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Diabetic kidney disease (DKD) is the leading cause of end-stage renal disease and

a main contributing factor for cardiovascular morbidity and mortality in patients with

diabetes mellitus. Strategies employed to delay the progression of this pathology focus

on the control of traditional risk factors, such as hyperglycemia, and elevated blood

pressure. Although the intimate mechanisms involved in the onset and progression

of DKD remain incompletely understood, inflammation is currently recognized as

one of the main underlying processes. Untangling the mechanisms involved in the

appearing of a harmful inflammatory response in the diabetic patient is crucial for

the development of new therapeutic strategies. In this review, we focus on the

inflammation-related pathogenic mechanisms involved in DKD and in the therapeutic

utility of new anti-inflammatory strategies.

Keywords: diabetic kidney disease, inflammation, inflammatory cytokines, SGLT2i, GLP-1RA, DPP-4i,
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INTRODUCTION

Diabetic kidney disease (DKD) is a frequent complication in patients with diabetes mellitus (DM)
and constitutes the first cause of kidney disease and an important risk factor for cardiovascular
disease in this population (1, 2). DKD is characterized by a plethora of alterations including
hemodynamic and metabolic abnormalities, the activation of the renin–angiotensin system (RAS),
oxidative stress, and fibrosis, which together trigger the elevation of systemic and intraglomerular
pressure, and the appearing of various symptoms related to the development of kidney failure:
glomerular hypertrophy, proteinuria, and decreased glomerular filtration (3). Until recently, kidney
involvement was only considered as the result of alterations in hemodynamic andmetabolic factors;
however, recent advances show that DKD is a complex and multifactorial process.

An increasing number of clinical and experimental studies have pointed out that inflammation
contributes to the development and progression of DKD (4). Therefore, inflammatory mediators
may represent new targets for the development of therapeutic strategies for the treatment of this
complication. In this review, we discuss the pathophysiologic and therapeutic implications of the
inflammatory cytokines in DKD.
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INFLAMMATORY CYTOKINES IN THE
SETTING OF DKD

Diverse inflammatory parameters are predictors of the evolution
of the DM (5, 6), including the initiation and progression of DKD
(4). These include inflammatory cytokines which, in addition
to their role as regulators of the immune response, also exert
important actions as cardinal effectors of injury. The increase
in the levels of these molecules in the diabetic patient leads
to microvascular complications such as the development of
nephropathy (7–9). Proinflammatory cytokines, both circulating
and those synthesized and secreted by inflammatory cells in the
renal tissue, are elevated in patients with DKD (10–13), being
directly associated with urinary albumin excretion (UAE) levels
and with clinical markers of glomerular and tubulointerstitial
damage (14, 15) (Figure 1).

Urinary levels of interleukin (IL) 6 and IL8 are significantly
increased in microalbuminuric diabetic patients with early
progressive renal function decline when compared to
microalbuminuric or normoalbuminuric subjects with stable
renal function (16). IL6 levels are upregulated in patients with
DM and nephropathy (17); in the same way, the expression of
mRNA encoding IL6 is also increased in renal cells (glomerular,
epithelial, mesangial), as well as in kidney infiltrating-cells in
patients with DKD compared to diabetic patients without kidney
disease (17). Importantly, the expression levels of IL6 mRNA
are positively related with the severity of mesangial expansion, a
characteristic histological manifestation of DKD.

IL18 is another potent pro-inflammatory cytokine that
exhibits elevated serum and urinary levels in patients with
DKD, showing significant and direct correlations with UAE
levels and with the evolution of albuminuria (7, 18, 19).
Additionally, serum levels of IL18 are associated with urinary
β-2 microglobulin, a marker of tubular dysfunction (18). IL18
is capable of regulating the synthesis of pro-inflammatory
molecules such as IL1 and tumor necrosis factor (TNF) α,
and interferon (IFN) G (20), in turn increasing chemokine
receptors in mesangial cells (21). Furthermore, IL8 increases
the expression of intercellular adhesion molecule 1 (ICAM-
1) (22) and promotes endothelial cell apoptosis (23). In
addition to infiltrating cells, kidney tubular cells of patients
with DKD also express increased levels of IL18 (24), which
is related to the activation of the mitogen-activated protein
kinase (MAPK) pathways by transforming growth factor (TGF)
β (25).

Both serum and urinary levels of the cytokine TNFα are
also elevated in patients with DKD (26). Moreover, this increase
parallels the progression of renal damage, which may indicate
a relationship with the development and progression of renal
impairment in the diabetic patient (7, 9, 27). In these subjects,
the rise in TNFα has been related with renal damage mediated
by cytotoxic effects (26). Similar to IL18, TNFα is also expressed
in endothelial, epithelial, mesangial, and tubular renal cells (28,
29). Importantly, animal models of diabetes present increased
levels of TNFα in kidney glomeruli and tubules (9, 30–33) being
directly and independently related with UAE (32).

Animal models of DKD show upregulation of IL1 expression
in many types of kidney cells (31, 34). This increment has
been related with the expression of ICAM-1, the vascular cell
adhesion molecule-1 (VCAM-1), and the endothelial-leukocyte
adhesion molecule-1 (ELAM-1) (35, 36), molecules involved
in chemotaxis and adhesion processes. Rat kidney mesangial
cells are stimulated to produce prostaglandin E2 after being
incubated with recombinant IL1 (37) in response to Ang II
(38), which is related to the appearing of abnormalities in
intraglomerular hemodynamics. Finally, IL1 has been also related
with the production of hyaluronan in the proximal tubule
(39), which is related with the development of experimental
hypercellularity (40).

The cytokine IL17A is a member of the IL17 family mainly
produced by activated T helper (Th) lymphocytes Th17 and,
at lesser extent, by macrophages, neutrophils, natural killer,
dendritic, and mast cells. Circulating IL17A levels have been
related with the severity of kidney disease, showing a progressive
decrease from subjects with normal glucose tolerance to subjects
with DM with and without DN (41, 42). In opposite with
these findings, other authors have found increased IL17A plasma
values in patients with DN compared to healthy controls (43).
These paradoxical findings might by the fact that the modulatory
effects of IL17A on inflammation may be dependent on disease
context, tissue, isoform, and receptor-ligand interactions (44).

PATHOPHYSIOLOGIC IMPLICATIONS

The pathophysiological implications of the inflammation on
DKD occur at various levels. In a first level, inflammatory
cytokines, acting in a paracrine or autocrine form, trigger the
epithelial-to-mesenchymal transition process in the kidney (45),
causing extracellular matrix accumulation. Secondly, the up-
regulation of chemoattractant cytokines and adhesion molecules
stimulates the attraction of circulating cells and facilitate their
infiltration into the renal tissue. Finally, these cells amplify the
inflammatory reaction, generating more cytokines and other
mediators that contribute to the development and progression of
renal injury (Figure 1).

The first clue suggesting the existence of a pathogenic role of
these molecules in the DKD was obtained in vitro by incubating
macrophages in a glomerular basement membrane derived from
diabetic rats; these macrophages presented increased production
of IL1 and TNFαwhen compared tomacrophages incubated with
membranes from normal animals (8).

The interleukins IL1, IL6, and IL8, have been clearly
related to renal disorders in DKD (31, 34). IL1 has been
linked with the proliferation of mesangial cells and matrix
synthesis, thereby altering the renal architecture, with
increased permeability of vascular endothelial cells, and
with intraglomerular hemodynamic abnormalities secondary
to alterations in prostaglandin production (37, 46). In DKD
patients, the expression of mRNA molecules encoding IL6
is positively related with the severity of mesangial expansion
(17). The up-regulation of this cytokine have been also related
to another functional and structural abnormalities related to
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FIGURE 1 | Inflammatory pathophysiology in diabetic kidney disease. The diabetic milieu drives to the development of inflammation that includes the activation of

immune cells and the upregulation of pro-inflammatory cytokines. Activated immune cells migrates and infiltrates the renal tissue locally producing more inflammatory

mediators and chemokines that recruit more immune cells into the kidney. Moreover, activated resident renal cells can also produce additional proinflammatory

mediators, contributing to sustained inflammation, and the induction of kidney damage. Created with BioRender.com.

TABLE 1 | Therapeutic strategies in the DKD with potential anti-inflammatory properties.

Drug Primary target Main outcomes in DKD Anti-inflammatory effects References

RAS blockers Inhibition of ACE or blockade

of angiotensin II receptor.

Reduce proteinuria and the

progression of nephropathy.

Inhibition of NF-κB, MCP1 gene

expression, and macrophage

infiltration.

(68, 69)

SGLT2 inhibitors Blockade of glucose

reabsorption by SGLT2 at the

proximal tubule.

Improved glycemic control.

Slower progression of kidney

disease and lower rates of

clinically relevant renal events.

Reduction of inflammation by

targeting the IL1ß and reduction

of hsCRP, TNFα, IL6, and IFNγ.

(70–90)

DPP4 inhibitors and

GLP-1 receptor agonists

Stimulation of

glucose-dependent insulin

release.

Improved glycemic control and

body weight reductions.

Renoprotective actions

Reduction in levels of

inflammatory markers including

CRP, TNFα, IL6, and IL18.

(91–97)

Pentoxifylline Inhibition of

phosphodiesterases.

Reduced progression of renal

disease and proteinuria.

Downregulation of NF-κB

signaling and reduction of

inflammatory biomarkers.

(98–114)

RAAS, Renin-Angiotensin Aldosterone System; ACEI, angiotensin converting enzyme; NF-κB, nuclear factor-κB; MCP1, monocyte chemoattractant protein 1; SGLT2, type 2

sodium-glucose cotransporter; IL, interleukin; hsCRP, high sensitivity C reactive protein; TNFα, tumor necrosis factor α; IFN-γ, interferon γ; DPP4, dipeptidyl-peptidase-4; GLP-1,

glucagon-like peptide-1.

DKD including increased vascular endothelium permeability
(46), mesangial expansion and fibronectin expression (47),
thickening of the glomerular basement membrane (48, 49),
and renal hypertrophy (50). High serum and urine levels
of the IL18 in type 2 diabetes have been proposed as early
predictors of renal dysfunction, being related with the appearing
of macroalbuminuria (18) and with the triggering of MAPK
pathways by TGF-β (24). High serum TNFα levels have been
clearly related with the pathophysiology of DKD including the
development of renal hypertrophy and hyperfiltration (33).
Levels of sodium retention, which is present in the early stages
of DKD, has been related with urinary TNFα (51). Sodium

retention in turn induce the expression of TGFβ and the
development of renal hypertrophy (52). Moreover, the rise
in both urinary and kidney-expressed TNFα levels precede
the rise in albuminuria (53). These harmful effects elicited
by TNFα in the kidney are mediated by the cytotoxicity on
glomerular, mesangial, and epithelial cells (54–57). TNFα
also change the permeability of endothelial cells, altering the
equilibrium between vasoconstriction and vasodilation and the
intraglomerular blood flow, which reduces glomerular filtration
rate (GFR) independently from alterations in hemodynamic
factors (58, 59). Moreover, TNFα also increases ROS levels
in kidney cells independently of hemodynamic mechanisms,
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altering the glomerular capillary wall and, consequently,
increasing UAE (51, 59, 60).

IL17A exerts mainly proinflammatory responses via the
activation of the NF-κB pathway and downstream regulation
of proinflammatory genes (61). In podocytes in vitro, IL17A
increased the expression of IL 6 and TNFα, particularly
under conditions of high glucose concentration (62). Similarly,
cultured tubular epithelial cells stimulated with this cytokine also
present up-regulation of proinflammatory gene expression and
monocyte chemoattractant protein 1 (MCP1) production (62,
63). Importantly, IL17A also induced epithelial-to-mesenchymal
transition in cultured proximal tubular epithelial cells (64),
indicating that this could be another mechanism of renal
damage triggered by this cytokine. In experimental models,
administration of IL17A in mice significantly upregulated kidney
Mcp-1 and Rantes gene expression and the recruitment of
inflammatory cells to the kidney (65). In leptin deficient
BTBR ob/ob mice, the administration of a neutralizing
anti-IL17A antibody resulted in an inhibition of NF-κB
activation (66). Similarly, neutralization of IL17A also decreased
proinflammatory genes and inflammatory cell infiltration in an
experimental angiotensin II-induced renal damage model (67).
Taken together, these observations suggest that local IL17A
production in diabetic kidneys could activate resident renal cells
to produce proinflammatory cytokines and chemokines, such as
MCP-1, thereby amplifying the inflammatory response. Although
many studies have addressed circulating or urinary IL17A levels
in DN patients, the determination of local renal levels of IL17A
has not been investigated yet.

INFLAMMATION AS A THERAPEUTIC
TARGET IN DKD

Up to the present time, the main therapeutic strategy to slow
the development and progression of DKD focus on the tight
regulation of glucose levels and blood pressure by the utilization
of RAS blockers: angiotensin converting enzyme inhibitors
(ACEi) and angiotensin II receptor blockers (ARBs). Although
this therapeutic approximation reduces the risk of nephropathy
progression, they do not completely halt the evolution toward
end-stage renal disease (ESRD), with a still significant residual
renal risk.

The important role played by inflammation, and
specifically the involvement of inflammatory cytokines in
the pathophysiology of ERD, constitute a new therapeutic
opportunity in DKD to improve kidney function by the
pharmacological reduction of the levels of these molecules
(Table 1). Interestingly, the reduction in proteinuria and the
slowdown in the progression of diabetic and non-diabetic
nephropathies derived from RAS blockade has been related
not only to hemodynamic/antihypertensive but also to anti-
inflammatory/antifibrotic effects. This anti-inflammatory effect
is mediated by the inhibition of NF-κB dependent pathways (68),
which include the production of the pro-inflammatory cytokines
IL6 and TNFα (69).

In recent years, new antidiabetic drugs have emerged
(Table 1). These drugs include SGLT2i (sodium-glucose
cotransporter type 2 inhibitors), GLP-1RA (glucagon-like
peptide-1 receptor agonist), and DPP-4i (dipeptidyl peptidase-
4 inhibitors). These compounds improve albuminuria and
other traits of DKD in diabetic patients but also have been
demonstrated to exert anti-inflammatory effects with potential
benefits in the delay of the progression of DKD. The group
of SGLT2i (canagliflozin, dapagliflozin, and empagliflozin,
among others) are very effective hypoglycemic agents that,
beyond glycemic control, have shown potent cardiovascular
and renal protective effects in the diabetic patient (70–72).
The underlying mechanisms of these effects are not fully
understood, but recent findings suggest that are related with
the modulation of inflammatory cytokines at renal and systemic
levels. A few small clinical pilot studies have shown reductions
of inflammatory markers in type 2 diabetes patients treated with
SGLT2i. In this sense, mildly reductions in serum concentrations
of C-reactive protein (CRP), TNFα, IL6, IL1β, and IFN-γ
were observed in diabetic patients treated with canagliflozin,
dapagliflozin, and empagliflozin (74–80). While robust data
on short and mainly long-term effects of SGLT2i are obtained
from clinical studies with a larger number of patients, most of
what is known about the anti-inflammatory actions of these
drugs comes from experimental approximations, which have
made possible to delve into the underlying mechanisms of this
beneficial immunomodulatory effect. In HK2 cells, a line of
human kidney proximal tubule cells, empagliflozin attenuated
the expression of Toll-like receptor-4 (TLR4) induced by high
glucose, NF-κB and activator protein1 (AP1) transcription
factors binding to nuclear DNA, and secretion of collagen IV
and IL6 (81). In vascular endothelial cells, canaglifozin inhibited
IL1β-stimulated IL6 and MCP1 secretion by AMP-activated
protein kinase dependent and independent mechanisms (82).
In obese diabetic or prediabetic animals, SGLT2i reduces
albuminuria and tubulointerstitial injury (83–85). Thereby,
the slowing in the progression of renal complications in
prediabetic rats treated with dapagliflozin was related with
the suppression of renal inflammation (84). The expression
of TNFα, IL1β, and IL6, as well as the infiltration of cells into
atheromatous plaques, were reduced in the atherosclerosis
mice model ApoE −/− after treatment with empagliflozin (86).
Empagliflozin achieved significant reductions in albuminuria
in animal models with type 1 diabetes that were related
with lower levels of renal NF-κB, MCP1, and IL6 (87). The
inhibition of SGLT2 in experimental type 2 diabetes models,
reduced glomerular macrophage infiltration and sclerosis
(88) and attenuated the overexpression of NOX4, TGFβ,
osteopontin, and MCP1 in the tubular cells induced by high
glucose (89).

Several clinical trials suggest that the anti-diabetic drugs DPP-
4i and GLP-1RA also possess beneficial renal effects (90, 91),
potentially modulating the inflammatory response. The DPP-
4i vildagliptin and sitagliptin reduced the levels of markers
of inflammation in diabetic patients (92). Administration of
GLP-1RA, exenatide or dulaglutide, reduced the levels of CRP
in diabetic patients (93). Different clinical trials are presently
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evaluating the effects of these anti-diabetic therapeutic agents
on systemic and renal inflammation: GLP-1RA (exenatide
or liraglutide) vs. a DPP-4i (NCT02150707) and liraglutide
(LIRALBU; NCT02545738 andNCT01847313). In themeantime,
the renoprotective effects derived from the treatment with GLP-
1RA and DPP-4i have been demonstrated in the experimental
setting employing animal models with kidney disease. The
DPP-4i linagliptin reduced albuminuria, glomerulosclerosis,
and tubulointerstitial fibrosis, independently of the glycemic
control, in a mouse model of DKD (94). Sitagliptin and
linagliptin also suppressed the activity of NLRP3/inflammasome
in an experimental model of nephropathy (95). The model
of type 2 diabetes db/db mice reduced albuminuria levels
and mesangial expansion after treatment with the GLP-1RA
exenatide (96). This treatment also reduced the levels of
inflammatory cytokines and adhesion molecules in type 1 in
diabetic rats (97).

The utilization of microRNAs (miRNAs) to regulate
Th17 cell differentiation by targeting transcription factors
like orphan receptor γt (RORγt) and the activation of
STAT-3 or key cytokines involved in this process have
been tested in different models of autoimmune disease
(115–118). In the context of kidney disease, a recent study
described that miRNA-155 deficiency promoted nephrin
acetylation and decreased renal damage in a hyperglycemia-
induced nephropathy mice model; importantly these effects
were associated with a reduction in IL17A production
through the up-regulation of the suppressor of cytokine
signaling 1 (SOCS1) expression (119). Similarly, miR-155
knockout mice presented a significant reduction of the
Th17 immune response, less severe nephritis, and reduced
histologic and functional injury in an experimental model of
nephritis (120).

Another potential therapeutic opportunity is the
administration of neutralizing antibodies against IL17A for
the treatment of chronic human inflammatory diseases is
being tested in several ongoing clinical trials (121, 122).
Anti-IL17A biological agents like secukinumab, ixekizumab,
and brodalumab were more effective than diverse anti-TNF
alpha agents such as infliximab, adalimumab, and etanercept,
but less so than certolizumab. Unfortunately, although it
seems clear that IL17A could play an important role in the
inflammatory component of kidney disease, there are no
clinical trials focused on the effects of anti-IL17A antibodies
on renal inflammatory diseases like DKD or even lupus
nephritis (123).

Pentoxifylline (PTX) is a methyl-xanthine clinically used
for the treatment of intermittent claudication with anti-
inflammatory properties. Both experimental and clinical studies
in diabetic patients support the renal protective action of PTX,
evidenced by a decrease in proteinuria and, in some cases,
an improvement in GFR (98–101, 108). It is important to
note that this antiproteinuric capacity is related to an anti-
inflammatory effect (102–107), being associated with significant
reductions in TNFα levels (108, 109). Similarly, CKD patients

report a reduction in TNFα, fibrinogen, and CRP levels and
a stabilization in kidney function after PTX treatment (110).
In these same patients, 1-year treatment of PTX in addition
to the ARB background therapy resulted in a reduction in
proteinuria and urinary levels of TNFα and MCP1 (111).
In the PREDIAN trial, DKD patients under RAS blockade
and treated with PTX also presented a stabilization in the
progression of kidney disease after 2 years of follow-up (112).
Importantly, this outcome was accompanied by reductions
in proteinuria and urinary TNFα levels. Two recent meta-
analysis in patients with DKD indicate, on the one hand,
that the antiproteinuric effect of PTX in these patients is due
to a lower production of pro-inflammatory cytokines (113)
and, on the other hand, that PTX additively reduces both
proteinuria and TNFα levels in patients treated with RAS
inhibitors (114).

DISCUSSION

The dramatic increase in the incidence of diabetes has prompted
new therapeutic strategies to treat DKD. Inflammation has
revealed as a key factor in the development and progression
of this complication, allowing the development of therapeutic
approaches focused on the modulation of inflammatory
processes. However, at the present time, clinical experience
on the inhibition of inflammatory molecules and pathways in
diabetic patients is scarce and more clinical trials are needed to
examine their potential renoprotective efficacy.
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