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Abstract
This study aims at characterizing the asymptotic behavior of genomic prediction R2 as the

size of the reference population increases for common or rare QTL alleles through simula-

tions. Haplotypes derived from whole-genome sequence of 85 Caucasian individuals from

the 1,000 Genomes Project were used to simulate random mating in a population of 10,000

individuals for at least 100 generations to create the LD structure in humans for a large num-

ber of individuals. To reduce computational demands, only SNPs within a 0.1M region of

each of the first 5 chromosomes were used in simulations, and therefore, the total genome

length simulated was 0.5M. When the genome length is 30M, to get the same genomic pre-

diction R2 as with a 0.5M genome would require a reference population 60 fold larger. Three

scenarios were considered varying in minor allele frequency distributions of markers and

QTL, for h2 = 0.8 resembling height in humans. Total number of markers was 4,200 and

QTL were 70 for each scenario. In this study, we considered the prediction accuracy in

terms of an estimability problem, and thereby provided an upper bound for reliability of pre-

diction, and thus, for prediction R2. Genomic prediction methods GBLUP, BayesB and

BayesC were compared. Our results imply that for human height variable selection methods

BayesB and BayesC applied to a 30M genome have no advantage over GBLUP when the

size of reference population was small (<6,000 individuals), but are superior as more indi-

viduals are included in the reference population. All methods become asymptotically equiv-

alent in terms of prediction R2, which approaches genomic heritability when the size of the

reference population reaches 480,000 individuals.

Introduction
The availability of single nucleotide polymorphism (SNP) marker chips for many species has
given rise to the era of genomic prediction (GP). As the name suggests, GP refers to the use of
genomic information to predict genetic merit and can be applied to animals [1–4], plants [5–
7], or to predisposition to disease in personalized medicine [8]. GP utilizes the phenotypes and

PLOSONE | DOI:10.1371/journal.pone.0161054 August 16, 2016 1 / 18

a11111

OPEN ACCESS

Citation: Karaman E, Cheng H, Firat MZ, Garrick DJ,
Fernando RL (2016) An Upper Bound for Accuracy of
Prediction Using GBLUP. PLoS ONE 11(8):
e0161054. doi:10.1371/journal.pone.0161054

Editor: Bamidele O. Tayo, Loyola University
Chicago, UNITED STATES

Received: November 30, 2015

Accepted: July 29, 2016

Published: August 16, 2016

Copyright: © 2016 Karaman et al. This is an open
access article distributed under the terms of the
Creative Commons Attribution License, which permits
unrestricted use, distribution, and reproduction in any
medium, provided the original author and source are
credited.

Data Availability Statement:We uploaded the data
file to Dryad Digital Repository with DOI number
(doi:10.5061/dryad.3k8g5).

Funding: RLF acknowledges funding from NIH
(http://www.nih.gov/) grant R01GM099992. EK was
funded by the Akdeniz University (http://www.akdeniz.
edu.tr), Turkey. The funders had no role in study
design, data collection and analysis, decision to
publish, or preparation of the manuscript.

Competing Interests: The authors have declared
that no competing interests exist.

http://crossmark.crossref.org/dialog/?doi=10.1371/journal.pone.0161054&domain=pdf
http://creativecommons.org/licenses/by/4.0/
http://dx.doi.org/10.5061/dryad.3k8g5
http://www.nih.gov/
http://www.akdeniz.edu.tr
http://www.akdeniz.edu.tr


SNP genotypes of a group of individuals (hereafter, called the reference population-RP) to esti-
mate marker effects, which are used to predict breeding values, or yet-to-be observed pheno-
types of individuals with genotypes (hereafter called the validation population-VP) [1].

The accuracy of GP is influenced by many factors, such as the method used to estimate
marker effects [9, 10], the heritability (h2) and genetic architecture of the trait [10, 11], and the
size (nR) and structure of the RP [11–16]. Among those, the method, and the size and structure
of the RP can be chosen or designed utilizing available knowledge about the heritability and
genetic architecture of the trait.

One of the challenges of GP using high-density SNP genotypes is the estimation of SNP
effects when the number of individuals comprising RP, nR, is much smaller than the number of
SNPs p, nR � p. One approach to address this problem is Bayesian regression, which combines
prior information on the vector of SNP effects, β, with the observed data to estimate all p of the
βjs [1]. There are several variations of the Bayesian regression approach, differing in the prior
distribution for βj. A commonly used prior for βj is a normal distribution with a common vari-
ance for all loci: bj � Nð0; s2

bÞ: This is equivalent to ridge regression, and when the ratio s2
b=s

2
e

is known, it can be shown that it becomes best linear unbiased prediction (BLUP) [17]. Due to
the relationship of this Bayesian regression to ridge regression and BLUP, it is referred to as
Bayesian ridge regression (BRR) or random regression BLUP (RR-BLUP). Genomic predic-
tions obtained from RR-BLUP are identical to those obtained from an animal model (GBLUP),
where the numerator relationship matrix is replaced by a genomic relationship matrix (G)
computed from markers [9, 18–21].

The GBLUP method is popular in GP for three reasons: 1) Since for several decades selec-
tion decisions in livestock populations have been routinely made based on BLUP for the animal
model [22], GBLUP can easily be used with current computer programs without much effort,
2) for BLUP, theory is available to compute the variance of prediction errors, and 3) many
important traits in animals, plants and humans are complex in nature, and are controlled by a
large number of small effect genes distributed across the entire genome [23–25], resembling an
infinitesimal model [1]. When this assumption does not hold, because a few genes have large
effects, or because many genes have no effect, mixture models such as BayesB [1] or BayesC
[26, 27] can be used, where the prior for βj has a point mass at zero with probability π, or has a
t or normal distribution with probability (1 − π) for BayesB and BayesC, respectively.

The squared correlation between the genetic value (u) and its predicted value (û) is called
the reliability of prediction, and is a measure of prediction accuracy. Goddard [16] and Daet-
wyler et al. [28] have developed approximations for prediction accuracy utilizing the effective
population size (Ne), nR, h

2, and the effective number of chromosomal segments segregating in
the population (Me). Both approximations were developed assuming complete linkage disequi-
librium (LD) between marker-QTL pairs. Goddard et al. [29] extended his earlier approach to
address the problem of incomplete LD between markers and QTL. Following that extension,
reliability of GP can be approximated with q2[nR h

2/(nR h
2 +Me/q

2)], where q2 is the propor-
tion of genetic variance explained by markers. In contrast to simulations, in real applications u
of an individual is not observed, and therefore, reliability of prediction cannot be directly com-
puted. Thus, the squared correlation between phenotype (y) and û (hereafter, called the R2) is
often used as the measure of prediction accuracy. The approximation for reliability in [29] can
be modified (See Appendix 1 in S1 Text) to get an approximation for R2 as:

R2 � h2
M½nRh

2
M=ðnRh

2
M þMeÞ�; ð1Þ

where h2
M is the genomic heritability, the proportion of variance explained by markers [30].
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In pedigree-based prediction, heritability is a major determinant of R2. Using both real data
and simulations based on real genotypes, de los Campos et al. [30] investigated the relationship
between h2

M and R2 from GBLUP for complex traits in humans. They examined different sce-
narios varying in the distribution of minor allele frequencies (MAFs) of markers and QTL.
When both RP and VP included only unrelated individuals, R2 and h2

M were 0.071 and 0.737
when markers and QTL had similar MAF distributions, and 0.049 and 0.573 when MAF for
QTL were low relative to those for markers. It was concluded that h2

M is not a good indicator of
R2 when the individuals being predicted are not related to the RP. Instead, the authors pro-
posed [1 − (1 − b)2]h2 as an upper bound for R2, where b is the average regression coefficient of
the marker derived relationships on QTL derived relationships. Based on the average value of b
estimated for candidates unrelated to the reference population, they concluded that the asymp-
totic upper bound on the R2 is about 20% of h2 for unrelated individuals. This conflicts with
approximation Eq (1) where it can be seen that the asymptotic value for R2 is predicted to
be h2

M.
Taking Ne = 10,000 [31], the average chromosome length (L) as 1.57 Morgans, and the

number of chromosomes (k) as 23, to represent humans,Me ¼ 2NeLk
logðNeLÞ � 7� 104 [16], and then

from Eq (1) the expected R2 is 0.037 for h2
M ¼ 0:737 and 0.022 for h2

M ¼ 0:573 when nR =
5,300 as in [30]. These are close to the R2 values in [30] for unrelated individuals. In order for
R2 to reach about 90% of h2

M, approximation Eq (1) suggests that a RP of over half a million
individuals is needed. Thus, computer simulation will be used to examine whether the upper
bound in [30] holds or if R2 reaches h2

M when nR increases as implied by Eq (1). Further, the
suggestion in [30] that variable selection methods may have higher accuracy of prediction than
GBLUP for complex traits in humans is examined.

There is growing interest on the optimum structure of the RP [13, 32], accounting for its
impact on the relationship between VP and RP individuals [9, 12, 13, 15, 33, 34]. On the other
hand, the definition of relatedness in most studies is based on concepts associated with pedi-
grees, which depend on how deep the pedigree is traced and which measure of relationship is
used (e.g. average squared relationship, mean relationship). However, the Gmatrix better
reflects genetic similarities between individuals than the numerator relationship matrix com-
puted from pedigree. When the main interest is to rank individuals in the VP according to
their predicted genetic values, û, the use of pairwise relationships between VP and RP can be
misleading. In this article, we approach GP as an estimability problem and accordingly provide
an upper bound for reliability of prediction, and therefore an upper bound for prediction R2.

Materials and Methods

Data Sets and Simulation of Genomes
The central objective of this study was to examine the asymptotic behavior of R2, which
requires a large RP. To simulate genotypes that resembles the LD structure in humans for a
large number of individuals, haplotypes of 85 Caucasian individuals from the 1,000 Genome
Project [35] (ftp://ftp.1000genomes.ebi.ac.uk/vol1/ftp/release/20110521/) were used to gener-
ate a population of size 10,000. This was accomplished by randomly sampling 20,000 gametes
from phased paternal and maternal sequence accounting for crossing over and mutation. Fol-
lowing this, 10,000 offspring were sampled from randommating of 10,000 parents for 111
non-overlapping generations. Generations 101 and 111 were used to form RP and VP, respec-
tively. A mutation rate of 1 × 10−8 was used. Mutations switched the original allele state from 0
to 1, or vice versa. Simulation of the genomes were performed using XSim software, which uses
an algorithm that tracks only the positions of crossing over and mutation as well as the origin
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of each chromosomal segment throughout the generations, and finally, drops sequence variants
from the founders to the individuals in the last generation [36].

To reduce computational demands, only SNPs with known positions within a 0.1M region
of each of the first 5 chromosomes were used. Markers with MAF<0.005 were discarded
resulting in a data set including 36,242 SNPs. To make our data set comparable with [30], we
scaled down these loci to 4,200 to be used as markers and an additional 70 to represent QTL.
Hence, the density of markers (84/cM) and ratio of the number of QTL (nQTL) to markers (1/
6) are similar to those in [30] that was based on 300,000 markers and 5,000 QTL. Three differ-
ent scenarios (SHL-SRR) were created varying in the MAF distributions: (SHL) markers and
QTL were selected for high and low MAFs, respectively; (SHR) markers were selected for high
MAF, whereas QTL were selected at random; and (SRR) markers and QTL were selected at
random. Hence, among the 36,242 SNPs, 4,200 were taken to be markers, and 70 as QTL
among those with high, random or low MAF as appropriate. Scenario SHL corresponds to
Low-MAF, whereas SHR corresponds to RAND in [30]. The MAF distributions for the three
scenarios are summarized in Table 1. Different MAF scenarios allowed us to examine the
impact of the structure of SNP chips on accuracy.

Reference and Validation Populations
In this study, RP and VP were separated for 10 generations to ensure that close relatives of the
VP individuals do not exist in RP. Both generations consisted of 10,000 individuals. Among
the individuals in generation 101, nR individuals were randomly selected to form a RP, for a
range of nR (75, 150, 500, 1,000, 2,000, 4,000 and 8,000), while nV = 2,000 individuals were
selected among the individuals in generation 111 to form a VP.

Simulation of Phenotypes
Similar to de los Campos et al. [30], a quantitative trait corresponding to human height with
heritability 0.8 was simulated. The effects of QTL, αjs, were sampled from a normal distribu-
tion, αj * N(0, 1). Since the QTL effect sizes vary by replicate, the genetic variance can vary by
replicate. To keep the heritability constant across replicates, therefore, QTL effects were scaled
at each replicate. The product of the scaled QTL effects and the QTL genotypes was used to
obtain the genetic value of individual i as follows:

ui ¼
XnQTL
j¼1

aj � Qij;

Table 1. Percentage of SNPs in a particular range of MAF.

Scenario MAF Type <3% 3%-5% 5%-10% 10%-15% >15%

SHL High Marker 0.061 0.046 0.117 0.114 0.663

Low QTL 0.314 0.243 0.229 0.200 0.014

SHR High Marker 0.065 0.049 0.119 0.115 0.652

Random QTL 0.029 0.057 0.100 0.100 0.714

SRR Random Marker 0.082 0.050 0.096 0.104 0.668

Random QTL 0.100 0.029 0.114 0.114 0.643

MAF: minor allele frequency; SHL: markers and QTL were selected for high and low MAFs, respectively; SHR: markers were selected for high MAF,

whereas QTL were selected at random; SRR: markers and QTL were selected at random

doi:10.1371/journal.pone.0161054.t001
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where nQTL is the number of QTL, αj is the additive effect of j’th QTL, and Qij is the genotype
of individual i at the j’th QTL. In each replicate of each scenario, the same SNPs were desig-
nated as markers or QTL, however, QTL effects were separately randomly simulated in each
replicate. A standard normal deviate (ei) was added to each individual’s ui to form its pheno-
typic value (yi) with the desired heritability.

Estimation of Marker Effects
The statistical model fitted to the data is:

yi ¼ mþ
Xp

j¼1

xijbj þ ei;

where yi is the phenotypic value of individual i in the RP, μ is the overall mean, p is the number
of marker loci, xij is the marker genotype of individual i at locus j, βj is the allele substitution
effect of marker j, and ei is the random environmental effect assumed to be normally distrib-
uted, ei � Nð0; s2

eÞ.
To predict the genetic value of individuals, marker effects were first estimated from RP data

using BayesB and BayesC methods, which differ in the prior assumptions for marker effects as
described previously. BayesC with π = 0 is identical to GBLUP when s2

b is treated as unknown

with a scaled inverse chi-square prior. In the BayesB and BayesC analyses, π was 0.98, whereas
GBLUP results were obtained using BayesC with π = 0. A total of 11,000 Markov chain Monte
Carlo iterations were used, with the first 1,000 excluded as the burn-in. Marker effects were
estimated from separate analyses with inclusion or exclusion of QTL from the marker panel.
Analyses were performed using GenSel software [37, 38]. In order to evaluate how frequently a
marker was included in the model in a BayesB or BayesC run, the model frequency (MF) in
GenSel output can be used which is defined as the proportion of iterations or models that
included that marker.

Prediction of Genetic Values, and Prediction Accuracy
Given the estimates of the marker effects, the u of the VP individuals was predicted as:

ûi ¼
Xp

j¼1

xijb̂j

where b̂ j is the estimated effect of locus j, and xij is the marker genotype of i’th individual at

locus j. The prediction R2 was calculated as the squared correlation between the phenotypes, yi,
and ûi of VP individuals.

Using the regression model:

gM;i ¼ bi � gQ;i þ �i ð2Þ

where gM,i is the vector of marker derived relationships of i’th individual in VP to all the indi-
viduals in RP, and gQ,i is the vector of QTL derived relationships, and �i is a vector of residuals,
the regression coefficient, bi, was estimated [30] and averaged across all individuals in VP for
each replicate. Both forms of relationships were obtained from the realized relationship matrix,
G:

G ¼ ZZ0

p

Genomic Prediction Accuracy
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where Z is the matrix of genotypes constructed by the standardized vector of (marker or QTL)
genotypes including RP and VP, and p is the number of loci (marker or QTL) [25]. Standardi-
zation of genotypes was done as follows, where xj is a vector of genotypes of individuals at j’th
loci, and qj is the allele frequency:

zj ¼
xj � 2qjffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffi
2qjð1� qjÞ

q :

Scenarios SHL, SHR, and SRR, were replicated 10 times, and results were averaged across
replicates.

A Connection between Prediction Accuracy and Estimability in a Fixed
Linear Model
Consider the linear model:

y ¼ Xβþ e;

where β is assumed fixed. In this setting, a linear function, k0 β is said to estimable only if the

estimator k0β̂ has expected value k0 β. When β̂ is the least-squares estimator, it is known that k0

β is estimable only when k0 is a linear function of the rows of X [39].
In RR-BLUP, β is considered random with null mean, and the BLUP of x0

Vβ representing an
individual in VP with genotypes xV is unbiased in the sense that

Eðx0
V
~βÞ ¼ Eðx0

VβÞ ¼ 0;

where ~β is the BLUP of β. To see the connection between prediction accuracy and estimability,
let XR be the genotype matrix of RP and let <(XR) denote the row space of XR. Then, any vector
xV can be written as the sum of two vectors: xV1

¼ QX0
R
xV , which is in <(XR), and

xV2
¼ ðI�QX0

R
ÞxV , which is orthogonal to <(XR), i.e., the vector of validation genotypes can

be written as

xV ¼ xV1
þ xV2

; ð3Þ

whereQX0
R
¼ X0

RðXRX
0
RÞ�XR [39]. From Eq (3), x0

V
~β of an individual in VP can be partitioned

as:

x0
V
~β ¼ x0

V1

~β þ x0
V2

~β: ð4Þ

It is shown in Appendix 2 of S1 Text that ~β is in <(XR), and therefore, the BLUP of x0
Vβ is

x0
V
~β ¼ x0

V1

~β: ð5Þ

Accordingly, x0
V2

~β ¼ 0; which is the mean of its prior and does not depend on the data. This

can be seen more clearly by writing the correlation between ui ¼ x0
Vβ and ûi ¼ x0

V
~β in terms

of Eq (5) as shown below. Under BLUP assumptions [22],

Corðui; ûiÞ ¼
ffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffi
VarðûiÞ
VarðuiÞ

;

s
ð6Þ

Genomic Prediction Accuracy
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and from Eq (5), the numerator of Eq (6) becomes Varðx0
V1

~βÞ: So, Eq (6) can be written as

Corðui; ûiÞ ¼
ffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffi
Varðx0

V1

~βÞ
Varðx0

VβÞ
:

s

Clearly, Varðx0
V2

~βÞ ¼ 0 and does not contribute to Corðui; ûiÞ. An individual for whom the

genotype vector is orthogonal to all genotypes in RP (xV = xV2
) can be thought of as being geno-

mically unrelated to the RP. For such an individual, Corðui; ûiÞ would be zero. On the other
hand, an individual for whom the genotype vector is in the row space of genotypes in RP (xV =
xV1

) can be thought of as having a perfect genomic relationship to the RP. This is not a genomic
relationship between two individuals, and it does not require a perfect or even high relationship

with any individual in RP. For such an individual, Corðui; ûiÞ will approach 1 as Varðx0
V1

~βÞ

approaches Varðx0
VβÞ: Generally, the maximum value of Corðui; ûiÞ is

ffiffiffiffiffiffiffiffiffiffiffiffiffiffi
Varðx0

V1
βÞ

Varðx0VβÞ

r
; which is the

square root of reliability defined as Cor2ðui; ûiÞ. Thus

UPi ¼
x0

V1
xV1

x0
VxV

is a measure of the upper bound for reliability (See Appendix 3 in S1 Text). When UPi = 0, the
reliability of prediction will be zero regardless of the size of RP, and when UPi = 1, the reliability
will approach 1 as the size of RP increases. On the other hand when UPi< a, reliability will be
less than a regardless of the size of the RP. In addition, h2 UPi is the upper bound of the R

2 for
individual i.

In order to examine the utility of this upper bound, we carried out a simulation study ran-
domly selecting 5,000 of the 36,242 available SNPs. All of the selected SNPs were used as QTL,
but two quantitative traits were simulated representing h2 = 0.8 or 0.999. Among the 10,000
individuals in generation 101, nR individuals were randomly selected to form a RP, where nR
was varied (500, 1,000, 2,000 and 5,000), while nV = 2,000 individuals were selected among the
individuals of generation 111 to form a VP. The GBLUP method was used to predict genetic
values, again through BayesC with π = 0. Other steps of the analysis were the same as given
before. Setting h2 = 0.999, allowed us to minimize the estimation error of marker effects, so
that prediction accuracy was determined almost entirely by estimability of the genotypes of
VP. Effect of relationship to the RP for VP individuals was investigated utilizing the maximum
relationships only at QTL level,max(gVi

), of individual i in VP to the individuals in RP. Indi-
viduals in VP were classified into a low (L) and high (H) relationship group: when an individu-
al’s maximum relationship was lower than 0.15, it was assigned to L, while an individual with
maximum relationship equal or greater than 0.25 was assigned to H.

Results and Discussion

R2 for GBLUP
Prediction R2s obtained using the GBLUP method with markers only are summarized in Fig 1
for varying RP sizes and all the scenarios along with the estimated heritabilities and the upper
bound suggested by [30]. It is clear from the figure that an increase in the number of individu-
als in RP results in an increase in prediction R2 in all the scenarios. This is true even when the
markers and QTL have an opposite MAF distribution (SHL), which may be the case in real
data studies. In SHL, when RP involves only 75 individuals R2 was 0.017, while a maximum R2

of 0.569 was obtained for the largest RP size of 8,000 (Table 2). In SHR, where the markers had
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high MAF distribution, and QTL were selected completely at random, a RP size of 75 resulted
an R2 of 0.064, while a RP of size 8,000 yielded the highest R2 of 0.635 (Table 3). When the
markers and QTL were selected completely at random, R2s were higher than their counterparts
in SHL (Table 4). The lowest and highest R2 values in SRR were 0.053 and 0.673, for a RP size
of 75 and 8,000, respectively.

Heritability estimates were volatile in SHL, but almost flat in SHR and SRR. Moreover, the
estimates of heritability were always greater for SHR and SRR than for SHL. In all scenarios,
the R2 of GBLUP increased towards h2

M. It is very likely that when sequence data are used, the
fitted genotypes include the QTL. This motivated analyses with inclusion of the QTL genotypes
in the marker panel, and even in that case, the predictive accuracy of GBLUP could not attain
the estimated heritability for RP sizes considered here. However, the trend suggests that the
predictive accuracy of GBLUP could achieve the heritability at a sufficiently large RP size.
Regression coefficients for the marker derived relationships on the QTL derived relationships

Fig 1. Summary of GBLUP results. SHL: markers and QTL were selected for high and low MAFs,
respectively; SHR: markers were selected for high MAF, whereas QTL were selected at random; SRR:
markers and QTL were selected at random; nR: number of individuals in RP; R2: squared correlation between
y and û̂; prediction R2 of GBLUP (red line); genomic heritability, h2

M (blue line); simulated heritability, h2
sim (grey

line); the upper bound suggested in [30], [1 − (1 − b)2]h2 (black line).

doi:10.1371/journal.pone.0161054.g001

Table 2. Results of SHL.

Method nR nV R2 h2
M R2

MþQTL h2
MþQTL

GBLUP 75 2,000 0.017(0.004) 0.741(0.021) 0.023(0.005) 0.686(0.027)

BayesB 75 2,000 0.032(0.007) 0.731(0.013) 0.069(0.016) 0.770(0.015)

BayesC 75 2,000 0.027(0.005) 0.708(0.027) 0.052(0.012) 0.722(0.030)

GBLUP 150 2,000 0.035(0.004) 0.654(0.030) 0.046(0.005) 0.661(0.029)

BayesB 150 2,000 0.082(0.015) 0.664(0.021) 0.174(0.022) 0.730(0.019)

BayesC 150 2,000 0.062(0.011) 0.650(0.032) 0.130(0.016) 0.721(0.027)

GBLUP 500 2,000 0.119(0.011) 0.531(0.037) 0.159(0.011) 0.618(0.035)

BayesB 500 2,000 0.371(0.021) 0.605(0.018) 0.660(0.009) 0.788(0.007)

BayesC 500 2,000 0.382(0.026) 0.635(0.019) 0.683(0.008) 0.801(0.007)

GBLUP 1,000 2,000 0.207(0.010) 0.539(0.021) 0.283(0.009) 0.640(0.017)

BayesB 1,000 2,000 0.486(0.018) 0.604(0.017) 0.749(0.004) 0.794(0.003)

BayesC 1,000 2,000 0.492(0.019) 0.610(0.015) 0.755(0.003) 0.795(0.003)

GBLUP 2,000 2,000 0.336(0.012) 0.617(0.010) 0.465(0.008) 0.734(0.008)

BayesB 2,000 2,000 0.571(0.011) 0.628(0.008) 0.784(0.002) 0.801(0.002)

BayesC 2,000 2,000 0.573(0.011) 0.629(0.007) 0.786(0.002) 0.801(0.002)

GBLUP 4,000 2,000 0.489(0.008) 0.673(0.006) 0.619(0.002) 0.773(0.002)

BayesB 4,000 2,000 0.602(0.009) 0.652(0.007) 0.789(0.003) 0.802(0.001)

BayesC 4,000 2,000 0.599(0.009) 0.649(0.007) 0.789(0.003) 0.801(0.001)

GBLUP 8,000 2,000 0.569(0.008) 0.698(0.005) 0.702(0.002) 0.792(0.001)

BayesB 8,000 2,000 0.624(0.008) 0.659(0.006) 0.794(0.002) 0.801(0.001)

BayesC 8,000 2,000 0.622(0.008) 0.656(0.006) 0.794(0.002) 0.801(0.001)

SHL: markers and QTL were selected for high and low MAFs, respectively; nR: number of individuals in RP; nV: number of individuals in VP; R2 and h2
M are

the predictive ability and genomic heritability when QTL are not in the panel; R2
MþQTL and h2

MþQTL are the predictive ability and genomic heritability when QTL

are in the panel

doi:10.1371/journal.pone.0161054.t002
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were obtained for every individual in VP, so that the upper bound for prediction R2, [1 − (1 −
b)2]h2, suggested by [30] could be plotted for varying RP sizes as in Fig 1. The average of the
regression coefficients (results not given), b, were almost invariant to RP size (varying only
after 2nd digit), thereby yielding an upper bound that was invariant despite the predictive accu-
racy increasing with RP size. These results together demonstrate [1 − (1 − b)2]h2 is not an
upper bound for R2 as claimed in [30]. When a sufficient number of individuals is in RP, pre-
dictive accuracy of GBLUP can reach h2

M.
Using the Formula (1), the asymptotic value of R2 reaches the genomic heritability. In this

simulation study, the predicted values of R2 for SHL-SRR from Eq (1) are 0.554, 0.579 and

0.611 with nR = 8,000,Me ¼ 2NeLk
logðNeLÞ ¼ 1; 448, for h2

M of 0.698, 0.724, 0.757, respectively. These

predicted values are lower than the predictive accuracies using only markers (0.569, 0.635 and
0.673 for SHL-SRR, respectively), or the predictive accuracies when QTL were also in the panel
(0.702, 0.739 and 0.740 for SHL-SRR, respectively).

Previous studies have shown that predictive accuracy increases with an increase in the RP
size [11, 15, 16]. Our results are in line with previous findings with*10 to 35 fold increase in
R2 using only markers when the RP size was increased from 75 to 8,000. Meuwissen [40], sug-
gested the use of large RPs in estimation of marker effects, particularly for the GBLUP. How-
ever, in [30], the predictive accuracy of GLUP method was assessed using a small number of
individuals (nR of 5,300) relative to the 300,000 markers fitted in the model. Even though there
are many other factors influencing predictive accuracy, a possible explanation of the low R2

Table 3. Results of SHR.

Method nR nV R2 h2
M R2

MþQTL h2
MþQTL

GBLUP 75 2,000 0.064(0.008) 0.784(0.011) 0.087(0.009) 0.757(0.013)

BayesB 75 2,000 0.051(0.005) 0.763(0.014) 0.092(0.014) 0.790(0.013)

BayesC 75 2,000 0.065(0.008) 0.754(0.015) 0.106(0.015) 0.775(0.014)

GBLUP 150 2,000 0.115(0.012) 0.722(0.028) 0.155(0.014) 0.750(0.023)

BayesB 150 2,000 0.207(0.020) 0.708(0.019) 0.298(0.021) 0.775(0.018)

BayesC 150 2,000 0.209(0.020) 0.729(0.027) 0.296(0.023) 0.793(0.022)

GBLUP 500 2,000 0.272(0.011) 0.743(0.013) 0.353(0.010) 0.819(0.009)

BayesB 500 2,000 0.473(0.014) 0.681(0.005) 0.682(0.009) 0.805(0.007)

BayesC 500 2,000 0.473(0.014) 0.692(0.005) 0.683(0.009) 0.808(0.007)

GBLUP 1,000 2,000 0.395(0.007) 0.719(0.012) 0.494(0.006) 0.803(0.008)

BayesB 1,000 2,000 0.569(0.009) 0.673(0.010) 0.754(0.003) 0.804(0.003)

BayesC 1,000 2,000 0.571(0.009) 0.675(0.010) 0.753(0.003) 0.803(0.003)

GBLUP 2,000 2,000 0.516(0.013) 0.728(0.008) 0.616(0.008) 0.802(0.004)

BayesB 2,000 2,000 0.629(0.011) 0.691(0.008) 0.780(0.003) 0.804(0.002)

BayesC 2,000 2,000 0.629(0.011) 0.691(0.008) 0.780(0.003) 0.803(0.002)

GBLUP 4,000 2,000 0.588(0.007) 0.730(0.005) 0.686(0.003) 0.800(0.002)

BayesB 4,000 2,000 0.655(0.009) 0.697(0.006) 0.789(0.002) 0.802(0.001)

BayesC 4,000 2,000 0.654(0.008) 0.696(0.006) 0.789(0.002) 0.802(0.001)

GBLUP 8,000 2,000 0.635(0.016) 0.724(0.011) 0.739(0.003) 0.800(0.001)

BayesB 8,000 2,000 0.665(0.018) 0.691(0.013) 0.796(0.002) 0.800(0.001)

BayesC 8,000 2,000 0.665(0.018) 0.690(0.013) 0.796(0.002) 0.800(0.001)

SHR: markers were selected for high MAF, whereas QTL were selected at random; nR: number of individuals in RP; nV: number of individuals in VP; R2 and

h2
M are the predictive ability and genomic heritability when QTL are not in the panel; R2

MþQTL and h2
MþQTL are the predictive ability and genomic heritability when

QTL are in the panel

doi:10.1371/journal.pone.0161054.t003
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given in [30] might be the small RP size. When nR was 75 and the number of markers to be esti-
mated was 4,200, predictive accuracies in scenarios SHL and SHR were low (0.017 in SHL, and
0.064 in SHR) as in the corresponding MAF scenarios in [30] for GENOVA data set. However,
as mentioned above, predictive accuracy increased with the inclusion of more individuals in
RP.

In derivation of the upper bound for R2 in [30], the conditional expectation of genetic values
of VP individuals was written as

EðuVi
j yRÞ ¼ gQ;i½GQs

2
u þ Is2

e ��1
yR; ð7Þ

whereGQ is the relationship matrix of RP at the QTL level, and yR is the vector of centered phe-
notypes of RP. The QTL genotypes of individuals are not known in reality, therefore genomic
relationships are computed from marker genotypes instead of QTL. Thus, the conditional
expectation is approximated as

EðuVi
j yRÞ � gM;i½GMs

2
u þ Is2

e ��1yR; ð8Þ

where GM is the relationship matrix of RP at the marker level. In the derivation of an upper
bound for R2 when this approximation is used, however, it was assumed that GQ was known,
and gM,i was written as gM,i = bi gQ,i + �i [30]. Then, as explained in [30], the approximation
can be expressed as

EðuVi
j yRÞ � bigQ;i½GQs

2
u þ Is2

e ��1yR: ð9Þ

Table 4. Results of SRR.

Method nR nV R2 h2
M R2

MþQTL h2
MþQTL

GBLUP 75 2,000 0.053(0.008) 0.775(0.009) 0.072(0.010) 0.748(0.009)

BayesB 75 2,000 0.073(0.016) 0.768(0.009) 0.124(0.021) 0.789(0.008)

BayesC 75 2,000 0.077(0.015) 0.753(0.010) 0.123(0.021) 0.774(0.009)

GBLUP 150 2,000 0.117(0.012) 0.698(0.041) 0.157(0.013) 0.724(0.037)

BayesB 150 2,000 0.187(0.027) 0.724(0.028) 0.304(0.024) 0.799(0.018)

BayesC 150 2,000 0.190(0.026) 0.731(0.044) 0.307(0.024) 0.814(0.023)

GBLUP 500 2,000 0.266(0.011) 0.705(0.014) 0.345(0.011) 0.790(0.009)

BayesB 500 2,000 0.501(0.017) 0.672(0.010) 0.691(0.006) 0.796(0.006)

BayesC 500 2,000 0.499(0.016) 0.682(0.010) 0.691(0.007) 0.800(0.006)

GBLUP 1,000 2,000 0.409(0.009) 0.716(0.017) 0.505(0.008) 0.801(0.011)

BayesB 1,000 2,000 0.588(0.008) 0.679(0.013) 0.760(0.004) 0.803(0.007)

BayesC 1,000 2,000 0.587(0.008) 0.682(0.013) 0.761(0.004) 0.803(0.007)

GBLUP 2,000 2,000 0.528(0.011) 0.735(0.009) 0.624(0.006) 0.803(0.004)

BayesB 2,000 2,000 0.647(0.013) 0.699(0.010) 0.784(0.002) 0.803(0.002)

BayesC 2,000 2,000 0.647(0.013) 0.698(0.010) 0.784(0.002) 0.802(0.002)

GBLUP 4,000 2,000 0.609(0.007) 0.743(0.005) 0.693(0.004) 0.800(0.001)

BayesB 4,000 2,000 0.678(0.007) 0.709(0.006) 0.792(0.002) 0.801(0.001)

BayesC 4,000 2,000 0.678(0.007) 0.708(0.005) 0.792(0.002) 0.801(0.001)

GBLUP 8,000 2,000 0.673(0.005) 0.757(0.003) 0.740(0.003) 0.801(0.001)

BayesB 8,000 2,000 0.706(0.006) 0.729(0.004) 0.795(0.002) 0.801(0.001)

BayesC 8,000 2,000 0.705(0.005) 0.728(0.004) 0.795(0.002) 0.801(0.001)

SRR: markers and QTL were selected at random; nR: number of individuals in RP; nV: number of individuals in VP; R2 and h2
M are the predictive ability and

genomic heritability when QTL are not in the panel; R2
MþQTL and h2

MþQTL are the predictive ability and genomic heritability when QTL are in the panel

doi:10.1371/journal.pone.0161054.t004
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In a population of unrelated individuals, the expected value of genomic relationships will be
zero. When genomic relationships, gM,i and gQ,i, are computed using 300,000 markers and
5,000 QTL as in [30], gQ,i will have a much larger variance than gM,i. This results in the slope,
b, of the regression of gM,i on gQ,i to be small. Thus, Eq (9) will have a much lower R2 than Eq
(7). This would not be the case if Eq (8) was used, where both gQ,i and GQ are replaced with
their marker based counterparts. This can be demonstrated by writing gM,i = b gQ,i and GM = b
GQ, where b is the average value of bi. Then the approximation Eq (8) becomes

EðuVi
j yRÞ � gQ;i GQs

2
u þ I

s2
e

b

� �
�1yR: ð10Þ

This approximation Eq (10) for the conditional expectation is almost identical to Eq (7), and
therefore, the R2 from Eq (10) will be similar to the R2 from Eq (7).

Comparison of Different Methods of Genomic Prediction
Fig 2 shows R2s of GBLUP, BayesB and BayesC methods for varying values of nR in all the sce-
narios when only the markers are in the panel. When nR = 75, all methods had a similar R2, i.e.,
the variable selection methods, BayesB and BayesC, had no advantage over GBLUP. As nR
increased, initially, variable selection methods became superior to GBLUP, but eventually all
methods yielded similar R2 values when nR = 8,000.

For a given nR and h
2, predictive accuracy of GBLUP were shown to be highly dependent on

Me, whereas predictive accuracy of BayesB is also dependent on nQTL [11]. An approximation
for the reliability of GP with BayesB was suggested with the modification of the equation in
[28], which is given as nR h

2/[nR h
2 +min(nQTL,Me)] [11]. When nQTL <Me, the advantage of

variable selection methods, BayesB and BayesC, is expected to be more apparent since they
select a subset of loci with an effect on the trait of interest instead of estimating theMe parame-
ters regardless of whether they have an effect [11]. Using the formula in [11], for nR = 75, h2 =
0.8, nQTL = 70 andMe = 1,448, the predicted values of R2 were 0.370 and 0.032 for BayesB and
GBLUP, respectively. However, the observed predictive accuracies for BayesB and BayesC in
scenarios SHL to SRR were much lower (0.027-0.077) than these predicted values when nR =
75. Fig 3 depicts the MFs of markers in one replicate of SHL for BayesB method when nR = 75
and nR = 8,000. It is clear that when nR = 75 MFs followed a uniform distribution with none of
the markers having MF higher than 0.4. On the other hand, there are many such markers
0.4<MF when nR = 8,000, and as nR increased from 75 to 8,000, variance of the MF of markers
increased more than 100-fold from 1.21 × 10−4 to 214 × 10−4 indicating that when nR is small,
variable selection does not effectively discriminate between markers that are in LD with QTL
from those that are not. Therefore, one can not take full advantage of variable selection meth-
ods if nR is not sufficiently large. An increase in nR from 75 to 8,000 resulted in about a 10- to
20-fold increase in R2 for BayesB and BayesC (Tables 2–4). On the other hand, the advantage
of variable selection methods over GBLUP diminished when nR = 8,000, and all methods
yielded similar predictive accuracies for this high heritability trait. Variable selection methods
shrink marker effects that are very small towards zero, and therefore, these loci do not contrib-
ute to the estimation of u. However, when π of BayesC is set to zero, effects of all markers are
estimated regardless of their size, which usually add only noise to the estimation of u. On the
other hand, when sufficiently large RP is used, the effect of those markers that are very small
can be estimated accurately, yielding a high predictive accuracy. This can explain why predic-
tive accuracy from variable selection methods are higher than GBLUP when number of mark-
ers are much larger than nR, and why eventually all methods yielded same predictive
accuracies.
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Fig 2. Comparison of different methods. SHL: Markers and QTL were selected for high and low MAFs,
respectively; SHR: Markers were selected for high MAF, whereas QTL were selected at random; SRR:
Markers and QTL were selected at random; nR: number of individuals in RP; R2: squared correlation between
y and û̂; simulated heritability, h2

sim, (grey line); prediction R2s of GBLUP (red line), BayesB (green line) and
BayesC (purple line).

doi:10.1371/journal.pone.0161054.g002

Fig 3. Model frequencies of markers in one replicate of SHL for BayesBmethod. SHL: Markers and QTL were selected for high and low MAFs,
respectively; (a) nR = 75; (b) nR = 8,000.

doi:10.1371/journal.pone.0161054.g003
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When the QTL were included in the panel, the gap between predictive accuracies of GBLUP
and BayesB or BayesC was higher than when only markers were in the panel (Tables 2–4).
Moreover, in this case, BayesB and BayesC with relatively small values of nR (500-1,000) could
achieve the predictive accuracy of GBLUP with nR = 8,000.

It was reported [41] that the predictive accuracy of BayesB, was not greater than that of
GBLUP, which we believe is due to the circumstance that the number of markers fitted (*2.5
million) greatly exceeded the small number of RP, nR = 155. Several studies have investigated
the effect of different methods on predictive accuracy [10–12, 24, 40, 42], and it can be con-
cluded that none of these methods is universally best, and the performance of the method
depends on the genetic architecture and the heritability of the trait as well as the RP size.

Realized Relationships and Estimability
We examined the effect of relationship on predictive ability using the maximum realized rela-
tionship of individuals in VP,max(gVi

), to the individuals in RP for two extreme groups of
individuals, those with low relationship (L) or high relationship (H). Table 5 summarizes the
predictive abilities obtained by GBLUP for L and H groups at varying RP sizes and for two
quantitative traits with h2 = 0.8 and 0.999. An important aspect of Table 5 is that, when RP
size, nR, increased, the number of individuals (nL) withmax(gVi

)<0.15 decreased, while the
number of individuals nH withmax(gVi

)�0.25 increased. In the scenario where h2 = 0.8, when
nR = 500 and nR = 5,000 there were 1,347 and 163 individuals in L group, while there were 8
and 69 individuals in H group. The trends in the number of individuals in both L and H groups
indicates that when more individuals are included in RP, the probability of having at least one
individual in the RP with a high relationship for a VP individual increases. However, even
when nR was 5,000, among the 2,000 VP individuals there were still only 69 and 64 of 2,000
individuals in H group for h2 = 0.8 and h2 = 0.999, respectively.

Predictive ability tended to increase not only for H group but also for L group individuals as
the nR increased (Table 5). For h

2 = 0.8, predictive abilities in L group, R2
L, were 0.352, 0.477,

0.614 and 0.699, while predictive abilities in H group, R2
H , were 0.439, 0.469, 0.614 and 0.733

when nR was 500, 1,000, 2,000 and 5,000, respectively. For h
2 = 0.999, Predictive abilities in L

group, R2
L, were 0.542, 0.756, 0.932 and 0.995, while in H group R2

H were 0.533, 0.704, 0.939 and
0.996 when nR was 500, 1,000, 2,000 and 5,000, respectively. This implies that even when the

Table 5. Predictive accuracies and estimabilities for relationship groups.

h2 nR nV nL nH R2
L R2

H
�

UPL

�
UPH

0.8 500 2,000 1347 8 0.352(0.012) 0.439(0.083) 0.549(0.000) 0.569(0.003)

1,000 2,000 972 17 0.477(0.006) 0.469(0.050) 0.777(0.000) 0.791(0.001)

2,000 2,000 546 31 0.614(0.009) 0.614(0.043) 0.942(0.000) 0.947(0.000)

5,000 2,000 163 69 0.699(0.011) 0.733(0.017) 1.000(0.000) 1.000(0.000)

0.999 500 2,000 1342 8 0.542(0.011) 0.533(0.080) 0.550(0.000) 0.575(0.002)

1,000 2,000 963 15 0.756(0.005) 0.704(0.047) 0.777(0.000) 0.792(0.001)

2,000 2,000 558 29 0.932(0.002) 0.939(0.008) 0.942(0.000) 0.948(0.000)

5,000 2,000 166 64 0.995(0.000) 0.996(0.000) 1.000(0.000) 1.000(0.000)

h2: heritability of the trait; nR: number of individuals in RP; nV: number of individuals in VP; nL and nH are the average number individuals in L and H groups

over replicates, respectively; R2
L and R2

H are the predictive accuracies in L and H groups, respectively; �UPL and �UPH are the mean of the average UP at each

replicate for L and H, respectively.

doi:10.1371/journal.pone.0161054.t005
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pairwise relationships between VP and RP individuals are low, one can obtain high predictive
ability.

We approached GP as an estimability problem, and derived an upper bound for reliability,
and thus the upper bound for R2. Mean values of upper bound for reliability, �UP , are also given
in Table 5 for L and H groups. When multiplied by the trait heritability, the upper bound for
R2 is obtained, h2 �UP . For h2 = 0.8, the upper bounds of R2

L were 0.439, 0.622, 0.754 and 0.800,
whereas the upper bounds of R2

H were 0.455, 0.633, 0.758 and 0.800. When h2 = 0.999, the
upper bounds for R2

L were 0.549, 0.776, 0.941 and 0.999, whereas the upper bounds for R
2
H were

0.574, 0.791, 0.947 and 0.999.
Our results indicate that predictive ability depends on how well an individual’s genotype

vector in VP can be written as a linear combination of the rows of the genotype matrix of RP
individuals. As nR increases, the row space of XR will tend to increase and the possibility that
xV is in the row space of XR will also increase. Based on these results, it can be concluded that
prediction R2 is limited by h2 �UP .

Habier et al. [9, 12], showed that a high relationship between the individuals in VP and RP
resulted in a high predictive ability using simulated and real data. Legarra et al. [34], reported a
higher predictive ability within-family than across-family in mice. Clark et al. [33], concluded
that the overall prediction of breeding values relied on the degree of relationship between the
VP and RPs. Pszczola et al. [13], examined the predictive ability for varying levels of relation-
ships within RP, and between VP and RP. Their results also showed that to achieve a high pre-
dictive ability, a high relationship is required between VP and RP. Makowsky et al. [15],
showed that predictive ability increases with an increase in the number of close relatives of VP
individuals in the RP. On the other hand, Luan et al. [10] investigated predictive ability of GP
for a dairy cattle breed, and their findings indicated an important aspect of the relationship
between RP and VPs. Contrary to the above-mentioned studies, their results did not provide
any strong evidence for the effect of relationship between RP and VP. In this study, we have
shown that provided that the genotypes of VP individuals are in the row space of XR, high pre-
dictive ability can be obtained depending on the heritability of the trait and the RP size even
when the pairwise relationships between VP and RP are low. This is consistent with the sugges-
tion by Calus [43] that use of a RP comprising the whole range of phenotypes and genotypes is
the requirement to obtain reliable predictions.

Supporting Information
S1 Text. Includes the derivations to reach the approximation for R2 given as Eq (1), and
derivations leading to the upper bound of R2 presented in the manuscript.
(PDF)
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