RPCRa 39 Exon 9 CATTTGTAAGCAAGWGAGAGGCAC Intron 9 64 to 54uCc

L1S1-7FSEQa Exon 7 GGGTGCTTGTCCKAAAGAGAYGC Intron 7 58.9uC

L1-9FSEQa,b Exon 9 CACTCAGCATTTCCCTCCCTCAC Intron 9 54.4uC

L1-9RSEQa,b Exon 9 GGCTGTTGTCTCCCTAGAAGACG Intron 10 58.0uC

aDoes not amplify 3DL1*059, 3DL1*060, 3DL1*061.
b3DL1 only.
cTouchdown PCR temperature range.
doi:10.1371/journal.pone.0029200.t005
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