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Spatial region-resolved proteome map reveals
mechanism of COVID-19-associated heart injury
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In brief

Leng et al. establish a region-resolved
proteome map of the inflammatory
myocardia and microvessels of COVID-19
hearts. The myocardia and microvessels
of the left atrium are the most affected by
inflammation storm. These results could
provide guidance in improvement of
clinical treatments for cardiovascular
diseases associated with COVID-19.
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SUMMARY

Direct myocardial and vascular injuries due to severe acute respiratory syndrome coronavirus 2 (SARS-CoV-
2) infection-driven inflammation is the leading cause of acute cardiac injury associated with coronavirus dis-
ease 2019 (COVID-19). However, in-depth knowledge of the injury characteristics of the heart affected by
inflammation is lacking. In this study, using a quantitative spatial proteomics strategy that combines compar-
ative anatomy, laser-capture microdissection, and histological examination, we establish a region-resolved
proteome map of the myocardia and microvessels with obvious inflammatory cells from hearts of patients
with COVID-19. A series of molecular dysfunctions of myocardia and microvessels is observed in different
cardiac regions. The myocardia and microvessels of the left atrial are the most susceptible to virus infection
and inflammatory storm, suggesting more attention should be paid to the lesion and treatment of these two
parts. These results can guide in improving clinical treatments for cardiovascular diseases associated with
COVID-19.

INTRODUCTION

Among the various organ dysfunctions associated with coronavi-
rus disease 2019 (COVID-19), heart complications are one of the
most significant and life-threatening (Chung et al., 2021; Driggin
etal., 2020). About 12%-41% of patients with COVID-19 had car-
diac injury (Akhmerov and Marbéan, 2020; Friedrich and Cooper,
2021; Sandoval et al., 2020). Cardiovascular injury is the most
common extrapulmonary organ complication among critically ill
patients, and its presentation ranges from mild symptoms of
palpitation or chest tightness to viral myocarditis, heart failure,

Gheck for
Updates

arrhythmia, cardiogenic shock, and sudden death (Guo et al.,
2020; Guptaetal., 2020; Madjid et al., 2020; Ning et al., 2022). Se-
vere acute respiratory syndrome coronavirus 2 (SARS-CoV-2)
promotes the abnormal release of pro-inflammatory cytokines
and chemokines by activated endothelial cells, monocytes, and
lymphocytes. Such virally driven cytokine release may lead to
vascular inflammation, plaque instability, myocardial inflamma-
tion, direct myocardial suppression, and the formation of a hyper-
coagulable state (Bonow et al., 2020). Myocarditis caused by
SARS-CoV-2 infection has also been proven by induced pluripo-
tent stem cell-derived cardiomyocytes (iPSC-CMs) (Sharma
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et al., 2020). SARS-CoV-2 infection can upregulate several
inflammation-related genes, including pro-inflammatory cyto-
kine tumor necrosis factor alpha (TNF-a). The pretreatment of
iPSC-CMs with TNF-a obviously increased the expressions of
angiotensin-converting enzyme 2 (ACE2) and transmembrane
protease serine 2 (TMPRSS2) and enhanced the entry of GFP-ex-
pressing SARS-CoV-2 pseudovirus into iPSC-CMs, and the
neutralization of TNF-o. ameliorated the TNF-a-enhanced viral
entry, which demonstrated the significant role of the inflamma-
tory reaction during cardiac injury (Lee et al., 2021). However,
the specific mechanism underlying myocardial or cardiovascular
damage associated with SARS-CoV-2-driven second injury by
the infiltrated inflammatory cells remains unknown.

Since the outbreak of COVID-19, proteomics has been
widely used to investigate the molecular characteristics and
prognosis of injured organs in patients with COVID-19 (Bojkova
et al., 2020; Leng et al., 2020, 2021; Nie et al., 2021; Shu et al.,
2020; Stukalov et al., 2021). In this study, through a combina-
tion of pathology, laser-capture microdissection, and mass
spectrometry, proteins of myocardia and microvessels from
the four regions of the heart, including left atrial (LA) myocar-
dium (LA_MC), LA microvessel (LA_MV), left ventricular (LV)
myocardium (LV_MC), LV microvessel (LV_MV), right atrial
(RA) myocardium (RA_MC), RA microvessel (RA_MV), right ven-
tricular (RV) myocardium (RV_MC), and RV microvessel
(RV_MV), were isolated and produced a spatial region-resolved
proteome map of the human heart. In particular, the proteins
from the eight different regions of inflammatory myocardia
and microvessels from the hearts of patients with COVID-19
were used to explore the molecular events of myocardial or mi-
crovessel tissues mediated by inflammation in SARS-CoV-2-in-
fected hearts, which could provide useful information for the
potential drug target and improve the recovery of patients
with COVID-19.

RESULTS

Spatial proteome architecture of the resolved human
hearts
The heart tissues of patients with COVID-19 showed scattered
individual myocyte necrosis with myocardial and perivascular
infiltration of lymphocytes and monocytes. The cardiac muscle
fibers were thick and interdigitated, and the myocytes were hy-
pertrophic (Figures S1A-S1C). Thrombi were grossly apparent,
especially in the capillaries (Figure S1D). Lymphocytic infiltration
was observed around small nerves (Figure S1D). To further study
the mechanism of SARS-CoV-2 infection affecting specific
anatomical parts of the heart, 28 non-COVID-19 (control) and
17 COVID-19 heart samples, including four precise anatomical
regions (LA, LV, RA, and RV), were obtained for protein identifi-
cation (Figures 1A and 1B; Tables S1 and S2). In total, 4,143 pro-
teins were identified in the four regions (Figures S1E and S1F;
Table S3). There were 228, 347, 338, and 219 differently ex-
pressed proteins in the LA, LV, RA, and RV regions of COVID-
19 samples compared with the normal controls, respectively
(Figure S1G).

The proteins associated with the inflammatory response were
upregulated in four regions, especially in the RA (Figure 1C). In
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addition, proteins associated with the coagulation cascade
pathway in the RA, RV, and LA were upregulated, whereas those
in the LV were downregulated (Figures 1C and 1D), indicating the
different abnormal disorders of the coagulation system. Among
downregulated proteins, those associated with the extracellular
matrix (ECM) remodeling were downregulated markedly in LV
(Figure 1D), indicating that the extracellular skeleton of the LV
was severely damaged. Muscle-contraction-associated pro-
teins in the RV were downregulated, indicating serious
myocardial damage (Figure 1D). Transcription- and translation-
associated proteins in the LA and LV were downregulated,
whereas those in the RV were upregulated (Figures 1C and
1D), indicating that gene expression and protein synthesis
were affected. These results suggest that the inflammatory
response of the COVID-19 hearts is abnormally activated, which
presents a serious risk factor for cardiac dysfunction.

Proteome profile of inflammatory myocardia and
microvessels in COVID-19 hearts

The laser microdissection technology was used to isolate the in-
flammatory microvessels and myocardia infiltrated by inflamma-
tory cells of the COVID-19 heart tissues (Figure 2A). Overall,
2,376 proteins in the microvessels and 2,494 proteins in the my-
ocardia were identified (Figures 2B-2D; Tables S4 and S5). By
correlating the proteins across the myocardia and microvessels
in control groups, the proteomes of eight regions could be
grouped into two sections: four regions of the myocardia and
four regions of the microvessels (Figure 2E). Cellular component
analysis revealed that the myocardia were mainly composed of
proteins involved in myelin sheath, focal adhesion, mitochondria,
sarcomere, Z disc, actin cytoskeleton, sarcolemma, and neuro-
muscular junction. However, the most important components of
the heart microvessels were proteins involved in the ECM, actin
cytoskeleton, basement membrane (BM), and neuron projection
(Figure 2F). In addition, they contained a large number of proteins
associated with myelin sheath, focal adhesion, mitochondria,
etc., in the heart microvessels.

Subsequently, proteins in the different regions of microvessels
and myocardia in control groups were divided into four parts ac-
cording to the proportion of protein abundance (quantile [Q] 1:
25%, Q2: 50%, Q3: 75%, Q4: 100%) to identify the protein
with specifically high abundance in different regions (Figures
2G and 2H). For the myocardia, results showed that most of
the highly expressed proteins (in Q1 or Q2) in different regions
were actins (ACTB and ACTA2), muscle myosins (MYH?7,
MYL4, and TPM1), troponins (TNNT2), creatine kinase (CKM),
myoglobin (MB), and atrial natriuretic peptide (NPPA), which
were the skeleton and regulators of the muscle or muscle cells
(Figure 2G). Other troponins (TNNC1), desmosome (DSP), titin
(TTN), thyroid hormone-binding protein (TTR), and the compo-
nent of a calcium channel (RYR2) were found to be relatively
lowly expressed (in Q3 or Q4) in the four regions of myocardia
(Figure 2G). For the microvessels, results indicated that most
of the highly expressed proteins (in Q1 or Q2) in different regions
were spermatogenesis associated (SPATA20), actins (ACTB and
ACTA2), type | collagens (COL1A2 and COL1A1), and vimentin
(VIM) (Figure 2H). BM components, including type IV collagens
(COL4A1 and COL4A2), proteoglycans (HSPG2 and LUM),
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Figure 1. Quantitative proteome profiling of distinct protein signatures in region-resolved heart tissues

(A) Schematic of the experimental workflow of the sample collection, quantitative proteome, and bioinformatics analysis to analyze the four regions of human
heart tissues based on anatomy structure in the study: left atrium (LA), left ventricle (LV), right atrium (RA), and right ventricle (RV). Dissected samples from each
structure were pooled, digested, and analyzed by liquid chromatography-tandem mass spectrometry (LC-MS/MS).

(B) Principal coordinates analysis (PCoA) analysis of the proteome profile in the four regions of hearts from patients with COVID-19 and normal control subjects.
(C and D) Circos diagram shows the biological processes associated with the upregulated (C) and downregulated (D) proteins from four regions of hearts from
patients with COVID-19 and normal control subjects. Red, green, blue, and purple lines represent the correlation between multiple biological processes and LA,
LV, RA, and RV regions, respectively. The differentially expressed proteins (DEPs) between COVID-19 (n = 17) and control (n = 28) samples were determined
based on the p value of a moderated t test using the R package Limma: p < 0.01 and log, COVID-19/control >1 (upregulated), and p < 0.01 and log, COVID-

19/control < —1 (downregulated).
See also Figure S1 and Tables S1 and S2.

elastin and elastin microfibril (ELN and EMILIN3), nidogens (NID1
and NID2), hemidesmosome (PLEC and ITGB4), and integrins
(ITGA3 and ITGB1), were relatively lowly expressed (in Q3 or
Q4) in the four regions of microvessels (Figure 2H). A region-
resolved proteome profiling system is established, and the spe-
cific components of myocardium and microvessel from the four
regions are identified, enabling the investigation of the specific
functions of human heart in different regions.

Region-resolved functional characteristics of human
myocardia

Next, through hierarchical clustering analysis (HCA) and Gene
Ontology (GO) analysis, four protein clusters characterizing the

different regions of the myocardia with distinct functions were
identified (Figure 3A). Results indicated that region-specific pro-
teins are linked to the functional difference of myocardia (Fig-
ure 3A). Module 1, representing the proteins highly expressed
in the LA of myocardia, was mainly involved in biological func-
tions of protein assembly, response to oxygen levels, microvilli
assembly, and transmembrane transport (Figures 3A, 3B, and
S2A). Module 2, representing the proteins highly expressed in
the LV of myocardia, was mainly involved in small-molecule
metabolism, energy metabolism, protein assembly, cytoskel-
eton, myocardial contraction, myocardial tissue development,
and transmembrane transport (Figures 3A, 3B, and S2A). The en-
riched proteins in the RA of myocardia (module 3) were involved
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in the process of small-molecule metabolism, myocardial
contraction, macromolecular metabolism, cell junction, circula-
tion, immune effector, and immune responses, including
monocyte-mediated immunity, complement activation, humoral
immunity, innate immunity, phagocytosis, and wound healing
(Figures 3A, 3B, and S2A). The enriched proteins in the RV of
myocardia (module 4) were involved in energy metabolism, cyto-
skeleton, myocardial contraction, myocardial tissue develop-
ment, and circulation process (Figures 3A, 3B, and S2A). In addi-
tion, a transferrin receptor (TFRC; specifically expressed with
high abundance in RA), which is required for erythropoiesis
and neurologic development, was selected to verify the
proteome results. Results showed that TFRC was specifically
expressed in the cytoplasm and cell membrane of the RA_MC
(Figure 3C). These results suggest that highly expressed proteins
in the myocardia from all four heart regions are involved in small-
molecule metabolism, energy metabolism, and cytoskeleton.
Highly enriched proteins in the myocardia of both ventricles
(RV and LV) are involved in additional biological processes
such as myocardial tissue development. Highly enriched pro-
teins in the myocardia of RA are involved in the most specific
functions.

Characteristics of inflammatory myocardia in COVID-19
hearts

To further investigate the dysfunction of specific anatomical
parts of the COVID-19 myocardia, we identified 2,457 proteins
in myocardia of four regions from COVID-19 patients
(Figures S3A-S3D; Table S4), with 1,031 proteins differently ex-
pressed in the four regions (Figure S3E). Most of the highly ex-
pressed proteins in the four regions of the myocardia were
downregulated in COVID-19 hearts (Figure 3A), indicating that
SARS-CoV-2 infection severely affected the specific function
of myocardia in different regions. For example, translocase of
inner mitochondrial membrane 50 (TIMM50) was the most signif-
icantly downregulated protein among all LA-specific highly ex-
pressed proteins in myocardia after SARS-CoV-2 infection,
which can lead to cell apoptosis (Reyes et al., 2018). EFHD1,
an EF-hand superfamily member of calcium-binding proteins
that functions as a mitochondrial Ca?* sensor (Hou et al.,
2016), was highly expressed both in LA and LV and significantly
downregulated after infection, which enhanced neuronal death
(Ulisse et al., 2020). MYBPHL is mostly downregulated in RV-
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specific highly expressed proteins, which may increase the risk
of human arrhythmias and cardiomyopathy in humans (Barefield
et al., 2017). We selected the LV and RA highly expressed pro-
teins PRKCSH and TFRC for verification and found them to be
downregulated and upregulated in the CMs of COVID-19,
respectively (Figure S3F), which was consistent with the prote-
ome results (Figure 3A).

Next, we investigated the molecular characteristics of
myocardial injuries in different regions of the COVID-19 hearts.
Results showed that the upregulated proteins between COVID-
19 and control groups were involved in inflammatory response,
especially in RA myocardia (Figure 4A). For example, acute-
phase response-associated proteins (SERPINA3, FN1, and
LBP) and innate immune response-associated proteins
(KRT16, KRT1, DEFA1, SAMHD1, TUBB4B, and CLU) were
highly expressed in the COVID-19 RA myocardia (Figures 4A
and 4B). The upregulated proteins involved in the viral process
showed the largest number in the RA compared with other
regions (Figure 4A), which may be the major cause of the in-
flammatory response of the RA myocardia. For example, viral
life-cycle-associated proteins (CD81, RPL11, RPL35A, RPL24,
EIF3F, and RPL8) were highly expressed in the myocardia of
RA. The differentially downregulated expressed proteins were
mainly involved in energy metabolism and cardiac conduction
of all four regions of COVID-19 myocardia (Figure 4A).
Abnormal mitochondrial calcium handling, energy failure, and
impaired mitophagy may lead to contractile dysfunction of
the myocardium. As expected, many proteins associated with
muscle contraction, actin cytoskeleton, and myocardial devel-
opment in LA, LV, RA, and RV were downregulated in the
COVID-19 myocardia (Figure S4A), which may lead to heart fail-
ure and myocyte death. Cardiac conduction abnormalities have
been regarded as sequelae of COVID-19; 10% of the patients
with COVID-19 presented with heart palpitations, and 16.7%
presented with cardiac arrhythmia (Angeli et al., 2020). Cal-
cium-mediated  signaling-associated proteins (PPP3CA,
CAMK2D, ATP2B4, NUDT4, and SRL) of LA; membrane poten-
tial-associated proteins (MECP2, HEBP2, TSPO, and ADIPOQ)
of LA, LV, and RA; and cell communication-associated proteins
involved in cardiac conduction (CACNA2D1 and CASQ?2) of LV
and RV were downregulated in the COVID-19 myocardia (Fig-
ure 4B). In addition, myocardial development-associated pro-
teins (GPC1, ANKRD1, PTGFRN, EHD1, and PDLIM5) were

Figure 2. Quantitative proteome profiling of spatially distinct protein signatures in the myocardia (MCs) and microvessels (MVs) of human

hearts

(A) The experimental workflow of the sample collection of MCs and MVs by laser microdissection. Hematoxylin and eosin staining of the COVID-19 MCs and MVs
scale bars, 50 pL). Black and red solid arrows point to the inflammatory cells of MCs and MVs, respectively.

C) Total protein numbers of the MCs and MVs from four regions of the control and COVID-19 hearts.

(
(B) The experimental workflow of quantitative proteome and bioinformatics analysis to analyze the MCs and MVs from four regions of human heart tissues.
(
(

D) Venn diagrams show the overlap of the protein numbers identified in the four heart regions (LA, LV, RA, and RV) from the MCs (n = 27) and MVs (n = 20) of

normal controls, respectively.

(E) Region-dependent analysis of the heart proteomes based on the correlation matrix between the four regions of MCs (LA_MC, LV_MC, RA_MC, and RV_MC)

and MVs (LA_MV, LV_MV, RA_MV, and RV_MV), respectively.

(F) The radar image shows cellular components of the four regions of MCs and MVs based on the protein intensity. Different colors represent the multiple cellular

components enriched in the heart tissues.

(G and H) Cumulative protein abundances for the MCs (G) and MVs (H) of heart regions and the total number of proteins constituting the quantiles (Q1: 25%, Q2:

50%, Q3: 75%, Q4: 100%).
See also Video S1 and Tables S3 and S4.
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(A) Four protein modules reveal MC proteomes specificity based on heart structure by co-expression analysis, including LA (n =9), LV (n = 6), RA (n=7), and RV
(n = 5). The proteins with the one-way ANOVA p < 0.05 were regarded as statistically significant in the specific region. Red and blue boxes indicate proteins with
increased and decreased abundance, respectively. Left panel: the co-expression patterns of the proteins in the four modules. Histogram on the right represents

upregulated or downregulated proteins in the COVID-19 MCs of four regions, compared with those of the normal controls.

(B) Clusters of proteins associated with similar biological processes in the MCs of four heart regions are grouped according to the degree of enrichment. Circles of
different sizes represent the number of genes. Gradient red boxes indicate the —log4o p value based on biological processes enrichment.

(C) Immunohistochemistry of the TFRC in the normal MC of LA, LV, RA, and RV (scale bars: 100 um).

See also Figures S2 and S3.
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Figure 4. MCs dysfunction in patients with COVID-19 based on the heart spatial proteome profile

(A) Circos diagram shows six function clusters of dysregulated proteins from MCs of four heart regions between patients with COVID-19 and normal controls.
Each ring in the function cluster represents the DEPs in a specific heart region. The proteins were considered as significantly dysregulated in four regions
with the moderated t test p < 0.05. The dysregulated proteins in the six clusters are labeled as circles (solid, upregulated proteins; hollow, downregulated pro-
teins). The size of the circle indicates |log, (COVID-19/control)|. The function items of the six clusters are presented on the top left corner. The red and blue boxes
represent the numbers of upregulated and downregulated proteins, respectively, in the COVID-19 MCs, compared with the normal controls.

(legend continued on next page)
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downregulated in the COVID-19 myocardia (Figure S4A), which
could be a cause of cardiac conduction dysregulation. These
results indicate that myocardial injury in patients with COVID-
19 is region specific.

In addition, parts of the molecular characteristics of the four
regions of the COVID-19 myocardia were the same. For
example, a member of the serpin family A, SERPINA3, which is
associated with thrombopoietin signaling via the JAK-STAT
pathway and innate immune system, was upregulated in all
four regions of the myocardia (Figure 4C). Proteins associated
with neurodevelopment, including methyltransferase (PRMT5)
in LA, LV, and RV, as well as methyl-CpG binding protein
(MECP2) in LA, LV, and RA, were downregulated in the myocar-
dia, which indicated the potential role of methylation in nervous
system dysfunction of COVID-19 myocardia (Figure 4C).
Together, these results demonstrate that COVID-19 myocar-
dium injuries commonly affect several biological processes
and functions of the heart not only with region specificity but
also with commonality.

Region-resolved functional characteristics of
microvessels in COVID-19 hearts

Next, four protein clusters characterizing different regions of
microvessels with distinct functions were identified (Figure 5A).
The highly expressed proteins in LA (module 1) were involved in
biological functions of material metabolism, antimicrobial
response, phagocytosis, oxidative stress, ascorbic acid associ-
ated process, and plasma membrane transport (Figures 5A, 5B,
and S2B). Module 2, representing the proteins highly expressed
in the LV, was mainly involved in the actin filament-based pro-
cess, vasoconstriction, wound healing, and several immune re-
sponses (Figures 5A, 5B, and S2B). Proteins enriched in RA
(module 3) were mainly involved in the actin filament-based
process, myocyte growth, energy and material metabolism,
and microbial response. The highly enriched proteins of RV
(module 4) were mainly involved in the processes of muscle
contraction, myocyte growth, endothelial cell injury, cardiac
conduction, and blood circulation. In addition, the splicing fac-
tor 3b subunit (SF3B2) was verified with high expression level in
the endothelial cells of microvessels from the LV (Figure 5C).
These results suggest that highly expressed proteins in the mi-
crovessels from four heart regions are all involved in the func-
tion of material metabolism. The highly enriched proteins in
RA and RV microvessels are also involved in additional biolog-
ical processes, such as myocyte growth and energy meta-
bolism. However, most of the biological processes of the highly
enriched proteins in the four regions of microvessels are spe-
cific, which may be related to the functional differences of mi-
crovessels in different regions.
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Characteristics of inflammatory microvessels in COVID-
19 hearts

We next performed spatial mass spectrometry to identify 2,342
proteins in four regions of microvessels from COVID-19 hearts
(Figures S5A-S5D; Table S5), with 745 proteins differently ex-
pressed in the microvessels between COVID-19 and control
groups (Figure S5E). Most of the specific highly expressed pro-
teins in four regions of microvessels were downregulated after
SARS-CoV-2 infection (Figure 5A), indicating dysfunction of mi-
crovessels in the COVID-19 hearts. For example, retinoic acid re-
ceptor responder 2 (RARRES2), which was the most significantly
downregulated protein among all LV-specific highly expressed
proteins after SARS-CoV-2 infection, could mediate the forma-
tion of microvessels as a vascular endothelial growth factor (Bo-
zaoglu et al., 2010). Sortilin 1 (SORT1), which was associated
with the risk of myocardial infarction in humans (Amengual
et al.,, 2018), was downregulated significantly in RV of COVID-
19 microvessels. Furthermore, PGD (specifically highly ex-
pressed in RV) and SF3B2 (specifically highly expressed in LV)
were selected and verified to be downregulated in COVID-19 mi-
crovessels (Figure S5F).

Further, we investigate the molecular characteristics of micro-
vessel injuries in the different regions of the heart. Most of the up-
regulated proteins between COVID-19 and control groups were
involved in the inflammatory response, especially in the micro-
vessels of the LA (Figure 6A). Acute inflammatory response-
associated proteins (SERPINA3, C7, FN1, PTGIS, PLA2G2A,
LYZ, IL17D, and THBS1) and innate immune response-associ-
ated proteins (IGHG4 and PSMC6) were upregulated in the
COVID-19 microvessels of LA (Figures 6A and 6B). Additionally,
the proteins involved in the viral process, such as RPS16, RPL3,
SLPI, RPL31, RPL23, RPL24, RPS3A, PTX3, FAU, and RPS23,
were the most differentially expressed in LA among the four re-
gions, which may be a major cause of the inflammatory response
of microvessels in LA (Figures 6A and 6B). Blood circulation abil-
ity-associated proteins were significantly downregulated, espe-
cially in the microvessels of the RA, such as TNNI3, CAMK2D,
POSTN, MYBPC3, ACTN2, MB, and MYH7 (Figures 6A and
S4B). Moreover, the proteins involved in the hypoxia response
process of RA were also the most differentially expressed in
RA among the four regions (Figure 6A), which may be caused
by the deficiency of its blood circulation ability. We also found
that the microvessels of LV and RV had the most severe loss
of enzyme activity-associated proteins (Figure 6A). The enzyme
system is crucial for vascular regeneration. The loss of the
enzyme system, such as SERPIND1 of LV and ALDH1A1 of RV
(Figure 6A), can lead to poor cardiovascular self-recovery in pa-
tients with COVID-19. Additionally, blood pressure and ECM re-
modeling-associated proteins in the microvessels of four regions

(B) Function analysis of DEPs between the COVID-19 MCs and control samples. Columns on the right of the heatmap represent different functional categories.
The left of the heatmap presents the gene names. Red and blue boxes indicate the log, (COVID-19/control) of the up- or downregulated proteins, respectively.
Asterisks indicate statistical significance (*p < 0.05; **p < 0.01; ***p < 0.001), which was determined by the Benjamini-Hochberg (BH)-adjusted p value of a moder-

ated t test between COVID-19 and control samples.

(C) Circos diagram shows upregulated and downregulated proteins that are involved in multiple biological processes of the MCs of four heart regions in patients
with COVID-19, compared with those of the normal controls. Red, green, blue, and purple lines represent the correlations between multiple biological processes
and LA, LV, RA, and RV regions, respectively. Upregulated expressed proteins: moderated t test p < 0.05 and log, COVID-19/control >1; downregulated ex-

pressed proteins: moderated t test p < 0.05 and log, COVID-19/control < —1.

See also Figures S3, S4, S6, and S7.
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(A) Four protein modules reveal MV proteomes specificity based on heart structure by co-expression analysis, including LA (n = 6), LV (n = 4), RA (n = 5), and RV
(n =5). The proteins with the one-way ANOVA p < 0.05 were regarded as statistically significant in the specific region. Red and blue boxes indicate proteins with
increased and decreased abundance, respectively. Left panel: the co-expression patterns of the proteins in the four modules. Histogram on the right represents

upregulated or downregulated proteins in the COVID-19 MVs of four heart regions, compared with those of the n

ormal controls.

(legend continued on next page)
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are severely dysregulated in COVID-19 heart tissues (Figures 6A
and 6B). The coagulation-associated proteins in the microves-
sels of LV, RA, and RV and the hormone stimulation response-
associated proteins of RV were mainly downregulated in
COVID-19 microvessels (Figure 6A). Taken together, these re-
sults indicate that there are regionally specific injury characteris-
tics of microvessels damage after COVID-19 infection.

In addition, parts of the molecular characteristics of the four
regions of the COVID-19 microvessels were similar (Figure 6C).
For example, a secretory calcium-dependent phospholipase
(PLA2G2A) that plays a role in the regulation of energy meta-
bolism and inflammation was upregulated in the biological pro-
cesses of immune response from LA, RA, and RV of COVID-19
microvessels. Cathepsin B (CTSB) can be used by SARS-CoV-
2 entering TMPRSS2-negative cells (Sungnak et al., 2020).
CTSB was upregulated in all four regions of microvessels, indi-
cating the potential role of CTSB in SARS-CoV-2 infection.
Together, these results indicate that COVID-19 cardiovascular
injuries destroy several biological processes and functions of
the heart not only with region specificity but also with
commonality.

Effect of SARS-CoV-2 proteins on microvessel function
in different heart regions

Next, we found that SARS-CoV-2 can infect microvessels (Fig-
ure S5@G). To investigate the influence of microvessel function
caused by SARS-CoV-2 proteins, we constructed an integrated
interactome network between the viral proteins and differentially
expressed proteins of the microvessels between COVID-19 and
control groups (Figure 7A), following the previous strategy (Leng
et al., 2021). The results suggested that viral proteins cause
changes of microvessel functions from almost all four regions.
Although most of these proteins were identified in all four re-
gions, their expressions levels varied by the effect of interaction
with the viral proteins. For example, several proteins related to
energy metabolism were interacted with viral proteins; these
proteins in the COVID-19 microvessels of RA regions were
severely downregulated, such as ATP5F1B, MDH1, and MT-
ATP6, whereas the expression of MDH1 in RV was upregulated
after SARS-CoV-2 infection. Several proteins with direct interac-
tion of viral proteins are involved in vascular development. For
example, the interactions of GNA13 (guanine nucleotide binding
protein (G Protein), Alpha 13) with ORF3b, ORF3, and ORF7b
function as modulators or transducers in various transmembrane
signaling systems. GNA13-deficient mice died at embryonic day
9.5 because of a loss of microvessels (Offermanns et al., 1997).
The result showed that GNA13 was significantly downregulated
in the microvessels of RA among the four regions, suggesting
that the interactions between GNA13 and virus proteins may
have great impact on the angiogenesis in RA. The virus proteins
had less direct interactions with proteins related to oxygen level,
cardiac conduction, inflammatory response, muscle contrac-
tion, and ECM remodeling, suggesting that SARS-CoV-2 may

Cell Reports

have less impact on these functions. This indicated that these
dysfunctions may be caused by virally driven inflammation.

Inflammation-driven ECM characteristics in different
regions of the COVID-19 hearts

SARS-CoV-2 infection can lead to heart failure in patients with
COVID-19. Heart failure is usually characterized by myocardial
fibrosis caused by ECM deposition (Berk et al., 2007). To further
investigate how inflammatory myocardium and microvessels
lead to ECM changes in four regions of COVID-19 hearts, we
used the “Matrisome” database (Shao et al., 2020) to analyze
the heart ECM characteristics after SARS-CoV-2 infection. In to-
tal, 125 ECMs, including myocardia (53) and microvessels (72),
were found to be differently expressed in COVID-19 hearts
compared with the normal groups. The expressions of core
ECMs, including collagens, glycoproteins, and proteoglycans,
were downregulated mostly in the COVID-19 myocardia and
were upregulated mostly in the COVID-19 microvessels (Fig-
ure S6A). In addition, the expressions of ECM-associated pro-
teins, including ECM regulators, ECM-affiliated proteins, and
secreted factors, changed a lot in the microvessels, but a little
in the myocardia after SARS-CoV-2 infection. Our results
showed that several ECMs associated with coagulation and
thrombosis were significantly upregulated in microvessels,
especially in LA (THBS1, FN1, FBLN1) and LV (F13A1, THBS1);
the anticoagulant reaction-associated ECMs were found to be
downregulated mainly in the microvessels (Figure S6B), indi-
cating the dysfunction of the coagulation system in COVID-19
hearts. The BM is an important structure that creates a barrier
between cardiac myocytes or endothelial cells and the ECM.
The BM components of COVID-19 microvessels, such as
LAMB1, LAMC1, and NID2, were downregulated (Figure S6B),
which may lead to the shedding of CMs or endothelial cells
from the heart tissues. Fibrillar collagen types | and lll, as well
as the low-abundance collagen types IV, V, and VI, are the
main ECMs of the heart (Fan et al., 2012). Results showed that
COL1A1, COL1A2, and COL5A1 were upregulated in COVID-
19 microvessels that could lead to excessive deposition and
affect vasoconstriction (Figure S6B). Furthermore, the enzymes
that control the balance between ECM synthesis and degrada-
tion to maintain cardiac structural integrity were upregulated in
microvessels and myocardia. Most of these enzymes were
enzyme inhibitors; for example, SERPINE2 that can inhibit
thrombin, urokinase, plasmin, and trypsin and TIMP3 that can
inhibit several matrix metallopeptidases were upregulated in
RA (Figure S6B). All these indicated that ECMs expressed with
high abundance cannot be degraded easily, which would further
lead to the excessive deposition of ECM. In contrast, the elastic
fiber-associated proteins (FMOD, MFAP5, MFAP2, FBLNS5,
CILP, and MATN2) and connective tissue homeostasis-associ-
ated proteins (PRELP and COL5A3), which are the structural pro-
teins of myocardia, were downregulated mostly in the COVID-19
myocardia (Figure S6B), indicating that myocardial tissues were

(B) Clusters of proteins associated with similar biological processes of MVs in four heart regions are grouped according to the degree of enrichment. Circles of
different sizes represent the number of genes. Gradient red boxes indicate the —logo p value based on biological processes enrichment.
(C) Immunohistochemistry of SF3B2 in the normal MVs of LA, LV, RA, and RV (scale bars: 100 pm).

See also Figures S2 and S5.
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severely damaged. These results suggest that the dysregulation
of ECM may also be an important reason for the inflammation-
mediated severe injury of COVID-19 hearts.

Next, we used differentially expressed proteins between
COVID-19 sera and hearts for correlation analysis. Results
showed that several ECM proteins that were identified in the
sera proteome profile and can be used to predict the prognosis
of COVID-19 pneumonia were consistent with those differently
expressed between COVID-19 and normal hearts, including in
myocardia and microvessels (Figure S7). For example, ECM reg-
ulators (HRG, ITIH2, ITIH1, and SERPINC1) and proteoglycan
(LUM) that were downregulated in the COVID-19 sera were also
decreased in the COVID-19 myocardia and microvessels of four
heart regions. The ECM regulator (SERPINA3) that upregulated
in the COVID-19 sera was also increased in the COVID-19 myo-
cardia and microvessels. These results indicate that the differen-
tially expressed ECMs identified in the inflammatory myocardium
and microvessels of patients with COVID-19 can also be detected
in sera of patients with COVID-19; thus, these ECM proteins could
be considered as potential markers for heart injury.

DISCUSSION

Usually, pathology is used to analyze the phenotype of heart dis-
ease of four chambers. However, there are few studies on the
molecular characteristics of specific pathological phenomena
in specific heart regions. The molecular composition of micro-
vessels was unclear; therefore, the pathogenesis of cardiovas-
cular-related diseases was difficult to study in detail. The molec-
ular characteristics of the myocardium in different heart regions
are unclear, which prevents full understanding of the specific
contractility and conduction characteristics of the myocardium.

In this study, our results revealed that although the cell types of
the four regions of heart are similar; their molecular composition is
specific, which may lead to differences in their functions (Tretter
and Redington, 2018). For example, the specific highly expressed
proteins of the myocardia from the LV and RV are involved in
similar functions, including energy metabolism, myocardial
contraction, and myocardial tissue development (Figure 3B).
However, LV myocardia were enriched more in small-molecule
metabolism, protein assembly, skeleton, and transmembrane
transport-associated proteins. In addition, the specific highly ex-
pressed proteins in the four regions of microvessels showed
several different enriched functions (Figure 5B). RA collects blood
from superior and inferior vena of the body, which mainly contains
carbon dioxide and waste. Many hypoxia response- and blood cir-
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culation-associated proteins were downregulated, while inflam-
matory response, blood pressure, and coagulation-associated
proteins were upregulated in the microvessels of the RA from
COVID-19 hearts (Figure 7B). The blood pressure-associated pro-
teins in RV, which receive blood from RA, were downregulated
significantly, suggesting a failure of the cardiac function in RV after
SARS-CoV-2 infection. The highly expressed proteins of LA micro-
vessels were the least expressed among the four heart regions
(Figures 5B and S5B). However, the inflammatory response,
innate immunity, and virus process-associated proteins in LA
were upregulated mostly in COVID-19 hearts (Figure 7B), possibly
because of the microvessels in LA being connected to the pulmo-
nary vein, which is more vulnerable to the virus infecting the lung
and its inflammatory storm. After oxygenated blood from the LA
reached the LV, the microvessels of the LV contained many upre-
gulated proteins that are associated with inflammation. Subse-
quently, the cell adhesion function, which is related to injury repair,
as well as enzyme activity-associated proteins, which are related
to vascular regeneration, were seriously disabled, indicating that
the wound healing ability of microvessels in LV decreased after
SARS-CoV-2 infection. Multiple molecular features explained the
pathogenesis and the major clinical manifestations driven by
SARS-COV-2, providing a potential direction for the research
and clinical treatment of heart diseases in the future.

Limitations of the study

Limitations of the current study include the limited coverage and
depth of protein identification because of the paraffin section
samples, especially the microvascular samples, obtained by
microdissection. Nonetheless, the region-specific proteome da-
tasets of COVID-19 myocardia and microvessels reported here
provide a starting point for ascertaining the pathological charac-
teristics of specific anatomical structures in hearts of patients
with COVID-19. In addition, in this study, we observed the pro-
tein particles of SARS-CoV-2 and inflammatory cells in the mi-
crovessels of COVID-19 hearts. There remains a need to explore
the specific mechanisms of injuries in COVID-19 hearts, such as
the differences between the pathogenic mechanism of direct vi-
rus infection and inflammation, which can provide accurate inter-
vention strategies for subsequent treatment.

STARXMETHODS

Detailed methods are provided in the online version of this paper
and include the following:

with the moderated t test p < 0.05. The dysregulated proteins in the 10 clusters are labeled as circles (solid, upregulated proteins; hollow, downregulated pro-
teins). The size of the circle indicates |log2 (COVID-19/control)|. The function items of the 10 clusters are presented at the top left corner. The red and blue boxes
represent the upregulated and downregulated proteins, respectively, in the COVID-19 MVs, compared with the normal controls based on the protein numbers.
(B) Function analysis of DEPs between COVID-19 MVs and control samples. Columns on the right of the heatmap represent different functional categories. The
left of the heatmap presents the gene names. Red and blue boxes indicate the log, (COVID-19/control) of the upregulated or downregulated proteins, respec-
tively. Asterisks indicate statistical significance (*p < 0.05; **p < 0.01; **p < 0.001), which were determined by the BH-adjusted p value of a moderated t test

between COVID-19 and control samples.

(C) Circos diagram shows upregulated and downregulated proteins that are involved in multiple biological processes of MVs from four heart regions in patients
with COVID-19, compared with the normal controls. Red, green, blue, and purple lines represent the correlations between multiple biological processes and LA,
LV, RA, and RV regions, respectively. Upregulated expressed proteins: moderated t test p < 0.05 and log, COVID-19/control >1; downregulated expressed pro-

teins: moderated t test p < 0.05 and log, COVID-19/control < —1.
See also Figures S4-S7.
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UniProt
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RESOURCE AVAILABILITY

Lead contact

Further information and requests for resources and reagents should be directed to and will be fulfilled by the lead contact Shuyang

Zhang (shuyangzhang103@nrdrs.org).

Materials availability

This study did not generate new unique reagents.

Data and code availability

All proteomics raw data have been deposited to the ProteomeXchange Consortium via the iProX partner repository with the data-
set identifier PXD031249/IPX0004043000. Additional Supplemental Items are available from Mendeley Data at http://dx.doi.org/

10.17632/4r7mtm9gdh.1.

This paper does not report original code.

Any additional information required to reanalyze the data reported in this paper is available from the lead contact upon request.
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EXPERIMENTAL MODEL AND SUBJECT DETAILS

Human participants

Hearts were obtained from five autopsy cases of deceased patients with COVID-19, including one male and four females with the age
ranging from 57 to 80 (clinical data is shown in Table S1). Autopsies were performed 8-24 h after death in Wuhan, China, from
February 18 to April 4, 2020. The puncture samples of heart tissues from 30 individuals were collected as non-COVID-19 controls
at the Department of Pathology, Peking Union Medical College Hospital, including 12 males and 18 females with the age ranging
from 19 to 75 (clinical data is shown in Table S2). All samples and clinical data were obtained with informed consents provided by
their guardians and the procedures were performed in accordance with cohort hospital ethics committee regulations and the Na-
tional Health Commission of China and the Helsinki Declaration. Samples from the four heart regions, including the LA, LV, RA,
and RV, were used for histopathological examination and proteomics analysis.

METHOD DETAILS

Laser-capture microdissection of heart samples
In histopathology, the myocardia and microvessels are totally different and can be distinguished completely. Thus, the pathologists partic-
ipated in this study were requested to separate the myocardium and microvessels accurately according to the histopathology and then
performed the laser-capture microdissection to different parts of myocardia and microvessels. Myocardia are the main components of
the heart. We selected myocardial tissues without microvessels as myocardial samples. The microvessels in the myocardia were cut
along with the adventitia to avoid mixing with the surrounding tissues (Video S1). For each sample, we collected multiple parts of micro-
vessels to ensure the integrity of the overall vascular tissues. According to the pathology analysis, the 10 um section was used for laser
microdissection and collection of microvessels. All parts of myocardial or microvessels of two sections were collected for MS analysis.
The laser-capture microdissection of heart samples from different regions were obtained according to the following procedure
(Video S1). The FFPE heart samples were cut and mounted on an Molecular Machines and Industries (MMI) MembraneSlides
(MMI GmbH, Eching, Germany) after hematoxylin-eosin (H&E) staining. Laser-capture microdissection was performed using a laser
microdissection system from MMI CellCut Laser Microdissection, Eching, Germany controlled by the MMI Cell Tools software from
the same company. After calibrating the laser focus and power, we cut the left atrial myocardium (LA_MC), left atrial microvessel
(LA_MV), left ventricular myocardium (LV_MC), left ventricular microvessel (LV_MV), right atrial myocardium (RA_MC), right atrial mi-
crovessel (RA_MV), right ventricular myocardium (RV_MC), and right ventricular microvessel (RV_MV).

Histology and immunohistochemistry

The heart samples were processed as formalin-fixed, paraffin-embedded tissue blocks. H&E and immunohistochemical stains on 4-
um slides were performed according to the standard procedure, as previously described (Ren et al., 2021; Yao et al., 2021). The pri-
mary antibodies included TFRC, SF3B2, PRKCSH, and PDG. The immunostaining results were semi-quantitatively evaluated as
partially positive (<50% of stained cells) or diffusely positive (=50% of stained cells).

Sample preparation for mass spectrometry analysis

The H&E-stained tissue sections were first destained with a 99:1 mixture of 70% ethanol and hydrochloric acid. After that, tissue sam-
ples were performed in treatment solution (50% [v/v] mixture of 50 mM ammonium bicarbonate and trifluoroethanol [TFE]) for 45 min
at 90°C. The tissue lysate was reduced at 25 mM dithiothreitol (1 h at 37°C) and afterward alkylated at 50 mM iodoacetamide (30 min
in darkness at room temperature). Upon vacuum centrifugation, digestion was conducted in 5% TFE, 50 mM ABC, trypsin was added
at a ratio of 1:50 (enzyme to protein) at 37°C for 14-16 h. Digestions were stopped by adding trifluoroacetic acid to obtain a final
concentration of 0.5%. The peptides were desalted using Ziptip C18 pipette tips (Millipore, USA) according to the manufacturer’s
instructions. After drying, the peptides were resuspended in 0.1% formic acid. Then, 1 pug of protein lysate from each sample
were removed for DIA Spectral Library building. The Biognosys iRT Kit was added to remaining samples according to the manufac-
turer’s instructions (required for DIA analysis using Biognosys Spectronaut).

Mass spectrometry acquisition

The samples were analyzed using a homemade analytical column (150 um x 170 mm, 1.9 um) on an EASY-nLC1200 connected to an
Orbitrap Exploris 480 mass spectrometer (Thermo Scientific). Peptides were eluted using a binary solvent system with 99.9% H,0,
0.1% formic acid (phase A), 80% ACN, 19.9% H,0, and 0.1% formic acid (phase B). The following linear gradient was used: 8%-28%
B for 44 min, 28%-35% B for 7 min, 35%-100% B for 3 min, washed at 100% B for 9 min for microvessels and 11 min for myocardia.
The eluent was introduced directly to an Orbitrap Exploris480 mass spectrometer via an EASY-Spray ion source. Source ionization
parameters were as follows: spray voltage, 2.3 kV; capillary temperature, 350°C.

For the DDA-MS runs, MS spectra were collected in the Orbitrap mass analyzer (60,000 resolutions, 300-1350 m/z range) with an
AGC target of 3 x 10° and a maximum ion injection time of 22 ms. For HCD, the isolation window was set to 1.6 m/z and normalized
collision energy of 28% was applied. MS/MS spectra were collected in the Orbitrap (15,000 resolution) with an AGC target of
7.5 x 10* and a maximum ion injection time of 22 ms.
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The DIA-MS method consisted of an MS1 scan from 300 to 1300 m/z (AGC target 3 x 10° and 28 ms injection time). Then, DIA
segments were acquired at a resolution of 15,000 (AGC target 1 x 10° and maximum injection time mode was set to auto). The colli-
sion energy was 32%. The spectra were recorded in profile mode. The default charge state for the MS2 was set to 3.

Mass spectrometry data analysis

DIA data were analyzed with a Spectronaut pulsar, a mass spectrometer vendor independent software from Biognosys (Zhang et al.,
2020). The default settings were used for targeted analysis of DIA data in Spectronaut. In brief, the retention time prediction type was
set to dynamic iRT (adapted variable iRT extraction width for varying iRT precision during the gradient) with a correction factor
applied to the window. Mass calibration was set to local mass calibration. Decoy generation was set to scrambled (no decoy limit).
Interference correction on the MS2 level was enabled, removing fragments from quantification based on the presence of interfering
signals but keeping at least three fragments for quantification. The false discovery rate was estimated using the prophet approach
and set to 1% at the peptide level. Protein inference to determine the protein groups was performed using the principle of parsimony
with the ID picker algorithm as implemented in Spectronaut. For the analysis of the DIA-runs with the spectral library, the RAW files
were converted into the Spectronaut file format, and then the files were calibrated in the retention time dimension using the global
spectral library. Subsequently, the recalibrated files were used for targeted data analysis with the spectral library without new recali-
bration of the retention time dimension. The DDA files were searched against the UniProt human database (downloaded on 11™ Dec.
2020) and the Biognosys iRT peptides sequences database.

QUANTIFICATION AND STATISTICAL ANALYSIS

The quantification values of the identified proteins were normalized by taking the fraction of the total, which was multiplied by 10° and
log2 transformed. Pairwise comparisons to determine the proteins whose expression was significantly different between the COVID-
19 patients and normal controls were performed by a moderated t test using the R package Limma (version 3.50.0) in Figures 1C and
1D, 4, 6, S1G, S3E, S4, S5E, and S7. One-way ANOVA was used to determine whether there are any statistically significant
differences in the normalized intensities among four heart regions of myocardia (Figure 3A) and microvessels (Figure 5A). Differences
according to the Benjamin—Hochberg adjusted p value of <0.05 (*), 0.01 (**), or 0.001 (***) were considered statistically significant, and
the specific p value is indicated in the figure legends separately.

The online tool DAVID (https://david.ncifcrf.gov/) (Sherman et al., 2022) was used to annotate the proteins according to biological
processes and cellular components via GO analysis. PCoA of the proteins whose values in each sample were valid was performed
using the R package ape (version 5.4.1). The protein—protein interactions were retrieved from the STRING database (https://
string-db.org/) (Szklarczyk et al., 2017) and the network was built using Cystoscope (version 3.8.2) (Shannon et al., 2003). We
used the ComplexHeatmap package (version 2.10.0) to reveal the specificity proteins in region-resolved myocardia and microvessel.
We also used the circlize package (Gu et al., 2014) (version 0.4.13) to circularly visualize upregulated and downregulated proteins that
are involved in multiple biological processes associated with four heart regions.
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