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Abstract: The ultrasonic-assisted aqueous two-phase extraction (UAATPE) of flavonoid glycosides
from Malvaviscus arboreous Cav. flower (MACF) was developed using ethanol/ammonia sulfate
systems, followed by the ultrasonic-assisted acid hydrolysis (UAAH) of the top extract with HCl
solution. The optimization of UAATPE and UAAH processes was accomplished by single-factor
experiments and response surface methodology. As a result, the flavonoid glycosides enriched in
the top phase could achieve a maximum yield of 35.9 ± 1.1 mg/g by UAATPE and were completely
hydrolyzed by UAAH deglycosylation. The flavonoid glycosides and their hydrolyzates were sepa-
rated and characterized by high-performance liquid chromatography and ultra-high-performance
liquid chromatography-quadrupole-time-of-flight mass spectrometry. Ultrasonic enhancement of the
extraction and hydrolysis was explored by comparative study. Furthermore, the in vitro activity of
the flavonoid glycosides and the aglycones were comprehensively evaluated by antioxidant activity
assays, including ferric-reducing antioxidant power and scavenging DPPH, hydroxyl, and super-
oxide radicals. All of the IC50 values suggest that the antioxidant activity of flavonoid aglycones
was stronger than that of their glucosides and even vitamin C, revealing that the deglycosylated
flavonoids from MACF were the more powerful antioxidants. This study provided an effective and
eco-friendly strategy for the extraction, separation, and purification of flavonoids from MACF, as
well as for the development of the potential flavonoid antioxidants.

Keywords: oxidative stress; Malvaviscus arboreus Cav. flower; ultrasonic-assisted aqueous two-phase
extraction; ultrasonic-assisted acid hydrolysis; flavonoid; process optimization; UHPLC-Q-TOF-MS
identification; antioxidant activity

1. Introduction

Plants, as major sources of natural antioxidants, have not only historically demon-
strated their significant value in preventing or delaying food oxidation but also played a
great role in treatment and disease prevention. From them, so far, the discovery of various
antioxidant active compounds has consistently been pursued over the world to resolve
different food, health, and medicine issues [1–5]. Malvaviscus arboreous Cav. (MAC) is
a perennial deciduous shrub of Malvaceae, natively found from Mexico to Brazil, which
is also widely cultivated and naturalized in tropical and subtropical regions including
southern China [6]. It is also called sleeping hibiscus due to its bright red petals that are
spirally wrapped, and only the slender stamens and pistils protrude from the petals. MAC
has both edible and medicinal value, and its leaves, flowers, stem, and fruits are not only
incorporated into salads and herbal teas but are also used for the treatment of diarrhea,
dysentery, gastrointestinal pain, liver injury, and hypertension [7–10]. In particular, the

Antioxidants 2022, 11, 2039. https://doi.org/10.3390/antiox11102039 https://www.mdpi.com/journal/antioxidants

https://doi.org/10.3390/antiox11102039
https://doi.org/10.3390/antiox11102039
https://creativecommons.org/
https://creativecommons.org/licenses/by/4.0/
https://creativecommons.org/licenses/by/4.0/
https://www.mdpi.com/journal/antioxidants
https://www.mdpi.com
https://orcid.org/0000-0002-2147-1704
https://doi.org/10.3390/antiox11102039
https://www.mdpi.com/journal/antioxidants
https://www.mdpi.com/article/10.3390/antiox11102039?type=check_update&version=2


Antioxidants 2022, 11, 2039 2 of 22

flowers demonstrated antioxidant and antifungal activity in vitro [7,11]. However, the
research was confined to the pharmacological activities of crude extracts of hot water and
95% ethanol. Few further studies have been carried out between the chemical constituents
and pharmacological effects of Malvaceae species, especially MAC flower (MACF) [6–11].

The medicinal and edible flowers present different characteristics in terms of abundant
flavonoids, phenolic acids, anthocyanins, and carotenoids and reveal a variety of biological
potentials, thus attracting increasing attention over the world [12]. For example, MACF has
exhibited gastroprotective activity and hepatoprotective potential, which may be related to
flavonoids and phenolic acids, etc. [11,13]. Flavonoids belong to the secondary metabolites
of plants and have been extensively studied due to the diversity of its biological activities
in vitro and in vivo [14–16]. Flavonoids from different sources are principally recognized
for their diverse health-promoting properties, such as antioxidant, anti-inflammatory, an-
tibacterial, anticancer, antiviral, and hypotensive properties [17–19]. From their structural
features, flavonoids in plants generally exist in glycosylation forms, such as flavonoid
glucosides, rhamnosides, arabinosides, and rutinosides. These glycosylation forms mainly
include O-glycoside and C-glycoside through biosynthesis and metabolism. In this way, the
glycosylation enables aglycones to form novel chemical structures with high stereo and re-
gional selectivity, affording structural complexity and species diversity of flavonoids [20,21].
Thus, even the same flavonoids may exhibit different antioxidant activities due to the gly-
cosylation of aglycones [22]. For the further development of medicinal value and food
nutrition, it is essential to extract, separate, and identify different forms of the flavonoids
from MACF by effective extraction and analytical techniques.

In addition to conventional techniques, so far, some physical-field-intensifying tech-
niques have been used for the improvement of the extraction of flavonoid glucosides from
natural medicinal plants [23–25]. According to previous reports [26–28], ultrasonic-assisted
extraction (UAE), a physical-field-intensifying technique, can significantly increase ex-
traction yields and shorten extraction time, mainly due to the ultrasonic cavitation effect,
which favors cell disruption, enhancing the mass-transfer process [26–29]. However, the
efficiency of extraction and purity strongly depend on the extractant system including
solvent property and composition, which result in diverse extraction options or modes
(e.g., monophase, multiphase, and phase-transition extraction) and various combination
techniques. In recent years, aqueous two-phase extraction (ATPE), supercritical fluid ex-
traction (SFE), and cloud point extraction (CPE) have combined with UAE or MAE for the
extraction and purification of the bioactive ingredients of natural products, which improved
the extraction efficiency [30–32]. With the use of an aqueous two-phase system (ATPS)
consisting of non-toxic phase-forming components and water as green extractants, ATPE as
an efficient approach has attracted increasing attention in the separation and purification of
nature products. Unlike conventional liquid–liquid extraction with a monophasic solvent,
ATPE allows the target compounds and the undesired impurities enriched into the top
and/or bottom phase, respectively [33,34]. This process allows extraction, concentration,
and purification in just one step, and its scale-up is easy and reliable for industrial applica-
tions [35]. Accordingly, a tentative method named ultrasonic-assisted aqueous two-phase
extraction (UAATPE) tries to combine the advantages of ATPE and UAE and integrate the
isolation, purification, and enrichment in a one-step procedure [26,36–38].

This study aimed for the development of a novel UAATPE method for the extraction,
separation, and purification of flavonoid glycosides from MACF, followed by ultrasonic-
assisted acid hydrolysis (UAAH) to obtain their aglycones. Considering the wider region
and the easy formation of ATPS, the ethanol/ammonia sulfate system was selected as
extractant to improve the extraction of flavonoid glucosides from MACF under ultrasonic
field. For this purpose, the crucial parameters, including the ATPS composition, extraction
temperature, extraction time, ultrasonic power, and solvent-to-solid ratio in the UAATPE
process, were investigated and optimized by single-factor experiments coupled with re-
sponse surface methodology (RSM). Subsequently, acidity, temperature, and time in the
UAAH process was systematically investigated by complete deglycosylation. By means
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of ultra-high-performance liquid chromatography-quadrupole-time-of-flight mass spec-
trometry (UHPLC-Q-TOF-MS/MS), the flavonoid glycosides and aglycones were further
identified. Furthermore, the in vitro antioxidant activities of the above products were com-
prehensively evaluated by antioxidant activity assays including ferric-reducing antioxidant
power and scavenging DPPH, hydroxyl, and superoxide radicals to probe into the influence
of their chemical structure. The findings may offer a new approach for the development of
potential antioxidants in food and pharmaceutical applications. The developed strategy for
the extraction and hydrolysis of flavonoid glycosides from MACF by UAATPE and UAAH
is shown in Figure 1.
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Figure 1. Extraction and hydrolysis process of flavonoid glycosides from Malvaviscus arboreous Cav.
flower by ultrasonic enhancement.

2. Materials and Methods
2.1. Materials and Chemicals

Malvaviscus arboreous Cav. flower (MACF) was collected in March 2021 from plants
cultivated in the medicinal botanical garden of Guangdong Pharmaceutical University,
Guangdong, China. After hot air drying, samples were powdered and passed through an
80-mesh sieve then stored in a brown desiccator at room temperature (see Figure S1).

Standards of cyanidin, pelargonidin, quercetin, kaempferol, and rutin (purity ≥ 98.0%)
were purchased from Shanghai Yuanye Bio-Technology Co., Ltd. (Shanghai, China). Ace-
tonitrile, methanol, and formic acid (HPLC grade) were bought from Merck Ltd. (Darm-
stadt, Germany). All other chemicals and reagents (analytical grade) used in the study were
purchased from Guangzhou Chemical Reagent Factory (Guangzhou, China). Ultrapure
water was purified by a Milli-Q integral water purification system from Millipore Co., Ltd.
(Billerica, MA, USA).

2.2. Instrumentation

All extraction and hydrolysis experiments were accomplished on an Ultrasonic cleaner
KQ-200VDE equipped with a temperature, time, and power controller (Kunshan Ultrasonic
Instrument Co., Ltd., Kunshan, China). UV–Vis analysis of total flavonoids was performed
on a 2550 UV–Vis spectrophotometer (Shimadzu Co., Ltd., Kyoto, Japan). HPLC analysis of
flavonoids was completed on a Thermofisher Scientific UltiMate 3000 system equipped with
a DAD detector (Thermo Fisher Scientific Co., Ltd., Waltham, MA, USA). The identification
of flavonoids was performed on an Agilent 1290/6540 UHPLC-Q-TOF-MS/MS system
equipped with an electrospray ionization (ESI) source and a tandem DAD detector (Agilent
Technologies Co., Ltd., Palo Alto, CA, USA). A Hitachi CF 16RXII centrifuge (Hitachi Co.,
Ltd. Tokyo, Japan), Multi Reax vortex mixer (Heidolph Co., Ltd., Schwabach, Germany),
Buchi Rotavapor R-110 rotary evaporator (Buchi Co., Ltd., Flawil, Switzerland), ThermoFlex
900 Recirculating Chiller (Thermo Fisher Scientific Co., Ltd., Waltham, MA, USA), and
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Olympus CX41RF polarizing microscope (Olympus Co., Ltd. Tokyo, Japan) were also
employed in the experiments.

2.3. UAATPE Procedure
2.3.1. Single-Factor Experiments

According to the phase diagram [39], an ATPS was prepared by controlling the mass
fraction of (NH4)2SO4, ethanol, and water for UAATPE. After shaking with a vortex stirrer,
two-phase separation spontaneously occurred to form an ATPS system. Accordingly, 0.5 g
of the MACF sample was mixed with 35 mL of the ATPS containing 27% ethanol (w/w)
and 18% ammonium sulfate (w/w) in a tube. After sealing the tube was placed in an
ultrasonic bath for 30 min at 70% power (full power 220 W), 20 kHz, and 75 ◦C. Then,
the mixture was centrifuged at 4000 rpm for 5 min. The top phase was collected by a
syringe, and the bottom phase was filtered under reduced pressure to remove sample
residue. The obtained extracts were filtered through a 0.22 µm membrane for UV–Vis and
UHPLC-Q-TOF-MS/MS analysis.

2.3.2. RSM Experimental Design

The extraction yield of flavonoid glycosides was affected by numerous factors in
the UAATPE process, and the interaction between several factors was inevitably ignored
due to the limitations of single-factor experiments [40,41]. It was necessary to further
optimize the main factors for the maximum yield of flavonoid glycosides. Based on results
of single-factor experiments, (NH4)2SO4 concentration (X1, 17–19%, w/w), extraction
temperature (X2, 60–80 ◦C), ultrasonic power (X3, 60–80% power), and solvent-to-solid
ratio (X4, 60:1–80:1, mL/g) were selected as the independent variables. RSM with Box–
Behnken design (BBD) was employed for the optimization of the UAATPE process. A
29-run project of four variables and three levels (1, 0, and −1) are listed in Table S1, wherein
the randomized experimental results were included. For the regression analysis for the
response, a second-order polynomial model was applied to fit the experimental data using
Design Expert software 12.0.3.0 (Stat-Ease Co., Ltd., Minneapolis, MN, USA), and the model
was expressed by the following equation:

Y = β0 +
4

∑
i=1

βiXi +
4

∑
i=1

βiiX2
i +

4

∑
i=1

4

∑
j=i+1

βijXiXj

where Y is a response variable (i.e., yield of flavonoids); β0 is intercept, βi, βii, and βij
are coefficients of the linear, quadratic, and interaction term, respectively; Xi and Xj are
independent variables.

2.4. UAAH Process

Flavonoid glycosides in the top phase extract were hydrolyzed by UAAH accord-
ing to the following procedure. After accurately adding 1.0 mL of the extract from the
top phase in 5.0 mL of HCl ethanol solution (2.4 mol/L), UAAH hydrolysis was per-
formed for 50 min at 80 ◦C. The hydrolyzed solution was concentrated to complete dry-
ness with a rotary evaporator at 60 ◦C, then redissolved in 10 mL of anhydrous ethanol.
The hydrolysate was filtered through a 0.22 µm for HPLC and UHPLC-Q-TOF-MS/MS
analysis. Pelargonidin and kaempferol in the hydrolysate were selected as the main con-
stituents to evaluate the UAAH process. In the range of 0.05–50.00 (µg/mL), the linear
equations between the peak area (A) and content (c, µg/mL) were A = 0.1354c + 0.0486
(R2 = 0.9999) and A = 0.3830c + 0.2472 (R2 = 0.9999) for the quantification of pelargonidin
and kaempferol, respectively.
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2.5. Flavonoids Analysis
2.5.1. Total Flavonoid Content Analysis

The content of total flavonoids extracted by UAATPE was determined by the spec-
trophotometric method with some modifications [42]. Briefly, 1 mL of the extract, 4 mL of
anhydrous ethanol, and 1 mL of 5% NaNO2 solution (w/v) were mixed for 6 min, and then
1 mL of 10% Al(NO3)3 solution (w/v) was blended with the mixture. After 6 min, 10 mL of
10% NaOH solution (w/v) was added, diluted to 25 mL with anhydrous ethanol, and then
mixed well. The solution was maintained at room temperature for 10 min, and then its
absorbance (A) was measured at 510 nm on the UV–Vis spectrophotometer. The calibration
curve for the quantification of total flavonoids was established from the standard solutions
of rutin: A = 11.845c + 0.00183 (R2 = 0.9999) in the range of 0–50.00 µg/mL.

2.5.2. UHPLC-Q-TOF-MS/MS Identification of Flavonoids

The flavonoids composition in the extract and the hydrolysate was analyzed by
UHPLC-Q-TOF-MS/MS coupled with DAD detection according to the following con-
ditions. Chromatographic separation was performed at 30 ◦C on a Welch Ultimate AQ-C18
column (2.1 mm × 150 mm, 3.0 µm) using acetonitrile (A) and 0.1% formic acid aqueous
solution (v/v) (B) as the mobile phase. The injection volume was 1 µL, and the flow rate
was 0.3 mL/min. The flavonoids and anthocyanins were detected at 280 nm, 353 nm, and
508 nm, respectively. Analysis of flavonoid glycosides in the extract was conducted in
the following gradient elution: 0–10 min, 90% B; 10–40 min, 80% B; 40–45 min, 80% B.
For analysis of aglycones in the hydrolysate, the gradient elution of the mobile phase was
slightly modified as follows: 0–10 min, 90% B; 10–30 min, 30% B; 30–35 min, 30% B.

The identification of flavonoids was carried out by Q-TOF-MS/MS in positive ion
mode (ESI+) according to the following conditions: capillary voltage, 3.5 kV; nebulizer,
35 psi; flow rate of drying gas (N2), 8 L/min; drying gas temperature, 300 ◦C; Skimmer,
65 V; Oct 1RF Vpp, 750 V; fragmentator, 140 V; and collision energy, 15–40 V. The mass
scanning of ions was ranged in m/z from 100 to 3000. The operation monitoring and
data processing were completed by an Agilent MassHunter Workstation (Version B.07.00,
Agilent Technologies Co. Ltd., Palo Alto, USA).

2.5.3. HPLC Analysis of Flavonoid Glycosides and Aglycones

The HPLC-DAD analyses were performed on a Shimadzu WondaSil C18 Superb
column (4.6 mm × 250 mm, 5 µm; Shimadzu Co., Ltd., Fukushima, Japan) for the separation
of the flavonoid glucoside and the flavonoid aglycone, respectively. The injection volume,
the flow rate, and the column temperature were set at 10 µL, 1.0 mL/min, and 30 ◦C,
respectively. The detection wavelength for the flavonoids and the anthocyanins was
280 nm, 353 nm, and 508 nm, respectively.

For the flavonoid glycosides in the extract, acetonitrile (A) and 0.5% formic acid
aqueous solution (v/v) (B) were used as the mobile phase and operated according to the
following gradient mode: 0–10 min, 85% B; 10–40 min, 70% B; 40–50 min, 70% B. For the
aglycones in the hydrolysate, the mobile phase, consisting of methanol (A) and 0.5% formic
acid aqueous solution (v/v) (B), was used according to the following gradient elution:
0–10 min, 60% B; 10–12 min, 50% B; 12–20 min, 50% B, 20–35 min, 50% B.

2.6. Antioxidant Activity Assay
2.6.1. Ferric-Reducing Antioxidant Power Assay

The ferric-reducing antioxidant power (FRAP) method based on the ability of a sample
to reduce Fe3+ to Fe2+ is commonly used to evaluate the total antioxidant capacity [43]. The
FRAP of the extract and the hydrolysate were measured by the previous method with some
modification [44]. The FRAP stock solution was prepared in a volume ratio of 10:1:1 with
sodium acetate buffer (0.3 mol/L, pH = 3.6), FeCl3 solution (0.02 mol/L), and 2,4,6-Tris(2-
pyridyl)-s-triazine (TPTZ) solution (0.01 mol/L) prepared by 0.04 mol/L HCl solution,
respectively. The FRAP stock solution should be freshly prepared at 37 ◦C before use. A
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total of 3.0 mL of the sample (0.003–0.030 mg/mL) was mixed with 1.0 mL of the FRAP
solution in a tube, and the mixture was incubated for 30 min at room temperature. The
absorbance of the mixture was measured at 593 nm on the spectrophotometer. With ferrous
sulfate as the standard, the calibration curve was A = 0.0017c + 0.0382 (R2 = 0.9999) in the
range of 25–500 µmol/L for the quantification of Fe2+ for the expression of the antioxidant
capacity of the sample according to Fe2+ equivalents (µmol/L).

2.6.2. DPPH Free Radical Scavenging Capacity

The DPPH free radical scavenging activity of the samples was measured according
to the reported method, with a minor modification [45,46]. Briefly, 2.0 mL of the sample
(0.01–0.020 mg/mL) was mixed with 2.0 mL of DPPH solution (0.1 mmol/L) in a tube. The
mixture was well shaken and then incubated in a water bath for 30 min at 37 ◦C in the dark.
The absorbance of the mixture was measured at 517 nm against a blank, and vitamin C (Vc)
was used as positive control.

2.6.3. Hydroxyl Radical Scavenging Capacity

The evaluation of the scavenging capacity of the hydroxyl radical was based on the
reported procedure, with some modification [45,46]. A total of 3.0 mL of the sample
(0.01–0.10 mg/mL) were mixed with 1.0 mL of ferrous sulfate solution (6 mmol/L) in
a tube, and then 1.0 mL of H2O2 (2 mmol/L) and 1.0 mL of salicylic acid-ethanol solu-
tion (6 mmol/L) were added quickly. The mixture was incubated for 30 min in a water
bath at 37 ◦C, and the absorbance was measured at 510 nm. Similarly, Vc was used as
positive control.

2.6.4. Superoxide Anion Radical Scavenging Capacity

According to the procedure reported [46], 0.2 mL of the sample (0.05–0.30 mg/mL)
was added to 5.0 mL of Tris–HCl buffer solution (0.05 mol/L, pH = 8.2), and mixed well.
The mixture was incubated in a water bath for 20 min at 37 ◦C. Subsequently, 0.2 mL of
pre-heated pyrogallic acid solution (5 mmol/L) was added in the mixture to react at 37 ◦C
for 10 min, and then 1.0 mL of 6 mol/L HCl solution was added to quench the reaction.
The absorbance of the solution was rapidly measured at 320 nm against a blank, and Vc
was used as the positive control.

The following equation was used to calculate the scavenging activity of the above radicals:

Scavenging activity(%) =

[
1 −

ASamples − AControl

ABlank

]
× 100%

2.7. Statistical Analyses

All data were statistically analyzed by SPSS 20.0 software (International Business
Machines Co. Ltd., Armonk, New York, NY, USA) and expressed as mean ± SD values. One-
way analysis of variance (ANOVA) and two-way ANOVA were used to test the significance
of the differences between single and double variables. The statistical difference was
evaluated by a Student’s t-test at significant and very significant levels that were defined as
p < 0.05 and p < 0.01, respectively.

3. Results and Discussion
3.1. Single-Factor Experiments for UAATPE
3.1.1. The Effect of the ATPS Composition

The composition of an ATPS is the crucial factor to dramatically affect the extraction
performance and biphasic distribution of target compounds. Thus, the flavonoids in MACF
can be selectively extracted to one of two phases by adjusting the concentration of phase-
forming components, and the extraction efficiency of the flavonoids was highly enhanced
under an ultrasonic field [25]. Accordingly, a series of ATPSs were prepared according
to the phase diagram [39], and the effects of the ATPS composition were investigated by
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controlling ethanol concentration (25–30%, w/w) and (NH4)2SO4 concentration (16–20%,
w/w). Other parameters were as follows: ultrasonic power of 70%, extraction time of 30 min,
extraction temperature of 70 ◦C, and liquid-to-material ratio of 60:1 mL/g, respectively.

Figure 2a illustrated that the extraction yields of the flavonoids in both phases were
enhanced with the increase of (NH4)2SO4 concentration and achieved a relatively high level
(p < 0.05) in the range of 17–19% (w/w). However, the extraction yields decreased while at
more than 19% (w/w). The results also showed that the yield of the top phase was higher
than that of the bottom phase, meaning that the flavonoids in MACF were more easily
extracted into the ethanol-rich phase. Moreover, as shown in Figure 2b, the flavonoids in
the top phase achieved higher yields while at the concentration of ethanol in the range of
26–30% (w/w). On the contrary, the yield of the bottom phase gradually decreased with the
increase of ethanol concentration in the range. Comprehensively considering the results, an
18% (NH4)2SO4 concentration (w/w) and a 27% ethanol concentration (w/w) were chosen
for the subsequent experiments.
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Figure 2. The effects of the concentration of (NH4)2SO4 (a) and ethanol (b), extraction temperature
(c), extraction time (d), ultrasonic power (e), and solvent-to-solid ratio (f) on the extraction yields of
flavonoid glucosides in MACF. ** Very significant (p < 0.01); * significant (p < 0.05); # not significant
(p > 0.05).

3.1.2. The Effect of Extraction Temperature and Time

In the UAATPE process, extraction temperature and extraction time are key factors to
improve extraction efficiency, due to thermal and cavitation effects produced by ultrasonic
waves. The effects of extraction temperature (40–80 ◦C) and extraction time (10–50 min)
on the yields of flavonoid glucosides were investigated with the ATPS of 18% (NH4)2SO4
concentration (w/w) and 27% ethanol concentration (w/w), while ultrasonic power and the
solvent-to-solid ratio were fixed at 70% and 60:1 mL/g, respectively.

The results from Figure 2c showed that the extraction yields for the top phase were
remarkably increased (p < 0.05) with the increase of extraction temperature up to 70 ◦C.
The extraction yield for the bottom phase did not significantly improve at 40–80 ◦C. Also,
the extraction yields for the top phase increased with the increase of extraction time until
achieving the stable value, but the extraction yield for the bottom phase decreased. Overall,
UAATPE of the flavonoids took 30 min at 80 ◦C to achieve a higher yield in the top phase.
Therefore, 80 ◦C and 30 min was chosen for further experiments.

3.1.3. The Effect of Ultrasonic Power and Solvent-to-Solid Ratio

Ultrasonic power and the solvent-to-solid ratio are directly related to the process-
ing capacity of the instrument and the extractant. Thus, the effects of ultrasonic power
and solvent-to-solid ratio on the extraction yields of the flavonoids were investigated,
and the corresponding experiments were arranged in the range of 40–80% power and
40:1–80:1 mL/g, respectively. Other parameters were kept at the above-determined values.

The extraction yield of the top phase had a small increase with the increase of ultrasonic
power and reached its maximum value at 70% (p < 0.05). Relatively, the extraction yield for
the bottom phase did not change significantly (p > 0.05) [Figure 2e]. However, changing
the solid–liquid ratio impacted sharply the extraction yields for both phases [Figure 2f].
Thus, ultrasonic power of 70% and a solid–liquid ratio of 70:1 mL/g were suitable for the
extraction of the flavonoids in MACF.

In summary, the UAATPE optimum conditions were finally selected as follows: 18%
(NH4)2SO4 concentration (w/w), 27% ethanol concentration (w/w), 80 ◦C extraction tem-
perature, 30 min of extraction time, 70% ultrasonic power, and a 70:1 mL/g solvent-to-
solid ratio.



Antioxidants 2022, 11, 2039 9 of 22

3.2. RSM Optimization of UAATPE Process

According to the results of the single-factor experiments, the flavonoids in MACF could
be extracted and enriched to the top phase by UAATPE. However, the interactional relations
between some factors were needed for further improvement and verification. By means of
statistical analysis, (NH4)2SO4 concentration (p < 0.05), extraction temperature (p < 0.05),
ultrasonic power (p < 0.05), and solvent-to-solid ratio (p < 0.05) have significant effects
on the extraction yield. According to the principle, these four factors would essentially
affect extraction performance, the mass-transfer efficiency, ultrasonic action, and extraction
capacity, respectively. Thus, they were confirmed as critical influencing factors for RSM
optimization. Table S1 listed the UV–Vis analytical results of 29-run experiments, and these
data were further processed by model fitting and statistical analysis to achieve the best
combination of UAE and ATPE.

3.2.1. Model Fitting and Statistical Analysis

The regression model fitting was completed by processing data with Design-Expert
software 12.0.3 (Stat-Ease Co., Ltd., Minneapolis, USA). A second-order polynomial model
was suggested to correlate the relationship of each independent variable to the response
for modeling the UAATPE process, and estimated by ANOVA (See Table 1). The model of
the extraction yields of flavonoids (Y) was expressed as follows:

Y (mg/g) = 36.67 + 0.7775X1 + 2.38X2 + 1.96X3 + 0.9633X4 + 0.1075X1X2 + 1.24X1X3 + 0.3825X1X4 + 0.3625X2X3
+ 0.6575X2X4 + 1.85X3X4 − 3.25X1

2 − 3.90X2
2 − 4.00X3

2 − 3.13X4
2.

Table 1. ANOVA of response surface model: (NH4)2SO4 concentration (X1); extraction temperature
(X2); ultrasonic power (X3), and solvent-to-solid ratio (X4).

Source Sum of
Squares df Mean Square F-Value p-Value Note

Model 371.18 14 26.51 201.54 <0.0001 ** significant
X1 7.25 1 7.25 55.14 <0.0001 **
X2 68.21 1 68.21 518.51 <0.0001 **
X3 46.18 1 46.18 351.02 <0.0001 **
X4 11.14 1 11.14 84.65 <0.0001 **

X1X2 0.0462 1 0.0462 0.3514 0.5628
X1X3 6.13 1 6.13 46.56 <0.0001 **
X1X4 0.5852 1 0.5852 4.45 0.0534
X2X3 0.5256 1 0.5256 4.00 0.0654
X2X4 1.73 1 1.73 13.14 0.0028 **
X3X4 13.69 1 13.69 104.07 <0.0001 **
X1

2 68.50 1 68.50 520.70 <0.0001 **
X2

2 98.64 1 98.64 749.84 <0.0001 **
X3

2 103.83 1 103.83 789.28 <0.0001 **
X4

2 63.58 1 63.58 483.34 <0.0001 **
Residual 1.84 14 0.1316

Lack of fit 0.9932 10 0.0993 0.4682 0.8493 Not significant
Pure error 0.8485 4 0.2121
Cor total 373.03 28

R2 0.9951 Adjusted R2 0.9901
Predicted R2 0.9811 CV% 1.18

** Very significant (p < 0.01).

As shown in Table 1, the higher determination coefficients (R2 = 0.9951, adjusted
R2 = 0.9901, and predicted R2 = 0.9811) of the model showed the model had an excellent
fitting degree to the experimental data. A p-value of 0.8493 implied that the lack of fit
was not significant. Moreover, X1, X2, X3, X4, X1

2, X2
2, X3

2, and X4
2 were all significant

with smaller p-values (p < 0.05), and X1X3, X2X4, and X3X4 had significant impact on the
yield of flavonoids, proving remarkable interaction influence. The lower CV value (1.18%)
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indicated the greater reliability of the experiments. All of the results demonstrated that the
model was successful and suitable to predict the extraction yields of flavonoids.

3.2.2. Response Surface Analysis

Figure 3 depicted the 3D response surface for the visualization of the interaction of
independent variables on the response, while other independent variables were set at the
0 level. From Figure 3a–f, each 3-D response surface displayed an upper convex shape with
a top point, demonstrating that the experimental design was reasonable. Even though there
were a little difference between each pair of independent variables, the predicted top points
of each 3D were in the range of 36.79 to 37.23 mg/g, while the corresponding variables
were at 18.17–18.13% (NH4)2SO4 concentration (w/w), a 73.07–73.23 ◦C extraction temper-
ature, 72.68–73.02% ultrasonic power, and a 71.62:1–72.43:1 mL/g solvent-to-solid ratio,
respectively. According to the model prediction, the optimized parameters were finally
determined as follows: a (NH4)2SO4 concentration of 18.25% (w/w), an extraction tempera-
ture of 74.11 ◦C, ultrasonic power of 73.70%, and a solvent-to-solid ratio of 72.97:1 mL/g
the predicted optimum yields of the flavonoids in the top phase was 37.66 mg/g.
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3.2.3. Model Validation

The experiments were performed to validate the applicability of the developed model.
For the convenience of practical operation, the experimental conditions were adjusted,
(NH4)2SO4 concentration, extraction temperature, ultrasonic power, and solvent-to-solid
ratio to 18% (w/w), 75 ◦C, 70%, and 75:1 mL/g, respectively. The experimental results in
triplicate and the predicted values are listed in Table 2. The extraction yield of flavonoids
was 35.88 ± 1.07 mg/g, which agreed with the predicted value. The relative deviation
(RD) was −4.73% between the experimental and the predicted value, which indicated that
the model was reliable in predicting the yield of flavonoids extracted from MACF in the
UAATPE process.
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Table 2. The predicted and experimental results of the extraction yield for flavonoids under opti-
mum conditions.

Results
Predicted Variables Extraction Yield (n = 3)

X1
(%, w/w)

X2
(◦C)

X3
(%)

X4
(mL/g)

Content
(mg/g)

RSD
(%)

RD **
(%)

Predicted 18.25 74.11 73.70 72.97 37.66 - -
Experimental 18.00 75.00 70.00 75.00 35.88 ± 1.07 * 3.00 −4.73

* Mean of triplicate determination. ** RD: relative deviation of the experimental value and the predicted value.

3.3. Comparison with Other Extraction Methods

In order to assess the UAATPE method, microwave-assisted aqueous two-phase
extraction (MAATPE) and heat-assisted extraction (HAE) were utilized in a comparative
study. The flavonoids in MACF were extracted by UAATPE, HAE, and MAATPE, with
the ATPS of ethanol/(NH4)2SO4 system as extractant. To accommodate other methods,
a comparative experiment was performed at 50 and 80 ◦C, respectively. The flavonoids
extracted from MACF were determined by UV–Vis analysis, and the results obtained were
listed in Table 3. All results showed that the most flavonoids in MACF were concentrated
in the top phase, exhibiting that the extraction selectivity of the ATPS. Compared with
HAE and MAATPE, UAATPE had a much higher extraction yield except for that of the
bottom phase. MAATPE, as a field-intensifying technique, improved the extraction yield
only at 80 ◦C (p < 0.05) but did not show microwave action at a relatively low temperature
of 50 ◦C. UAATPE can achieve a relatively higher yield even at lower temperature. HAE
took 120 min to approach or reach the extraction yield of UAATPE (p < 0.05). From the
content distribution in the two phases, the UAATPE method enriched more flavonoids in
the top phase and reached an extraction yield of 35.77 ± 0.98 mg/g. By virtue of statistical
analysis, three methods exhibited significant difference (p < 0.05), indicating that the ATPS
of ethanol/(NH4)2SO4 as the biphasic extractant achieved the selective extraction of the
flavonoids from MACF while integrating UAE. Meanwhile, water-soluble impurities were
retained in the bottom phase of the APTS, improving the purity of the flavonoids. Thus,
the UAATPE method was proved to be most efficient for the extraction and enrichment of
the flavonoids from MACF.

Table 3. Comparison of the extraction yield of flavonoids from MACF by different methods via
UV–Vis analysis.

Method Volume (mL)
Extraction

Temperature (◦C)
Extraction Time

(min)

Extraction Yield (mg/g) (n = 3)

Top Phase Bottom Phase

UAATPE 35 50 30 33.37 ± 0.77 6.23 ± 1.60
35 80 30 35.77 ± 0.98 3.89 ± 0.08
35 80 10 25.14 ± 1.20 2.82 ± 0.04

MAATPE 35 50 30 17.51 ± 1.18 8.87 ± 1.04
35 80 30 31.46 ± 1.32 4.66 ± 0.28
35 80 10 20.63 ± 0.22 3.40 ± 0.11

HAE 35 50 30 16.05 ± 0.42 7.18 ± 1.01
35 80 30 22.36 ± 0.27 2.92 ± 0.16
35 80 120 32.59 ± 1.31 4.64 ± 0.33

3.4. Exploration of UAATPE Mechanism

The mechanism of the UAATPE process was explored and discussed by extraction
medium and sample microstructure. For this purpose, water, ethanol, and a water–ethanol
mixture were used to replace the ATPS for the extraction of the flavonoids from MACF,
according to the conditions described in the Section 2.3.1, in order to understand the
influence of monophasic and biphasic extraction. Then, UAE, MAE, and HAE were utilized
to study the influence of the external physical field on the extraction process at moderate
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temperature. Finally, the appearance features of the samples treated by three methods
were observed with a polarized light microscope (PLM), which further explained the
process mechanism.

As expected, the ATPS provided the highest yield among several extractants under
ultrasonic field, implying that the biphasic performance of the ATPS was more effective
than the mono-phase system even with same ethanol and water (Figure 4a). This is because
the ethanol-rich top phase matched the flavonoids in MACF with high partition coefficients
and the salt-rich bottom phase left water-soluble impurities with higher polarity. Unlike
the mono-phase process, the formation of a multiphase would easily break the chemical
equilibria in the extraction of target compounds from cell tissue and enhance the mass-
transfer from one phase to another. Finally, the flavonoids were concentrated in the
ethanol-rich phase. The actual picture in Figure 4b showed the sample powder was located
in the middle of the APTS, facilitating mass-transfer among multiple phases.
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Figure 4. (a,b) The effects of different extractants and extraction methods on the extraction yield at
50 ◦C and 30 min. ** Very significant (p < 0.01); # not significant (p > 0.05).

In addition, UAE was particularly excellent, while the MAE and HAE methods de-
pended on the heat energy caused by the thermal effect and external source, respectively.
The cavitation effect from ultrasound continuously generated a large number of microbub-
bles oscillating violently, resulting in vigorous stirring and a high-speed microjet. The
liquid in these areas will be torn into many small holes, which will expand and close rapidly,
causing a violent impact on sample particles and cell disruption. As a result, not only target
compounds inside cell tissue were rapidly released, but also diffusion and osmosis in the
extraction system was greatly accelerated.

Figure 5 provided further evidence of the surface microstructure of extracted MACF
powder, revealing how the UAE was different from MAE and HAE. As shown in Figure 5b,
compared to the untreated sample, the cell tissue of the samples treated by HAE was
broken but mostly aggregated into lumps. However, pollen grains, non-glandular hairs,
and secretory cells remained relatively intact. From Figure 5c, the pollen grains and
secretory cells of the samples treated by MAE were mostly broken, which meant that the
degree of cell breakage was more sufficient. Figure 5d indicated that, in addition to cell
rupture similar to MAE, the tissue after UAE treatment did not aggregate into obvious
lumps, and the pollen grains, non-glandular hairs, and secretory cells were destroyed. This
meant that ultrasound had a stronger impact than microwave, and the target compounds
in the cell tissue were fully extracted by UAE. The finding was different from Rhizome
Herbs [24,39], who found it easier to rupture cell walls under a microwave field than in
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flower and bulb samples, revealing that different cellular tissues or matrices led to diverse
changes in cell structure under a physical field.
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Figure 5. The polarizing microscope photographs for the cell surface structure of the samples
(10 × eyepiece, 4 × objective lens, 40 × original magnification): untreated (a) and treated at 50 ◦C
and 30 min by HAE (b), MAE (c), and UAE (d) with the ATPS of the ethanol-(NH4)2SO4 system as
extraction solvents.

3.5. UHPLC-Q-TOF-MS/MS Identification of the Flavonoids

UHPLC-Q-TOF-MS/MS, high-resolution mass spectrometry (HRMS), has been widely
applied in the qualitative analysis of bioactive constituents in natural products because it
can provide the precise molecular weight of compounds. Based on MS/MS data obtained
by HRMS, the chemical composition and structure information of the compounds can be
inferred and identified. The UHPLC-Q-TOF-MS/MS system was employed for the identi-
fication of the flavonoids in the UAATPE extract and HAAH hydrolysate. Owing to the
weaker signals in negative ion mode, some polyphenolic compounds such as anthocyanins
failed to detect the useful fragment ions. Thus, mass fragmentation patterns were further
studied by positive ion mode, recording HRMS data with Agilent LC/MS Mass Hunter
acquisition software. With the help of a tandem DAD detector, the spectral characteristics
acquired at 280, 353, and 508 nm were used for the target checking and precise tracking of
different flavonoids. The results analyzed by UHPLC-Q-TOF-MS/MS are listed in Table 4,
and related chromatograms of the extract and its hydrolyzed are shown in Figure 6a–d.
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Table 4. The results of the flavonoids glycosides and the aglycones in MACF identified by UHPLC-Q-
TOF-MS/MS.

Sample Peak No. tR
(min)

Molecular
Formula

Calculated
[M + H]+

Determined
[M + H]+

Error
(ppm)

MS/MS
Fragments Compound Reference

The extract
(flavonoid
glycosides)

1 4.477 C21H25O11 453.1392 453.1391 −0.2227

291.0864,
273.0758,
139.0390,
127.0390

Catechin-7-O-
glucoside [47,48]

2 8.313 C27H31O16 611.1607 611.1608 0.1636 449.1079,
287.0551

Cyanidin-3,5-
diglucoside [49,50]

3 12.054 C27H31O15 595.1658 595.1664 1.0081 433.1126,
271.0601

Pelargonidin-3-
O-sophoroside [49,50]

4 15.907 C21H21O10 433.1130 433.1126 −0.9235 271.0604,
215.0704

Pelargonidin-3-
O-glucoside [49,50]

5 17.817 C26H29O14 565.1557 565.1554 −0.5308
433.1132,
271.0596,
121.0285

Pelargonidin-3-
O-sambubioside [49,50]

6 22.027 C27H30O17 627.1556 627.1558 0.3189 465.1028,
303.0501

Quercetin-3-O-
gentiobioside [51]

7 25.880 C34H43O19 757.2186 757.2191 0.6603
595.1666,
449.1085
287.0553

Kaempferol-3-O-
robinoside-7-O-

glucoside
[52,53]

8 26.009 C26H28O16 597.1451 597.1461 1.6746 465.1039,
303.0502

Quercetin-3-O-
arabinoglucoside [51]

9 27.036 C27H30O16 611.1607 611.1613 0.9817 449.1083,
287.0555

Kaempferol-3-O-
sophoroside [52,53]

10 31.788 C26H28O15 581.1505 581.1505 0.0000 449.1083,
287.0555

Kaempferol-3-O-
sambubioside [52,53]

11 36.925 C21H20O11 449.1079 449.1080 0.2227 287.0553,
153.0183

Kaempferol-3-O-
glucoside [52,53]

The hy-
drolysate

(aglycones)

1 17.046 C15H11O6 287.0550 287.0549 0.3484

241.0496,
213.0547,
137.0234,
121.0285

Cyanidin [52,53]

2 18.218 C15H11O5 271.0601 271.0603 0.7378 215.0703,
121.0285 Pelargonidin [52,53]

3 23.662 C15H11O7 303.0500 303.0495 2.6398 153.0183,
121.0390 Quercetin [51]

4 26.393 C26H29O14 287.0551 287.0553 0.6967

269.0441,
213.0556,
153.0183,
121.0292

Kaempferol [52,53]
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Figure 6. The chromatograms of the UAATPE extract [DAD detection (a) and total ion current (b)] 
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UHPLC-Q-TOF-MS/MS with tandem DAD detector. 
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the loss of glucose (162 Da) and the C-ring cleavage [47,48]. The compound of peak 2 
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the product ions of m/z 449.1075 and m/z 287.0544 by the loss of two molecules of glu-
cose (162 Da), respectively [49]. After deglycosylation in the A and C rings, the com-
pounds of peak 3–5 exhibited similar fragmentation pathways due to the identical par-
ent nucleus of pelargonidin (m/z 271.0604) [49,50]. Similarly, the other compounds were 
identified by the parent nuclei of quercetin and kaempferol [51–53]. In order to further 
confirm the structures, the flavonoid aglycones were qualitatively detected by 
UHPLC-Q-TOF-MS/MS coupled with DAD detection after the deglycosylation of flavo-
noid glycosides. From Figure 6c,d, there were four aglycones, namely cyanidin, pelargo-
nidin, quercetin, and kaempferol, as confirmed by injecting the corresponding standards 
(Figures S8 and S9 displayed the extracted ion chromatograms and the fragmentation 
pathways of four aglycones). Although many possible structures have been reported, 
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Figure 6. The chromatograms of the UAATPE extract [DAD detection (a) and total ion current (b)]
and the UAAH hydrolysate [DAD detection (c) and total ion current (d)] obtained by UHPLC-Q-
TOF-MS/MS with tandem DAD detector.

As shown in Table 4 and Figure 6a, b, 11 flavonoid glycosides were identified by
matching DAD and MS/MS features with those available in literature [47–53]. Mainly
catechin (m/z 291.0869), cyanidin (m/z 287.0551), pelargonidin (m/z 271.0601), quercetin
(m/z 303.0505), and kaempferol (m/z 287.0556) with various types and amounts of sugars
were revealed (Figure S2). Figures S3–S7 illustrated the fragmentation patterns of 11 gly-
cosylated flavonoids in the extract, and possible positions of different sugar groups on
the rings were tentatively determined based on the literature [47–53]. For example, the
compound of peak 1 was identified as catechin-7-O-glucoside by the parent ion at m/z
453.1391 and fragment ions at m/z 291.0865 and m/z 139.0390, which were produced by
the loss of glucose (162 Da) and the C-ring cleavage [47,48]. The compound of peak 2
appeared at the parent ion at m/z 611.1608 of cyanidin-3,5-diglucoside, which produced
the product ions of m/z 449.1075 and m/z 287.0544 by the loss of two molecules of glucose
(162 Da), respectively [49]. After deglycosylation in the A and C rings, the compounds of
peak 3–5 exhibited similar fragmentation pathways due to the identical parent nucleus
of pelargonidin (m/z 271.0604) [49,50]. Similarly, the other compounds were identified
by the parent nuclei of quercetin and kaempferol [51–53]. In order to further confirm the
structures, the flavonoid aglycones were qualitatively detected by UHPLC-Q-TOF-MS/MS
coupled with DAD detection after the deglycosylation of flavonoid glycosides. From
Figure 6c,d, there were four aglycones, namely cyanidin, pelargonidin, quercetin, and
kaempferol, as confirmed by injecting the corresponding standards (Figures S8 and S9
displayed the extracted ion chromatograms and the fragmentation pathways of four agly-
cones). Although many possible structures have been reported, the accurate determination
of glycosyl position is still a difficult problem, which would be solved by purifying the
flavonoids extracted in further research.

3.6. Optimization of UAAH Process

According to the hydroxylation, glycosylation, unsaturation, and oxidation on the
three rings, the flavonoids in natural products are divided into different subgroups, such
as flavanols, flavanones, flavones, isoflavones, flavonols, and anthocyanidins [17–20].
As shown in Table 4, the flavonoids extracted from MACF by UAAPTE were flavonoid
O-glycosides, of which monosaccharide and disaccharide were commonly linked to an
aglycone. These flavonoid glycosides and their aglycones have multiple pharmacological
effects; however, they have different biological activities and bioavailability due to different
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sites of glycosylation [21–23]. The acid hydrolysis of the flavonoid glycosides extracted by
UAATPE was conducted by UAAH for the further development of the antioxidant activity.
According to the UHPLC-Q-TOF-MS/MS identification, kaempferol and pelargonidin
glycosides were the main constituents in MACF; therefore, they were selected as the target
compounds for HPLC analysis to assess hydrolysis yield. The UAAH conditions, including
hydrolysis temperature, HCl concentration, and ultrasonic time, were investigated for the
full hydrolysis of flavonoid glycosides. Furthermore, water bath heating acid hydrolysis
(WBHAH) was utilized for comparison with the UAAH method.

Figure 7a illustrated the effect of acidity on the hydrolysis yield of the target com-
pounds at 50 ◦C after 10 min of ultrasonic time. The two main constituents showed much
difference to the hydrolysis acidity required. The maximum yield for kaempferol was
reached at 2.4 mol/L HCl concentration and dramatically decreased with increasing acidity
due to the easy decomposition. However, the hydrolysis yield of pelargonidin increased
with the increase of HCl concentration, indicating the higher stability in a highly acidic
environment. Therefore, 2.4 mol/L HCl concentration was only suitable for the hydrolysis
of kaempferol glycosides but leave more space for the further optimization of hydrolysis
temperature and ultrasonic time to achieve complete hydrolysis of pelargonidin glycosides.
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Figure 7. The effects of temperature (a), acidity (b), ultrasonic time (c), and hydrolysis methods (d) on
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From Figure 7b, the hydrolysis yields of pelargonidin and kaempferol increased with
the increase of temperature, while HCl concentration and ultrasonic time were kept at
2.4 mol/L and 10 min. Kaempferol reached the maximum yield and was kept stable at
a 50 ◦C or higher temperature, indicating that kaempferol glycosides achieved complete
hydrolysis. As for pelargonidin, the hydrolysis yield would continue to increase with
increasing temperature. Due to the limitation of the temperature setting of the ultrasonic in-
strument, selecting 80 ◦C was conducive to the complete hydrolysis of the two compounds.

From Figure 7c, ultrasonic time strongly impacted the hydrolysis yield of pelargonidin
at a 2.4 mol/L HCl concentration and an 80 ◦C hydrolysis temperature, while that of
kaempferol stayed relatively stable. Finally, pelargonidin reached the maximum yield with
50 min ultrasonic time (p < 0.05). This was explained by the fact that pelargonidin took a
longer time to achieve complete hydrolysis under relatively low acidity. This fact revealed
that 50 min of ultrasonic time was enough to completely hydrolyze pelargonidin glycosides.
Therefore, under the hydrolysis condition of a 2.4 mol/L HCl concentration, a 80 ◦C
hydrolysis temperature, and 50 min ultrasonic time, both kaempferol and pelargonidin
could maximize the hydrolysis yields.

Figure 7d illustrated the results of WBHAH and UAAH at a 2.4 mol/L HCl concen-
tration and an 80 ◦C hydrolysis temperature. Compared to UAAH, the WBHAH method
took 120 min to completely hydrolyze the flavonoid glycosides. The UAAH method had
higher efficiency and facilitated the hydrolysis of the flavonoid glycosides. The results
indicated that the ultrasonic field could accelerate the deglycosylation reaction. It provided
an efficient alternative to hydrolyze the flavonoids extracted from natural products for
obtaining the aglycones.

Under the optimized UAAH conditions, the flavonoid glycosides in the extract were
completely converted into the corresponding aglycones. Figure 8 illustrated the transfor-
mation process of 11 flavonoid O-glycosides extracted by UAATPE. These flavonoid O-
glycosides were derived respectively from cyanidin, pelargonidin, quercetin, and kaempferol
and further authenticated by UHPLC-Q-TOF-MS/MS with the corresponding standards.
With HPLC for quantification analysis, the contents of cyanidin, pelargonidin, quercetin,
and kaempferol were 3.29 ± 0.24, 15.48 ± 0.69, 0.229 ± 0.01, and 11.82 ± 0.21 mg/g, respec-
tively (See Figure S10). The results also revealed that pelargonidin and kaempferol are the
main components of flavonoids in MACF.
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3.7. Antioxidant Activity of the Flavonoids and Its Hydrolysate

Flavonoids usually exist in multiple forms, such as methylation, glycosylation, and
prenylation, and exhibit diverse biological activities in vivo and in vitro. Among them,
the glycosylation of flavonoids generally leads to the modification of the metabolism
and absorption in vivo [21,22,54]. For the evaluation of antioxidation ability, many redox
models of free radicals were applied for the measurement of antioxidant activity [39–42].
Compared with other models, a DPPH free radical scavenging assay is often used to assess
the antioxidant activity of samples quickly and effectively. Among the free radicals based on
oxygen molecules that are collectively called reactive oxygen species, hydroxyl free radicals
with strong oxidation easily react with the polyunsaturated fatty acids in cell membrane
phospholipids and cause damage to cells. The superoxide anion radical is a relatively
unstable weak oxidant, but it can be converted into a hydroxyl radical and singlet oxygen,
both of which contribute to oxidative stress [1,55]. Accordingly, the assays of scavenging
hydroxyl and superoxide anion free radicals is also used in this study. Considering the
difference in redox properties and the limitations of the assays, the FRAP method was
firstly used to measure the total antioxidant capacity, followed by the measurement of the
scavenging capacity of different free radicals. Therefore, the total reducing power of FRAP
and the scavenging activity of DPPH, hydroxyl, and superoxide anion radicals for the
UAATPE extract and the UAAH hydrolysate were investigated respectively to understand
the antioxidant activity of flavonoids with different structures. For this purpose, the
antioxidant activity assay was accomplished by UV spectrophotometry using a series of
sample solutions (0.001–0.30 mg/mL). The same concentration of the Vc solution was
used as positive control. The experimental results of antioxidant activity assays and half
maximal inhibiting concentration (IC50) are presented in Figure 9 and Table 5.
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As shown in Figure 9a, the UAATPE extract and the UAAH hydrolysate could ef-
fectively reduce ferric ion at lower levels of the flavonoids, suggesting a powerful reduc-
tion power. The total reducing power of the UAAH hydrolysate was relatively higher 
than that of the UAATPE extract (p < 0.05), indicating that the flavonoid aglycones ob-
tained by hydrolysis deglycosylation had reduction ability. From Figure 9b, they could 
scavenge DPPH with the increase of the sample concentration, exhibiting stronger scav-
enging activity, especially the hydrolysate, which was more comparable and even 
stronger than Vc. Similarly, the results in Figure 9c,d showed that the flavonoids in 
MACF had the stronger activity on scavenging hydroxyl and superoxide anion radicals, 
proving again that the antioxidant capacity of the hydrolysate was much higher than that 
of the extract (p < 0.05). Furthermore, the ability of the flavonoid aglycones to scavenge 
free radicals was higher than that of Vc, implying that deglycosylation released more ac-
tive sites to participate in antioxidation. From Table 5, the IC50 value of the hydrolysate 

Figure 9. Antioxidant activities of the extract, the hydrolysate, and Vc in vitro: ferric reducing power
(a); DPPH radical scavenging activity (b); hydroxyl radical scavenging activity (c); superoxide anion
radical scavenging activity (d). ** Very significant (p < 0.01); * significant (p < 0.05); # not significant
(p > 0.05).



Antioxidants 2022, 11, 2039 19 of 22

Table 5. The results of the antioxidant activities of the UAATPE extract, the UAAH hydrolysate, and
vitamin C.

Target
Maximum Scavenging Activity (%) IC50 Value (µg/mL)

Extract Hydrolysate Vitamin C Extract Hydrolysate Vitamin C

Ferric reducing power 98.89 ± 0.01 99.38 ± 0.01 99.36 ± 0.02 6.03 ± 0.41 3.18 ± 0.09 3.74 ± 0.29
DPPH radical 88.64 ± 0.82 99.09 ± 0.82 95.44 ± 0.82 5.20 ± 0.34 0.88 ± 0.07 1.80 ± 0.09

Hydroxyl radical 69.54 ± 2.46 96.33 ± 2.04 84.46 ± 1.57 27.98 ± 0.30 4.39 ± 0.54 15.19 ± 2.08
Superoxide anion radical 79.05 ± 1.94 98.00 ± 1.94 91.68 ± 2.23 141.33 ± 4.81 68.91 ± 0.55 93.70 ± 2.73

As shown in Figure 9a, the UAATPE extract and the UAAH hydrolysate could effec-
tively reduce ferric ion at lower levels of the flavonoids, suggesting a powerful reduction
power. The total reducing power of the UAAH hydrolysate was relatively higher than
that of the UAATPE extract (p < 0.05), indicating that the flavonoid aglycones obtained
by hydrolysis deglycosylation had reduction ability. From Figure 9b, they could scavenge
DPPH with the increase of the sample concentration, exhibiting stronger scavenging ac-
tivity, especially the hydrolysate, which was more comparable and even stronger than
Vc. Similarly, the results in Figure 9c,d showed that the flavonoids in MACF had the
stronger activity on scavenging hydroxyl and superoxide anion radicals, proving again
that the antioxidant capacity of the hydrolysate was much higher than that of the extract
(p < 0.05). Furthermore, the ability of the flavonoid aglycones to scavenge free radicals
was higher than that of Vc, implying that deglycosylation released more active sites to
participate in antioxidation. From Table 5, the IC50 value of the hydrolysate was also higher
than the extract and Vc (p < 0.05), exhibiting that the antioxidant activity of the aglycones
was superior to that of their glycosides and even Vc. These results revealed that different
structure forms of the flavonoids from MACF could behave differently regarding biological
activity. The findings suggested that the flavonoid aglycones from MACF, as antioxidants,
would possess tremendous potential.

4. Conclusions

In this work, a novel UAATPE method integrating UAE with ATPE for the extraction,
separation, and enrichment of the flavonoids from MACF was established by using an
ethanol/(NH4)2SO4 system as the biphasic extractant. Under optimal conditions of ATPE
composition, salt 18% and ethanol 27% (w/w), extraction temperature 75 ◦C, extraction
time 30 min, ultrasonic power 70%, and a solvent-to-material ratio of 70:1, the flavonoid
glucosides selectively extracted to the ethanol-rich top phase and achieved a higher yield.
With contrast research, UAATPE was superior to MAE and HAE. Moreover, the degly-
cosylation of the flavonoid glycosides obtained by UAATPE could be accomplished by
UAAH; the hydrolysis efficiency was higher than conventional heating method. Though
UHPLC-Q-TOF-MS/MS analysis, 11 flavonoid glycosides of the extract and 4 aglycones
were identified from the UAATPE extract and the UAAH hydrolysate, respectively. The re-
sults demonstrated that flavonoids in MACF were derived from parent classes of cyanidin,
pelargonidin, quercetin, and kaempferol, respectively. Among them, the contents of both
pelargonidin and kaempferol were more dominant. Furthermore, antioxidation assays
all showed that the UAATPE extract and the UAAH hydrolysate had strong antioxidant
activity, and the latter is significantly higher than the former and even Vc. The results also
revealed the development potential of flavonoids with a different structure than MACF.
Thus, the ultrasonic field not only intensified the extraction of the flavonoids from MACF
in the biphasic process but also improved deglycosylation of the glycosides from the ex-
tract in the acid hydrolysis process. Furthermore, UAATPE coupled with UAAH for the
extraction and hydrolysis of the flavonoids from MACF provided a valuable strategy for
the development and production of potential antioxidants from natural plants.
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