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The successful memory process produces specific activity in the brain network. As the
brain activity of the prestimulus and encoding phases has a crucial effect on subsequent
memory outcomes (e.g., remembered or forgotten), previous studies have tried to
predict the memory performance in this period. Conventional studies have used the
spectral power or event-related potential of specific regions as the classification feature.
However, as multiple brain regions work collaboratively to process memory, it could be
a better option to use functional connectivity within the memory-related brain network
to predict subsequent memory performance. In this study, we acquired the EEG signals
while performing an associative memory task that remembers scene–word pairs. For
the connectivity analysis, we estimated the cross–mutual information within the default
mode network with the time–frequency spectra at the prestimulus and encoding phases.
Then, we predicted the success or failure of subsequent memory outcome with the
connectivity features. We found that the classifier with support vector machine achieved
the highest classification accuracy of 80.83% ± 12.65% (mean ± standard deviation)
using the beta (13–30 Hz) connectivity at encoding phase among the multiple frequency
bands and task phases. Using the prestimulus beta connectivity, the classification
accuracy of 72.45% ± 12.52% is also achieved. Among the features, the connectivity
related to the dorsomedial prefrontal cortex was found to contribute to successful
memory encoding. The connectivity related to the posterior cingulate cortex was found
to contribute to the failure of memory encoding. The present study showed for the first
time the successful prediction with high accuracy of subsequent memory outcome using
single-trial functional connectivity.
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INTRODUCTION

Differences in brain activity between the subsequently
remembered and forgotten trials at learning are often referred
to as subsequent memory effects (SMEs) (Paller and Wagner,
2002; Klimesch, 2012). As the brain activity during encoding
has a crucial effect on subsequent memory outcomes, it is
plausible to use it to predict the success of subsequent memory
outcomes. A number of studies have successfully established
that brain oscillations in multiple EEG frequency bands during
the encoding phase can predict subsequently remembered and
forgotten trials (Hanslmayr and Staudigl, 2014). In addition
to SMEs during the encoding phase, previous studies also
showed that prestimulus activities could predict subsequent
memory outcome, as anticipatory activity prior to stimulus
presentation could play a critical role in how a stimulus will be
processed (Otten et al., 2006; Guderian et al., 2009; Addante
et al., 2011, 2015; Burke et al., 2014; Cohen et al., 2015;
Schneider and Rose, 2016).

In this regard, there have been studies that predicted
subsequent memory outcome (e.g., remembered or forgotten)
using single-trial EEG SMEs features of prestimulus, and
during the encoding phase. By combining the prestimulus and
during encoding phase SMEs, a previous study achieved 59.6%
classification accuracy (Noh et al., 2014), whereas another study
achieved 72.1% classification accuracy (Sun et al., 2016). These
studies have used the spectral power or event-related potential
(ERP) of specific regions to predict subsequent memory outcome.
However, as the brain works collaboratively to process memory,
other than features of local signal amplitude, a better option
to predict subsequent memory outcome could be to use the
functional connectivity between multiple brain regions.

The activities of the medial temporal lobe are well-known
to be related to successful memory encoding (Guderian et al.,
2009; Lega et al., 2012). In addition, widespread brain area,
especially belonging to the default mode network (DMN), which
is a common set of brain regions that demonstrate consistently
greater activity while resting than while performing cognitively
demanding tasks, such as memory task (Buckner et al., 2008), is
also known to be related to successful memory function (Kim,
2011). This network includes the medial prefrontal cortex, the
posterior parietal cortex, the hippocampus (HC), the precuneus,
the inferior parietal lobe, and the lateral temporal lobe. The
deactivation of the DMN during encoding is known to reflect
successful memory encoding (Anticevic et al., 2010; Chai et al.,
2014; Raichle, 2015; Sato and Mizuhara, 2018); meanwhile,
the activation of the DMN during encoding is known to
be related to subsequent forgetting (Kim, 2011). Specifically,
in a previous study, distinct DMN regions were reported
to modulate both encoding success and failure. The medial
prefrontal cortex, angular gyrus (AG), and lateral temporal cortex
were reported to mediate encoding success in a self-referential
memory encoding task, whereas the posterior cingulate was
reported to be related to both encoding failure and task-
unrelated thought (Maillet and Rajah, 2014). In addition, when
individuals constructed mental scenes based on memory, a
distinct subsystem of the DMN was preferentially engaged

(Andrews-Hanna et al., 2010). Additionally, the posterior
cingulate, inferior parietal cortex, and lateral temporal cortex
were recruited during the construction of the mental scenes,
which is the process that could be required in the memory
encoding (Hassabis et al., 2007). In summary, previous studies
have shown that various brain areas involved in the DMN have
an important role in the success and failure of the memory
encoding process.

Despite the importance of DMN activity, no studies to date
have predicted subsequent memory outcome using the single-
trial functional connectivity of DMN regions in prestimulus
and during the encoding phase. Here, we hypothesized that
connectivity features could predict subsequent memory outcome
in single-trials. Therefore, we predicted subsequent memory
outcome using features from the frequency specific connectivity
within DMN. Here, among the various connectivity measures,
we used mutual information (MI) that evaluates the amount of
information about one signal that is contained in another signal
(Fraser and Swinney, 1986).

MATERIALS AND METHODS

Participants
Twenty-nine right-handed healthy subjects without neurological
or psychiatric abnormalities were recruited. The datasets of two
participants were excluded from further analysis because of
insufficient artifact-free trials. The final study group included 27
participants (11 females; mean age = 26.0± 2.1 years, range = 23–
31 years; education level = 17.0 ± 1.2 years). As an effort to
control the physiological condition of subjects, we instructed the
subjects to get enough sleep the day before they participated in the
experiment. This study was approved by the institutional review
board (IRB) of the Seoul National University Hospital Clinical
Research Institute (IRB number: H-1808-098-967).

Experimental Paradigm
We applied a subsequent memory paradigm that consisted of
scene–word pairs in study and test blocks (Figure 1). Each study
and test block had 75 trials. Scene stimuli consisted of 50% indoor
images and 50% outdoor images. As word stimuli, concrete nouns
of 50% nature objects and 50% manmade objects were used.
During the study phase, subjects were instructed to remember
scene–word pairs using a strategy that made an imaginary scene
associated with the paired word for 3 s. In order to boost subjects’
participation in the experiment, the subjects were instructed to
press a button on whether or not the associative imaginary scene
in the mind vividly appeared when a red fixation was presented
on the screen. To eliminate the residual effect of the previous
stimulus, boxes filled diagonally were presented for 1.5 s. The
encoding phase of one experimental session lasted about 10 min.
After the study block, subjects were instructed to answer as many
simple arithmetic problems as possible in 2 min for a distracting
task (e.g., alternately subtract 4 and 7 from 100). During the
test phase, subjects were instructed to verbally recall the word
cued by the scene previously learned at self-paced speed. There
was a time limit of up to 20 s, and if exceeded, it was classified
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FIGURE 1 | Experimental paradigm. (A) Study block. Subjects were instructed to remember scene–word pairs using a strategy that makes an imaginary associative
scene. (B) Test block. Subjects were asked to verbally recall the word cued by the scene at self-paced speed.

as forgotten. To maintain the attention of the participants, the
next session went on when the subjects were fully prepared.
One session consisted of a block of study, distraction, and test.
Three sessions were conducted for each subject. Stimuli were
presented using STIM2 presentation software (Compumedics
Neuroscan, Australia).

EEG Data Acquisition and Preprocessing
EEG was recorded using a Neuroscan EEG recording system
(Compumedics Neuroscan, United States) with 64-channel

Quick caps (Compumedics Neuroscan, United States) in an
electrically shielded cabin. EEG signals were digitized at a
sampling frequency of 1,000 Hz with a SynAmps2 amplifier
(Compumedics Neuroscan, United States). Preprocessing was
conducted using EEGLAB open source toolbox (version 2019.11)
and self-written MATLAB scripts (version R2019b; MathWorks
Corp.). At the first preprocessing step, the linked ear EEG
montage was converted to common average reference. The

1http://sccn.ucsd.edu/eeglab
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data were segmented into epochs ranging from -1,000 to
2,000 ms relative to the stimulus onset. Trials that include
high noise were manually discarded, and only the remaining
artifact-free trials were used for further classification analysis.
Table 3 shows the final included number of trials for
each individual.

Frequency-Specific EEG Source
Connectivity Analysis
For the time–frequency analysis, continuous wavelet
transformation was applied. We focused on the theta (3–
7 Hz), alpha (8–12 Hz), and beta (13–30 Hz) frequency bands.
These power values were then normalized by the baseline
activity before the stimulus onset of −1 to −0.8 s. EEG signals
at -500 to 0 ms before the stimulus onset were used as a
“prestimulus” phase, and EEG signals after the stimulus onset at
0 to 1,000 ms were used as an “encoding” phase for subsequent
connectivity analysis. To take into account the time to see and
recognize the stimuli, the encoding phase was designated as
1,000 ms. For the source analysis, regions of interest (ROIs)
were selected in regions that were representative of the DMN
(Raichle, 2015). The ROIs included the dorsomedial prefrontal
cortex (DMPFC), posterior cingulate cortex (PCC), AG, middle
temporal gyrus (MTG), and HC. Table 1 shows the coordinates

TABLE 1 | Talairach coordinates of regions of interest.

Region Abbreviation x y z

Dorsomedial prefrontal cortex DMPFC 0 32 5

Posterior cingulate cortex PCC 0 −51 23

Left angular gyrus AG (L) −44 −54 23

Right angular gyrus AG (R) 44 −54 23

Left middle temporal gyrus MTG (L) −53 −2 −18

Right middle temporal gyrus MTG (R) 53 −2 −18

Left hippocampus HC (L) −27 −11 −13

Right hippocampus HC (R) 27 −11 −13

of the ROIs. Source activity was extracted using the built-in
function of discrete model probing in BESA research 6.0
(GmbH, Germany).

For the source connectivity analysis, we calculated the
time–frequency cross-MI (Jeong et al., 2001). After the
continuous wavelet transform, the mean value of each frequency
band (theta, alpha, and beta) was obtained. Then, cross-
MI was calculated using samples from each time interval
(prestimulus and encoding phase). MI is a measure of
the amount of dependency between two signals. Compared
to linear correlation, MI is a more general measurement,

FIGURE 2 | Feature selection of mutual information (remembered–forgotten). For the feature selection, as a result of the t-test for the difference between the
remembered and forgotten conditions (left column of each phase), features with the absolute value of the t-value in the top 20% (right column of each phase) were
selected in each phase (e.g., prestimulus and encoding phases). DMPFC, dorsomedial prefrontal cortex; PCC, posterior cingulate cortex; ANG, angular gyrus; MTG,
middle temporal gyrus; HIP, hippocampus; L, left; R, right.
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TABLE 2 | Results of the t-test for the difference between the remembered and forgotten conditions.

Time Band Feature set t-value Time Band Feature set t-value

Prestimulus Theta DMPFC MTG (L) 2.282* Encoding Theta MTG (L) MTG (R) 2.891**

MTG (L) MTG (R) 1.734* DMPFC MTG (L) 1.776*

MTG (R) HIP (R) −1.760* PCC MTG (L) 1.367

PCC ANG (R) −1.848* DMPFC ANG (R) −1.393*

HIP (L) HIP (R) −2.096* HIP (L) HIP (R) −1.890*

ANG (L) MTG (R) −2.139*

Alpha DMPFC HIP (L) 2.941** Alpha DMPFC MTG (R) 3.324**

DMPFC MTG (R) 2.818** DMPFC ANG (R) 2.256*

DMPFC ANG (R) 2.077* HIP (L) HIP (R) 1.759*

ANG (L) HIP (R) −1.922* PCC HIP (R) −1.879*

PCC HIP (L) −2.119* MTG (R) HIP (R) −2.728*

PCC HIP (R) −2.271*

MTG (R) HIP (R) −2.334*

Beta DMPFC MTG (L) 3.810** Beta DMPFC MTG(L) 3.661**

DMPFC MTG (R) 2.680** DMPFC MTG(R) 2.859**

ANG (R) HIP (L) 2.625** ANG(R) HIP(L) 2.475*

ANG (L) MTG (L) 1.958* DMPFC ANG(L) 1.878*

ANG (R) MTG (R) 1.880* ANG(R) MTG(R) 1.763*

ANG (R) MTG (L) 1.831* ANG(R) MTG(L) 1.748*

DMPFC ANG (L) 1.829*

*p < 0.05, **p < 0.01.
DMPFC, dorsomedial prefrontal cortex; PCC, posterior cingulate cortex; ANG, angular gyrus; MTG, middle temporal gyrus; HIP, hippocampus; L, left; R, right.

because it can measure non-linear dependency. The temporal
series of averaged frequency band signals were used to
compute the cross-MI between ROIs. MI values between ROIs
can be calculated using the probability density function, as
follows:

MI = MIXY = MIYX = MI (X, Y) =∑
p (X,Y) log

p(X,Y)

p (X) · p(Y)

here, p(X, Y) is the joint probability distribution function of
variables X and Y, and p(X) and p(Y) are the marginal probability
distribution functions of X and Y, respectively.

Then, we investigated the differences in EEG connectivity
between subsequently remembered and forgotten trials (during
both the Prestimulus and Encoding phases).

Two-Class Classification Using
Single-Trial Source Connectivity
Features
We used a linear support vector machine (SVM) in MATLAB
for the classification of memory success. The most informative
connectivity values with the top 20% of the t-statistics were
selected as the features in each phase (i.e., the prestimulus
and encoding phase) and each frequency band (Figure 2). The
classification performance of individual EEG signal was evaluated
by fivefold cross-validation with 100 repetitions.

RESULTS

Behavioral Results
On average, participants correctly remembered 54.64%± 18.26%
(mean ± standard deviation) trials of the stimulus, indicating
that they were able to efficiently encode materials and
that we obtained enough trials for both remembered and
forgotten conditions.

Feature Selection
Figure 2 shows the selected features for each phase and
frequency band, and Table 2 presents the t-statistics values
(uncorrected) and regions of the selected connectivity. The
most informative connectivity values with the top 20% of the
t-statistics (uncorrected) were selected as the features in each
phase (i.e., the prestimulus and encoding phase) and frequency
band. The subsequently remembered condition showed increased
connectivity centered on the DMPFC at the prestimulus and the
encoding phase. On the other hand, the subsequent forgotten
condition showed increased connectivity centered on PCC in the
theta and alpha bands at the prestimulus phase.

Classification Accuracy
Table 3 describes the individual classification accuracy in each
phase and frequency band. The SVM binary classifier achieved
the highest mean classification accuracy of 80.83% ± 12.65%
(mean± standard deviation) using the beta connectivity features
at the encoding phase (chance level = 50%). At the encoding
phase, an accuracy of 72.79% ± 12.85% was achieved using the
alpha connectivity features, and 69.36% ± 11.90% was achieved
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TABLE 3 | Individual classification accuracy.

Prestimulus (−500 to 0 ms) (%) Encoding (0–1,000 ms) (%) No. of trials (REM/FOR)

Subject Theta Alpha Beta Theta Alpha Beta

sub1 53.83 79.95 56.93 61.53 74.38 72.93 84/101

sub2 66.00 82.97 75.83 66.39 90.44 91.58 108/72

sub3 52.50 56.71 93.66 73.63 69.16 87.03 146/40

sub4 60.76 94.13 73.45 59.63 96.16 57.95 107/83

sub5 56.36 75.24 83.12 56.14 71.19 88.57 109/101

sub6 71.17 64.40 76.95 60.86 85.90 60.55 97/99

sub7 52.98 53.03 78.40 56.60 53.38 91.78 58/132

sub8 70.16 64.09 67.31 77.20 73.43 72.41 127/89

sub9 60.88 59.83 67.53 77.13 81.80 68.30 115/80

sub10 55.78 79.06 85.56 67.69 81.75 92.16 81/78

sub11 50.60 74.02 83.50 78.07 83.21 92.55 144/64

sub12 57.42 70.68 91.32 81.87 74.45 89.34 120/71

sub13 52.95 61.21 93.76 73.05 52.37 99.39 84/101

sub14 60.66 66.07 86.07 68.30 75.32 93.80 150/66

sub15 51.94 57.00 56.42 55.58 64.25 73.89 28/148

sub16 57.00 56.3 64.75 75.16 56.61 74.41 172/47

sub17 50.82 64.39 53.42 56.37 61.13 55.71 169/30

sub18 59.21 69.75 69.17 75.25 63.50 75.17 70/52

sub19 85.03 77.00 85.38 82.75 68.44 88.06 101/61

sub20 54.97 54.00 66.50 58.82 77.47 65.97 117/51

sub21 55.11 53.34 63.29 69.08 65.08 85.13 142/43

sub22 52.98 63.38 48.21 46.21 66.95 67.12 92/117

sub23 53.55 50.14 64.66 58.25 52.11 77.89 31/190

sub24 76.11 61.24 67.74 92.18 81.24 84.74 100/92

sub25 62.45 51.74 72.32 67.18 59.84 84.08 58/132

sub26 77.40 78.15 73.03 83.68 91.35 92.30 73/130

sub27 92.42 89.08 57.79 94.03 94.42 99.67 74/109

Average 61.15 66.92 72.45 69.36 72.79 80.83

SD 10.91 11.93 12.52 11.90 12.85 12.65

using the theta connectivity features. Using the prestimulus beta
connectivity features, the mean classification accuracy was also
72.45% ± 12.52%. At the prestimulus phase, an accuracy of
66.92% ± 11.93% was achieved using the alpha connectivity
features, and 61.15% ± 10.91% was achieved using the theta
connectivity features.

DISCUSSION

The present study showed that subsequent memory outcome
(e.g., remembered or forgotten) can be successfully predicted
using the functional connectivity within DMN regions.

Subsequent Memory Effects of
Functional Connectivity
In the present study, using prestimulus beta band connectivity,
we achieved 72.45% average classification accuracy, and using
encoding beta band connectivity, we achieved 80.83% prediction
accuracy. By using functional connectivity features, we achieved
higher classification accuracy than the previous studies that used
local brain activities.

Conventional studies have investigated the role of local brain
activities in relation to the formation of human memories.
Previous studies have consistently reported that successful
memory encoding is related to the activation of specific
brain regions. In particular, successful memory encoding is
related to the medial temporal lobe and prefrontal cortex
(Wagner et al., 1998; Paller and Wagner, 2002; Reber et al.,
2002; Kim, 2011), whereas the failure of memory encoding
is related to PCC and temporoparietal junction (Otten and
Rugg, 2001; Kim, 2011). In addition to encoding SMEs, as
anticipatory activity prior to stimulus presentation could play
a critical role in how a stimulus will be processed, many
studies have also investigated prestimulus SMEs (Otten et al.,
2006; Guderian et al., 2009; Addante et al., 2011, 2015;
Burke et al., 2014; Cohen et al., 2015; Schneider and Rose,
2016). However, recent studies have suggested the involvement
of the more widely distributed cortical network and the
importance of its collaborative roles in the episodic encoding
(Jeong et al., 2015).

Previous studies have predicted subsequent memory outcome
based on regional activity. By combining prestimulus and
encoding SMEs, one study achieved 59.6% classification accuracy
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(Noh et al., 2014), whereas another study achieved 72.1% (Sun
et al., 2016). They used brain activity in specific areas (e.g.,
spectral power or ERP of specific regions) as a feature. On the
other hand, our results showed that subsequent memory outcome
could be better predicted using functional connectivity compared
to the local brain activity. Our approach would reflect the way in
which the brain regions related to a memory task work together.

Characteristics of a Successful Memory
Network at the Prestimulus and
Encoding Phases
At the prestimulus phase, to prepare for a successful encoding,
it is necessary to maintain top–down attention to task and
to suppress task-irrelevant thoughts that occur before the
stimulus onset. Therefore, ongoing neural activity occurring
before the stimulus onset might play an important role in
preparing the brain for successful memory outcome (Otten et al.,
2006; Guderian et al., 2009; Addante et al., 2011, 2015; Burke
et al., 2014; Cohen et al., 2015; Schneider and Rose, 2016). In
our results, the connectivity centered on the DMPFC at the
prestimulus phase was related to the subsequently remembered
condition. The connectivity of the DMPFC was reported to be
related to maintaining top–down attention and focus on task for
successful encoding (Miller, 2000).

At the encoding phase, the process of focusing on the
task and associating scene and word is required for successful
encoding. In our results, the connectivity centered on the
DMPFC was maintained, and theta band connectivity between
the bilateral MTG and alpha band connectivity between the
DMPFC and MTG (R) was increased, compared to the
prestimulus phase. The maintained connectivity centered on
the DMPFC may reflect top–down attention to the task.
For the increased connectivity centered on the MTG, as
the MTG is known to be involved in semantic processing
(Vandenberghe et al., 1996; Visser et al., 2012), associating
scene and word for successful memory formation might reflect
semantic processing.

Dissociable Roles of DMN Regions
During the Prestimulus and Encoding
Phases
Previously, distinct DMN regions have been reported to
modulate both encoding success and failure. Medial prefrontal
cortex and AG were reported to mediate encoding success,
whereas PCC was reported to be related to both encoding failure
and task-unrelated thought (Maillet and Rajah, 2014). Similarly,
the PCC showed more activity in subsequent forgotten items
than the subsequently remembered items (Otten and Rugg,
2001; Wagner and Davachi, 2001; Daselaar et al., 2004, 2009).
In our results, the connectivity centered on the DMPFC was
found to be related to successful memory encoding, whereas
the connectivity centered on the PCC was found to be related
to the failure of memory encoding. In particular, the higher
connectivity centered on the PCC in the forgotten conditions
was obvious in the prestimulus phase. To sum up, successful
memory encoding was found to be related to the connectivity

FIGURE 3 | Results of the t-test for the difference in mutual information
between the remembered and forgotten conditions (p < 0.05). The nodes
selected in this study are the midline DMPFC, midline PCC, left and right
ANG, right and left MTG, and right and left HIP.

of the anterior DMN, whereas the failure of memory encoding
was found to be related to the connectivity of the posterior DMN
(Figure 3).

CONCLUSION

This is the first study in which subsequent memory outcome
has been predicted using single-trial functional connectivity
in the prestimulus and encoding phases using scalp EEG.
In this study, using single-trial EEG connectivity features,
we achieved average accuracy of greater than 80% for the
prediction of subsequent memory outcome. We found anterior
and posterior dissociation of the DMN. In both the prestimulus
and encoding phases, in remembered conditions, the connectivity
of the anterior DMN was higher, whereas that of the posterior
DMN was lower. In the future, these results could be very
useful in building a closed-loop brain stimulation system for
memory enhancement that could deliver stimulation only when
a subsequent memory outcome is predicted to be forgotten
(Ezzyat et al., 2018).
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