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Rapid developments in the field of CAR T cells offer important new opportunities

while at the same time increasing numbers of patients pose major challenges. This

review is summarizing on the one hand the state of the art in CAR T cell trials with a

unique perspective on the role that Europe is playing. On the other hand, an overview

of reproducible processing techniques is presented, from manual or semi-automated

up to fully automated manufacturing of clinical-grade CAR T cells. Besides regulatory

requirements, an outlook is given in the direction of digitally controlled automated

manufacturing in order to lower cost and complexity and to address CAR T cell products

for a greater number of patients and a variety of malignant diseases.
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CELL-BASED CANCER THERAPY: FROM STEM CELL
TRANSPLANTATION TO PERSONALIZED THERAPY WITH CAR T
CELLS

The basis for cell-based cancer therapies was laid with the development of allogeneic hematopoietic
stem cell transplantation (HSCT) in the 1960s (1)(1). From those beginnings to the present
day, more than a million HSCTs have been performed around the world (2). After intensive
conditioning therapy (chemotherapy or radiation), donor hematopoiesis is established as well
as a graft-vs-tumor effect (3), as a result of which the donor’s T lymphocytes recognize cancer
cells as foreign and can kill them by various mechanisms. This effect was also described
following the administration of donor lymphocyte infusions (DLI) for relapse treatment (4).
However, differences in the HLA and/or minor histocompatibility antigens between donor and
recipient can also trigger graft-vs-host disease (GvHD), which represents one of the most serious
complications after allogeneic HSCT and can affect almost every organ system (5). In addition to
identifying HLA-identical family donors, large registers are used to specifically search for HLA-
compatible third-party donors. For many patients without HLA-compatible donors, haploidentical
transplantation (donor and recipient share half of the HLA characteristics) is an established
alternative. Despite a large number of foreign HLA antigens, T cell depleting drugs such as
cyclophosphamide, applied immediately after transplantation, can reduce acute or chronic GvHD,
with survival rates comparable to conventional HSCT (6, 7). The function and activity of the
T cells in a hematopoietic cell transplant and the immune cells that develop after engraftment
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of the stem cells are therefore essential components of
therapeutic success: an increase of the anti-tumor efficiency with
simultaneous elimination or significant reduction of the T cell-
mediated side effects (e.g., GvHD, cytokine release syndromes)
is optimal. This has led to the development of the principle of
modulating T cells as an essential part of immuno-oncological
research and the generation of new therapeutic agents.

New antibody therapies are also making use of the
impressive clinical potential of T lymphocytes. Checkpoint
inhibitors such as ipilimumab, nivolumab, or pembrolizumab
are monoclonal antibodies, the binding of which leads to
the abolition of a mostly tumor-induced inhibition of T
lymphocytes and thus to a therapy response (8). Furthermore,
bispecific antibodies, which bind T cells in addition to the
target antigen, are considered to be further developments of
this principle (9). One example is blinatumomab, which is
approved in the treatment of refractory or relapsed precursor
B-cell lymphoblastic leukemia (r / r B-ALL) (10). This dual
antibody fragment has binding sites both for CD19 (another
antigen on B-ALL and B-lymphoma cells) and against CD3
(part of the T cell receptor) and thus leads to the formation of
an immunological synapse between cancer cells and cytotoxic
T lymphocytes (11).

In analogy to bispecific antibodies, certainly more complex
reprogramming of T-lymphocytes can also be performed through
transfer of the genetic information of an antibody-binding
domain fused to essential T cell signaling domains, in context
of therapy with CAR (chimeric antigen receptor) T cells. In
this process, autologous T lymphocytes of the patient which
recognize the target antigen are produced ex vivo through viral
transduction of the CAR-T cells (12). These so-called living drugs
were approved in USA 2017 and in EU 2018 are one of the most
innovative therapy options for the treatment of aggressive B-cell
lymphomas and the precursor B-ALL (<25 years).

After transduction, these cells express a variable domain of
immunoglobulin, which, as an antigen receptor, is specifically
directed against the surface antigens of cancer cells (13). Since
these immunoglobulins are not physiologically expressed on T
cells, these genetically modified T cells are also referred to as
CAR T cells. Another difference to the natural T cell receptor is
the fusion of costimulatory domains to the CARmolecule, which
increase the efficacy of the cells (Figure 1) (17, 18).

Theoretically, it is possible to generate CAR T cells against a
large number of relevant tumor antigens, nicely reviewed in (19–
22). Once the tumor antigen has been recognized, the CART cells
are activated, resulting in a targeted immune reaction directed
against the respective tumor.

CLINICAL APPLICATION OF CD19-CAR T
CELLS

One of the first clinical applications of CD19-CAR in hematology
took place in 2009 in an intensively pretreated patient with
follicular lymphoma (FL) where a partial remission was achieved
by using CART cells (23). In 2010, the University of Pennsylvania

started the first phase I study for adult patients with mature B-
cell neoplasms (24). After the inclusion of three patients with
chronic lymphatic leukemia (CLL), the study was stopped for
financial reasons. An additional problem was the management
of inflammatory reactions, summarized under the term cytokine
release syndrome (CRS) (25). This may lead to life-threatening
complications such as insufficient oxygen supply with the need
for ventilation, severe hypotensionwith reduced blood flow to the
periphery requiring circulatory support therapy, capillary leak
syndrome with edema formation, especially of the lungs, but also
multi-organ failure and disseminated intravascular coagulopathy
(26). The publication of the positive clinical results of these
patients (2 complete and 1 partial remission) lead to an increased
global interest in CAR T cells (27). The goal of developing
personalized immunotherapies and translating them into clinical
application led to a cooperation between the University of
Pennsylvania and Novartis in 2012, followed by a partnership
between Kite Pharma and the National Cancer Institute (NCI)
(28, 29). In 2013, the treatment results of two first pediatric
patients with refractory or relapsed acute lymphoblastic leukemia
(r/r ALL) were published (30). In addition, this was the first
publication on the successful application of tocilizumab (anti-
IL-6 antibody) in severe CRS. Further studies confirmed the
surprisingly good complete remission rates in this patient cohort,
which was previously considered as treatment refractory and
thus incurable. (31). Additionally, the possibility of achieving
a permanent remission for r/r ALL patients could be proven
in a global multicenter study (25 centers in 11 countries) (32).
The efficacy of CAR T cells has also been demonstrated in
patients with lymphomas. The first phase II study was started
at the University of Pennsylvania in 2014 in patients with r/r
DLBCL and FL (33), followed by two multicenter international
phase II studies for patients with refractory or recurrent diffuse
large-cell B-cell lymphoma (r/r DLBCL) (34, 35). However,
CAR T cell therapy may be associated with other complications
in addition to CRS, such as immune effector cell-associated
neurotoxicity syndrome (ICANS) and the macrophage activation
syndrome. According to current recommendations from specific
specialist societies, to treat CRS and to prevent this complication
from progressing further, anti-IL-6 antibodies are given in its
early stages (25, 36). For treatment of ICANS without CRS,
corticosteroids are the therapy of choice. The standardized, stage-
appropriate therapy of these possible complications requires the
full-day availability of the anti-IL-6 antibodies in the clinic, as
well as an interdisciplinary team for the immediate initiation
of intensive medical, neurological and imaging measures,
but also the continuous training of nursing and medical
staff as summarized in the EBMT/ISCT recommendations
(37, 38).

Three preparations are currently approved in the EU:
tisagenlecleucel (Kymriah R©) (39) and axicabetagene ciloleucel
(Yescarta R©) (40) for treatment of pediatric patients with
r/r primary mediastinal B-cell lymphoma following at least
two previous lines of therapy and brexucabtagene autoleucel
(Tecartus R©) (41) for treatment of mantle cell lymphoma in adult
patients. EU approval for further drugs with other target antigens,
e.g., B-cell maturation antigen, is expected in 2021.
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FIGURE 1 | Structural differences between clinically available CAR T cell products: (A) Tisagenlecleucel (Kymriah) (14), (B) Axicabtagene ciloleucel (Yescarta) (15), (C)

Lisocabtagene maraleucel (Breyanzi) (16).

So far, various pediatric and internal medicine centers
have been certified for treatment with CAR T cell therapies
that are associated with considerable additional logistical and
infrastructural efforts. The number of centers varies in the
individual EU countries depending on the organization of the
health care system. There are only a few centers in centrally
organized systems, whereas Germanywith its decentralized, area-
wide medical care concept has 26 centers (42). In Germany
alone, CAR T cells for the treatment of patients with r/r CD19+

ALL/DLBCL are needed for approx. 1,200–1,400 patients per
year (43).

CAR T CELLS AS CLINICAL TRIAL
PRODUCTS: RULES, CONDITIONS, AND
GLOBAL DEVELOPMENT

From a regulatory point of view, CAR T cells are an advanced
therapy medicinal product (ATMP) in the EU. ATMPs are
classified in (i) gene therapy medicinal products, including
CAR T cells (ii) somatic cell therapy medicinal products,
(iii) tissue-engineered products and (iv) combined ATMPs.
They play a growing role in the treatment of cancer and
hereditary diseases as well as in regenerative medicine and, more
recently, in the development of therapies for viral infections.
CAR T cells as an ATMP can be generated by either viral
transduction leading to a permanent CAR expression or by
using mRNA as well as transposon technology for transient
CAR expression.

Themanufacture, approval, and regulation of these innovative
therapies are extremely complex and serve to protect the patients.
They are subject to health and research policy framework as well
as legal regulations that have a direct influence on international
competitiveness. Therefore, the design of the framework is an
important instrument to support research in the EU and to
promote innovations. This, however, needs to be considered
also in the context of international activities. The European
Parliament and the Council of the European Union have
issued Regulation (EG) No. 1394/2007 that regulates licensing,

monitoring, and pharmacovigilance of ATMPs (44). Central
approval is compulsory in the countries of the EU offering the
advantage of market access in all EU member states. However,
different regulatory frameworks within individual member states
lead to complexity and reduce competitiveness. In Germany,
for example, there are stricter regulations for the import of
medicinal products and active ingredients from third countries
than required by EU regulations (AMG § 72a). As a result of
the lack of international harmonization in the recognition of
certificates, manufacturers are obliged to carry out an acceptance
inspection of the apheresis unit in non-EU countries. On the
one hand, this obstacle affects the supply of CAR T cells
for patients and, on the other hand, orders from abroad are
lost, even if the manufacturer has a high level of professional
qualification. The federal system that exists in Germany is
also not conducive at this point. For example, the granting
of a manufacturing license (AMG § 13) is subject to the
respective state authority of the federal state and must be applied
for a new in each other. Carrying out academically initiated
studies requires considerable financial and human resources
which University hospitals are currently unable to cover for the
most part. Funding programs for such high financial volumes
are only available to a limited extent. Due to the special
nature of the production, there is an increased dependence
on the industry. This situation prevents academic studies
in Europe.

Currently, there are around nine hundred studies worldwide
with the use of CAR T cells as investigational drugs in
different tumor entities, which confirms the increasing interest
in immuno-oncology (45). There is good reason to hope that,
in addition to addressing CD19+ hematological diseases, the
development of therapies in oncology will also increase rapidly.
The current Biotech Report of the Boston Consulting Group
shows that only around 10% of studies are coordinated in Europe
(46). Currently, China is the leader in this field, followed by
the USA. Europe has already fallen behind its competitors and
substantial investments & regulatory reforms are required to
catch up. A look at the financing reveals a serious difference.
While in Europe an average of 60 percent of the studies are
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FIGURE 2 | Top 5 countries of clinical CAR T cell studies with funding type (source: ClinicalTrials.gov).

sponsored by industry, the level is even significantly higher in
some member countries (Germany 90%), in the USA and China
more than half are initiated from the academic sector (Figure 2).
In addition, a large amount of venture capital or governmental
funding are available for the subsequent implementation in the
USA and China - there are hardly any comparable options
in Europe.

Furthermore, reliable reimbursement conditions and price
setting must be put on the political agenda so that (i) patients
can be guaranteed access to standard care with these high-
priced therapies in the future (∼1/4 million EUR/product for
both approved CAR T cell products) without overwhelming the
solidarity community and (ii) the financing gap in the clinics can
be closed.

An innovative financing model was proposed by the
pharmaceutical industry, which as so-called “Pay-for-
Performance” provides for payments only if the treatment
is successful (47). Manufacturing in strong networks using both
centralized and decentralized manufacturing gives rise for future
financial opportunities (48).

Government programs and financial support make a
substantial contribution to support independent research and
help to implement innovative ideas. In the field of cell and gene
therapy, this could not only have a major influence on price
formation of ATMPs, but would also strengthen the European
position in this area. In its research and innovation investment
program “Horizon Europe” approved at the beginning of the
year, the European Commission provided a total budget of
95.5 billion euros, of this 25 billion earmarked for promoting
scientific excellence.

TECHNOLOGY DEVELOPMENT AND
TRANSFER

So far, the focus has largely been on the development and
improvement of the product, so the innovations are aimed at (i)
CAR construct design up to the fourth generation, the TRUCK
(T cells directed for antigen-unrestricted cytokine-initiated
killing), (ii) non-viral vector formats like the Sleeping Beauty
(SB) Transposon System and (iii) switchable universal CAR T
platform technology (UniCAR), which allow to repeatedly turn
the activity of CAR T cells on and off (49–51). However, the
manufacturing process with its complex sequence of different
process steps (1.) cell preparation, such as thawing and washing,
(2.) selection, (3.) activation, (4.) transduction, (5.) expansion,
(6.) harvest and (7.) final formulation of the cells, is still in an
early development phase. Most of the products are manufactured
under manual and only partially automated conditions.

After market approval of the first two CAR T cell
preparations, the existing infrastructure is simply used for
their production, which takes place in cooperation between
the large pharmaceutical and biotechnology companies and
their partners. In a second step, highly qualified specialist
institutions are commissioned to guarantee the supply. In
Germany, for example, there has been a collaboration between
Novartis and the Fraunhofer Institute for Cell Therapy and
Immunology (IZI) for the production of CAR T cells, initially
as clinical test preparations, since 2015. So far, more than 500
CAR T cell preparations have been produced at IZI as part
of this cooperation. There are currently about 150 qualified
treatment centers in 20 countries in Europe including the
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TABLE 1 | Automated CAR T cell production: Publications and clinical trials (14, 53, 54, 56–73).

Author (year of

publication)

Title Device platform Product/ Runs

a) Reviews

Fritsche E. et al.

(73)

Toward an Optimized Process for Clinical Manufacturing of

CAR-Treg Cell Therapy

1. GMP compliant cell sorter

2. Bioreactor

3. CliniMACS Prodigy®

Mizukami A. and

Swiech K.

(72)

Platforms for Clinical-Grade CAR-T Cell Expansion

Book: Chimeric Antigen Receptor T Cells (Chapter 10)

1. Bioreactor

2. CliniMACS Prodigy®

3. Octane CocoonTM cell culture system

Smith D. et al.

(70)

Toward Automated Manufacturing for Cell Therapies 1. Bioreactor

2. CliniMACS Prodigy®

3. Octane CocoonTM cell culture system

Smith TA.

(71)

CAR-T Cell Expansion in a Xuri Cell Expansion System W25

Book: Chimeric Antigen Receptor T Cells

Xuri Cell Expansion System W25

Roddie C. et al.

(69)

Manufacturing chimeric antigen receptor T cells: issues and

challenges

1. Wave Bioreactor

2. G-Rex flask

3. CliniMACS Prodigy®

Moutsatsou P. et al.

(55)

Automation in cell and gene therapy manufacturing: from past

to future

1. CliniMACS Prodigy®

2. Octane CocoonTM cell culture system

3. Quantum Cell Expansion (hollow fibers)

Iyer R.K. et al.

(74)

Industrializing Autologous Adoptive Immunotherapies:

Manufacturing Advances and challenges

1. G-Rex static bioreactor

2. Wave-mixed Bioreactors

3. CliniMACS Prodigy®

4. Octane CocoonTM cell culture system

5. Quantum Cell Expansion (hollow fibers)

Piscopo N.J. et al.

(68)

Bioengineering Solutions for Manufacturing Challenges in

CAR T Cells

1. Bioreactors

2. CliniMACS Prodigy®

Kaiser A. et al.

(67)

Toward a commercial process for the manufacture of

genetically modified T cells for therapy

CliniMACS Prodigy®

b) Paper

Costariol E. et al.

(66)

Demonstrating the Manufacture of Human CAR-T Cells in an

Automated Stirred-Tank Bioreactor

Stirred tank bioreactor CD19 CAR-T

Donors ( n =3)

Jackson Z. et al.

(56)

Automated Manufacture of Autologous CD19 CAR-T Cells for

Treatment of Non-Hodgkin Lymphoma

CliniMACS Prodigy® CD19 CAR-T

trial participants (n = 31)

Castella M. et al.

(65)

Point-Of-Care CAR T-Cell Production (ARI-0001) Using a

Closed Semi-automatic Bioreactor: Experience From an

Academic Phase I Clinical Trial

CliniMACS Prodigy® CD19 CAR-T

trial participants (n = 28)

Fernández L. et al.

(64)

GMP-Compliant Manufacturing of NKG2D CAR Memory T

Cells Using CliniMACS Prodigy

CliniMACS Prodigy® NKG2D CAR Memory

T Cells

validation runs (n = 4)

Vedvyas Y. et al.

(63) Erratum in (2020)

Manufacturing and preclinical validation of CAR T cells

targeting ICAM-1 for advanced thyroid cancer therapy

CliniMACS Prodigy® ICAM-1 CAR-T

preclinical validation (n = 7)

Aleksandrova K. et al.

(53)

Functionality and Cell Senescence of CD4/CD8-Selected

CD20 CAR T Cells Manufactured Using the Automated

CliniMACS Prodigy® Platform

CliniMACS Prodigy® CD20 CAR-T

establishing runs (n = 6)

Zhang W. et al.

(62)

Characterization of clinical grade CD19 chimeric antigen

receptor T cells produced using automated CliniMACS

Prodigy system

CliniMACS Prodigy® CD19 CAR-T

establishing run (n = 1)

Blaeschke F. et al.

(52)

Induction of a central memory and stem cell memory

phenotype in functionally active CD4(+) and CD8(+) CAR T

cells produced in an automated good manufacturing practice

system for the treatment of CD19(+) acute lymphoblastic

leukemia

CliniMACS Prodigy® CD19 CAR-T

autologous patients (n = 4)

Zhu F. et al.

(61)

Closed-system manufacturing of CD19 and dual-targeted

CD20/19 chimeric antigen receptor T cells using the

CliniMACS Prodigy device at an academic Medical Center

CliniMACS Prodigy® CD19 und

CD20/CD19 CAR-T

test runs (n = 7)

Lock D. et al.

(60)

Automated Manufacturing of Potent CD20-Directed Chimeric

Antigen Receptor T Cells for Clinical Use

CliniMACS Prodigy® CD20 CAR-T

test runs (n = 15)

(Continued)
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TABLE 1 | Continued

Author (year of

publication)

Title Device platform Product/ Runs

Priesner C. et al.

(59)

Automated Enrichment, Transduction, and Expansion of

Clinical-Scale CD62L(+) T Cells for Manufacturing of Gene

Therapy Medicinal Products

CliniMACS Prodigy® GFP- T

proof of principle

n = 3 (4)

Mock U. et al.

(58)

Automated manufacturing of chimeric antigen receptor T cells

for adoptive immunotherapy using CliniMACS prodigy

CliniMACS Prodigy® CD19 CAR-T

test runs (n = 7)

c) Clinical Trials

NCT04196413 GD2.BB.z.iCasp9-CAR T Cells CliniMACS Prodigy® n = 54

NCT03467256 CD19 CAR-T CliniMACS Prodigy® n = 18

NCT04049383 CAR-20/19-T cells CliniMACS Prodigy® n = 24

NCT03144583 CD19 CAR-T CliniMACS Prodigy® n = 28

NCT03434769 CD19 CAR-T CliniMACS Prodigy® n = 31

NCT03893019 CD20 CAR-T CliniMACS Prodigy® n = 15

Unknown CD19 CAR-T Cocoon® Platform n = 1

UK, plus more than 200 outside the EU (52). The global
supply of tisagenlecleucel (Kymriah R©) is provided by seven
manufacturers, 3 from Europe (France, Switzerland, Germany)
and the others from the USA, China, Japan and Australia.
In parallel, the same number of centers are qualified for the
treatment with Yescarta R©. To cope with the forecast, increase in
the number of treatments, there is an urgent need for automation.
Given the possibility to address not only hematological diseases,
but also solid tumors, as a result, around 1.5 decimal powers
more CAR T cell preparations must be made available. Upscaling
is not a trivial process, but requires the optimization of each
individual step and the analysis of the effects on the product by
corresponding complex in-process and final product controls.
In publications of some research groups, influences on the
phenotype, exhaustion and senescence of the cells are described,
which can lead to functional limitations (53, 54). Understanding
molecular mechanisms is an important component in the
development of new process strategies. An evaluation of clinical
studies from the past 15 years reflects the diversity within
the production of CAR T cells (55). This variability should
be minimized to achieve a uniform robust process. In initial
optimizations, open steps were replaced by closed steps in
order to decimate the risk of product contamination. By
reducingmanual steps, which are extremely time-consuming and
require the use of well-trained and highly qualified staff, the
aim is now to increase the efficiency of implementation. The
CliniMACS Prodigy R© from Miltenyi Biotec, for example, offers
the possibility of decentralized production and is already being
used as a proof of concept in several ongoing clinical trials for
the production of CAR T cells (Table 1). This automatic and
closed device is able tomap all process steps from cell preparation
to harvest.

However, the small chamber volume, the insufficient flexibility
and the restricted use, which occurs during the cell expansion
phase of several days, have a limiting effect and could lead to a
production bottleneck (56). In efforts to shorten the process, the
cultivation time has been reduced from the usual 12 days to 8

days (57). Another automated system, the Cocoon R© platform
from Lonza, was first used successfully last year at the Sheba
Medical Center in Israel within a clinical trial (75). Alternatively,
modular systems are used. Devices from various manufacturers,
which only perform the respective process step automatically,
are combined as needed. Widely used, even in commercial
production, is the use of bioreactors for cell expansion. They
can become a key element of industrialized manufacturing, as
the new generation allows control of culture conditions and
the possibility of process adaptation (74). The involvement
of continuous monitoring of relevant process parameters
and defined cell patterns would enable an adaptive process
management. As an example, the Prodigy device is equipped with
a microscope camera that already allows continuous monitoring
of cell growth within the chamber. For the future, automated
daily harvesting of small samples, which are transferred with a
robotic arm into an external machine for cell characterization
could improve early decision during a manufacturing process.
Thus, the influence of subjective decisions and human-related
protocol deviations could be minimized or eliminated (58).
A modular system offers the decisive advantage of being able
to organize the processes flexibly. The platforms are still not
networked with one another in order to automatically map the
entire process chain. The integration of different device and
technology platforms for production and quality control in a
digitally controlled process line would offer the flexibility and
automation required for a large number of diverse cell and gene
therapeutics and adaptations to further developments (56).

On the question of whether to favor centralized or
decentralized manufacturing, existence of both is justified.
In development and translation to the clinic, decentralized
manufacturing in qualified GMP facilities of University hospitals
plays an important role. The challenge in the commercialized
manufacture of personalized therapies lies in the creation of
various parallel independently running product manufacturing
processes. This complexity calls for centralizing commercial
production. Experience from other industrial sectors and the
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potential of the industry 4.0, characterized by the digitalization
of production, can help to break new ground in the direction
of robotic systems and intelligent automated process lines.
Investments in the development of strategies for the automation
and digitization of the production, product control and
documentation of ATMPs must play a central role so that the
global supply of patients with cell and gene therapeutics can
be guaranteed in terms of availability of capacities, resources
and finances.

CONCLUSION

With its excellent and diverse research landscape, Europe still
plays an important role worldwide. In contrast, more than 90
percent of clinical trials with CAR T cells are currently initiated
outside Europe. Compared to the U.S. and China, venture
capital funding is underdeveloped in Europe and regulations,
decision processes and initiation of studies are lengthy and
complex. The creation of appropriate framework conditions in
an international context therefore seems essential to address and
overcome (i) the delayed translation of research into the clinic,
(ii) the lack of funding but also the increasing complexity of
academically initiated phase I/II clinical trials, and (iii) improved

support in the developments of automation and digitization
of process routes in order to address 100-fold more patients
moving from haematological to solid cancer. In the end, this
will also determine how strongly Europe will be represented
in the economic value added in the promising market of cell
and gene therapy. Policymakers are therefore faced with the
question of the extent to which they support science and create
the conditions that are conducive to innovative developments in
order to ultimately strengthen Europe as a location for research
and business and not lose touch with the world leaders. Funding
programs, such as Horizon Europe pave the way for better
networking and cooperation among member states. However,
efforts toward international harmonization of regulations must
also be accelerated, because ultimately the huge challenges in the
development and provide of personalized medicines cannot be
met by national efforts alone, but only within the framework of
international cooperation.
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