
OPINION ARTICLE
published: 30 May 2014

doi: 10.3389/fnsys.2014.00102

How to read neuron-dropping curves?
Mikhail A. Lebedev*

Department of Neurobiology, Center for Neuroengineering, Duke University, Durham, NC, USA
*Correspondence: lebedev@neuro.duke.edu

Edited by:

Ioan Opris, Wake Forest University, USA

Reviewed by:

Manuel Casanova, University of Louisville, USA
Yoshio Sakurai, Kyoto University, Japan
Ioan Opris, Wake Forest University, USA

Keywords: neuron-dropping curve, brain-machine interface, large-scale recording, neuroprosthetic device, neuronal noise, neuronal tuning, neuronal

ensemble recordings

Methods for decoding information from
neuronal signals (Kim et al., 2006; Quiroga
and Panzeri, 2009) have attracted much
interest in recent years, in a large part
due to the rapid development of brain-
machine interfaces (BMIs) (Lebedev and
Nicolelis, 2006; Lebedev, 2014). BMIs
strive to restore brain function to dis-
abled patients or even augment function to
healthy individuals by establishing direct
communications between the brain and
external devices, such as computers and
robotic limbs. Accordingly, BMI decoders
convert neuronal activity into font charac-
ters (Birbaumer et al., 1999), position and
velocity of a robot (Carmena et al., 2003;
Velliste et al., 2008), sound (Guenther
et al., 2009), etc.

Large-scale recordings, i.e., simultane-
ous recordings from as many neurons and
as many brain areas as possible, have been
suggested as a fundamental approach to
improve BMI decoding (Chapin, 2004;
Nicolelis and Lebedev, 2009; Schwarz
et al., 2014). To this end, the dependency
of decoding accuracy on the number
of recorded neurons is often quantified
as a neuronal dropping curve (NDC)
(Wessberg et al., 2000). The term “neuron
dropping” refers to the procedure, where
neurons are randomly removed from the
sample until there is only one neuron left.
In this analysis, large neuronal popula-
tions usually outperform small ones, the
result that accords with the theories of
distributed neural processing (Rumelhart
et al., 1986).

In addition to BMIs based on large-
scale recordings, several studies have
adapted an alternative approach, where
a BMI is driven by a small neuronal
population or even a single neuron that

plastically adapts to improve BMI per-
formance (Ganguly and Carmena, 2009;
Moritz and Fetz, 2011). In such BMIs,
a small number of neurons serve as a
final common path (Sherrington, 1906) to
which inputs from a vast brain network
converge.

While the utility of large-scale BMIs vs.
small-scale BMIs has not been thoroughly
investigated, several studies reported that
information transfer by BMIs starts to
saturate after the population size reaches
approximately 50 neurons (Sanchez et al.,
2004; Batista et al., 2008; Cunningham
et al., 2008; Tehovnik et al., 2013). In
one paper, this result was interpreted as
mass effect principle, i.e., stabilization of
BMI performance after neuronal sam-
ple reaches a critical mass (Nicolelis and
Lebedev, 2009). However, another recent
paper claimed that large-scale record-
ings cannot improve BMI performance
because of the saturation (Tehovnik et al.,
2013).This controversy prompted me to
clarify here what NDCs show, whether or
not they saturate, and how they can be
applied to analyze BMI performance.

SIMULATING NDCs IN MATLAB
To produce illustrations of NDC
characteristics (Figure 1), I used a simple
simulation in MATLAB. The simula-
tion was conducted over a time interval,
Interval, which consisted of two parts:
Training_interval used to train the
decoder and Test_interval used to conduct
decoding:

Interval = [Training Test];

To mimic typical BMI condi-
tions, both intervals were set to

10 min, while the sampling rate was
10 Hz.

Neuronal rates were simulated as mix-
tures of signal and noise:

Rate( :, i) = Signal

+ Asynchronous_noise ( :, i)

+ C(i)∗Common_noise;

where Rate is discharge rate, i is index that
enumerates neurons, Asynchronous_noise
is noise unique to each neuron,
Common_noise is noise common to
all neurons, and C(i) is the amplitude
of common noise for each individ-
ual neuron. Signal and Common_noise
were simulated as mixtures of sinu-
soids. Asynchronous_noise was pro-
duced by MATLAB random number
generator.

Simulated neuronal rates are shown in
the left part of Figure 1A. For the purpose
of this simulation, it was not important to
reproduce single-unit activity in all details
(e.g., mimic refractory periods). In facts,
many BMIs discard these details and utilize
multi-units (Chestek et al., 2011).

I used multiple linear regression as the
decoder (Wessberg et al., 2000; Carmena
et al., 2003; Lebedev et al., 2005). This
decoder was trained using MATLAB
regress function:

B = regress
(
Signal (Training),

[
Rate (Training, : ) ones

(size (Training′))
]) ;

where B returned regression weights (one
weight per neuron).
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FIGURE 1 | Simulated NDCs. (A) Simulated neuronal rates (left) and
their utilization for decoding (right). (B) An NDC generated from a
population of 50 neurons. Each dot corresponds to a randomly drawn
neuronal subpopulation. (C) An NDC generated from a population of
5000 neurons with the same statistical distributions of tuning
characteristics as for 50 neurons in panel (B). (D) The same analysis as
in (C) for subpopulation sizes from 1 to 500. (E) Distribution of

single-neuron correlation coefficients for fitting. Computed for the same
population of 5000 neurons as in panels (C,D). (F) Ranked NDCs for
populations of 50, 500, and 5000 neurons. The best tuned neuron was
included first, followed by second best, etc. (G) An NDC for a
population of 50 neurons, where one neuron is tuned, and 49 produce
noise. (H) An NDC for 2 good and 48 noisy neurons. (I) An NDC for 5
good and 45 noisy neurons.

The decoded signal was calculated as:

Decoded_signal = [Rate ones

(size(Rate, 1))]∗ B;
Note that the values of Decoded_signal for
the training interval represent fitting (i.e.,

decoding is produced from the data that
were used to train the decoder), whereas
the values for the test interval corre-
spond to decoding per se because they are
derived from new data. Figure 1A shows
example traces of the signal (blue curve)
and decoded signal (red curve).

Decoding accuracy was evaluated as
correlation coefficient, R, for the test
interval:

R = corrcoef
(
Decoded_signal (Test),

signal (Test); R = R(1, 2);
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DO NDCs SATURATE?
BMI decoding improves with the size of
neuronal sample for a simple reason: noise
is reduced and signal is enhanced by
ensemble averaging. For the asynchronous
noise, overall noise reduction is approxi-
mately proportional to the square root of
the sample size. Therefore, adding more
and more neurons to a population should
result in a continuous improvement of
decoding. Why, then, do NDCs saturate?

Figure 1B illustrates a typical NDC
with a saturation effect. Here, different-
size subpopulations were randomly drawn
from a fixed neuronal sample (N = 50).
The scatterplot represents decoding accu-
racy for each subpopulation as a black dot,
and the red curve is the average NDC. Note
that the scatter becomes narrow when
subpopulation size approaches 50, which
seems to indicate that decoding accuracy
has saturated.

However, the analysis of Figure 1B is
flawed because the data points to the right
part of the curve are not statistically repre-
sentative. Indeed, when the subpopulation
size is close to 50, repeated draws return
mostly the same neurons. For example,
in any two subpopulations of size 49,
48 neurons would be identical. Therefore,
the NDC of Figure 1B converges to the
value that depicts the performance of a
fixed neuronal sample of N = 50 rather
than representing random draws of such
sample.

A different pattern is revealed when
neuronal subpopulations are drawn
from a much larger neuronal sample. In
Figure 1C, subpopulations (1 to 50 neu-
rons) were drawn from a fixed sample of
5000 neurons. This NDC does not satu-
rate. In particular, the scatter of dots does
not narrow down as dramatically as in
Figure 1B, and correctly reflects the stan-
dard deviation for different subpopulation
sizes.

Furthermore, subpopulation sizes from
1 to 500 are explored in Figure 1D. Here
the original sample of 5000 neurons is
the same as in Figure 1C. Clearly, this
NDC indicates continuous improvement
in decoding beyond 50 neurons.

In conclusion, NDCs lose statistical
validity when subpopulation size gets
comparable with the fixed population
from which it is drawn. This may produce
an illusion of saturation.

SOME NEURONS ARE MORE
IMPORTANT
NDCs are usually computed as mean val-
ues for randomly drawn neuronal subpop-
ulations. This representation masks the
fact that individual neurons contribute
unevenly to the decoding. There are lead-
ers that represent parameters of interest
particularly well, and there are noisy neu-
rons with very small contributions to the
decoding. Decoding usually improves if
only the good neurons are utilized, and the
noisy ones are discarded (Sanchez et al.,
2004; Westwick et al., 2006).

Contribution of individual neurons to
decoding (also called importance or sen-
sitivity) can be estimated by running the
decoder separately for each neuron. Here,
depending on the analysis, individual cor-
relation coefficients can measured for the
training interval (i.e., fitting) or for the test
interval (i.e., decoding). These two metrics
are usually very similar. Figure 1E shows a
distribution of correlation coefficients for
fitting for 5000 individual neurons. Notice
a distribution “tail” that corresponds to
particularly good neurons.

After individual performance is eval-
uated, neurons can be ranked by their
contributions to decoding. Furthermore,
NDC subpopulations can be constructed
starting with the best neuron, then adding
the second and so on (Sanchez et al.,
2004; Lebedev et al., 2008). Examples of
such rank-ordered NDCs are shown in
Figure 1D. Here, the analysis was per-
formed for populations of 50, 500, and
5000 neurons. Notice that in each of these
cases, the highest ranked 30–50 neurons
performed practically as well, as the entire
population. Still, the draws from 5000
neurons always outperformed 500 neu-
rons, and 500 neurons outperformed 50
neurons; simply because better subpopu-
lations could be picked when a large neu-
ronal sample was available.

Notably, a selection of informative neu-
rons for one behavioral parameter (e.g.,
hand coordinate) can be different from the
selection for another parameter (e.g., grip-
ping force or leg coordinate). Therefore,
recordings from large neuronal popula-
tions become particularly important when
several parameters need to be decoded
simultaneously (Fitzsimmons et al., 2009).

Currently, little is known about types
of neurons in cortical microcircuits

(Casanova, 2013; Opris, 2013) that could
be more useful for BMIs. It seems rea-
sonable to assume that output neurons
of such microcircuits could provide high
quality BMI signals, but this issue needs
more investigation. It would be of inter-
est to record from an entire microcircuit,
e.g., from a single cortical column, to
reconstruct information processing and
representation using BMI methods.

AVERAGE NDCs MAY BE MISLEADING
Although average NDCs usually indicate
a gradual improvement in decoding accu-
racy when more and more neurons are
added, this representation may be mis-
leading as it conceals the fact that there
are only a few informative neurons in the
population.

Figure 1G illustrates a population of 50
neurons with only one informative neu-
ron and 49 neurons generating noise. Even
in this extreme case, an average NDC
indicates a gradual improvement. This
is because the probability of the single
good neuron to be present in a subpop-
ulation increases with the subpopulation
size. Similar gradually rising NDCs can
be obtained with 2 (Figure 1H) and 5
(Figure 1I) good neurons.

These examples show that for the analy-
sis to be complete, an average NDC should
be supplemented by a ranked NDC (e.g.,
Figure 1F) and a plot of individual contri-
butions of different neurons (Figure 1E).

COMMON NOISE
Unlike asynchronous noise, common
noise does not attenuate when firing rates
of many neurons are averaged. Correlated
variability in neuronal firing has been
described in many cortical areas (Abbott
and Dayan, 1999; Hansen et al., 2012;
Opris et al., 2012). Whereas such correla-
tions have important functions, they may
be detrimental to BMI decoding if they are
unrelated to the parameter being decoded.
Interestingly, transition to online BMI
control is accompanied by an increase
in correlated variability (Nicolelis and
Lebedev, 2009; Ifft et al., 2013).

Decoding in the presence of com-
mon noise can be improved by recording
from multiple brain areas (Lebedev and
Nicolelis, 2006; Nicolelis and Lebedev,
2009) because inter-area correlations
are weaker than intra-area correlations
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(Ifft et al., 2013). Curiously, adding neu-
rons that are poorly tuned to a parameter
of interest, but have a considerable com-
mon noise, can improve the decoding.
Indeed, the decoder could use such neu-
rons to recognize common noise and
to subtract it from the contribution of
well-tuned neurons.

Overall, although handling common
noise is not as straightforward as han-
dling asynchronous noise, using large pop-
ulations of neurons is beneficial here, as
well.

OFFLINE vs. ONLINE NDCs
NDCs are often used to support the claim
that BMIs perform better when they utilize
large neuronal ensembles (Nicolelis and
Lebedev, 2009). However, in the major-
ity of cases NDCs are calculated offline
instead of testing neuronal ensembles of
different size in real-time BMIs. To the
best of my knowledge, ensembles of dif-
ferent size were tested online in just
one study (Ganguly and Carmena, 2009),
where removal of neurons from an ini-
tial population of 15 neurons deteriorated
monkey performance in a reaching task
controlled through a BMI. Apparently,
more studies of this kind will be needed
in the future to clarify this issue in more
detail.

An additional caveat of NDC analy-
sis is related to its application to the
data obtained during real-time BMI con-
trol. Although it might be tempting to
apply a decoder or a tuning curve analy-
sis (Ganguly and Carmena, 2009) to BMI
control data, these considerations can eas-
ily get circular because the signal (e.g.,
cursor position) in such datasets has been
already generated from neuronal activity
by a decoding algorithm. To cope with
this problem, NDCs could be calculated
for a parameter that was not included in
the decoding algorithm, for example target
position (Ifft et al., 2013).

CONCLUSION
Although NDCs often appear to saturate
after neuronal population size reaches a
critical value, a more careful consideration
indicates that this effect may be an arti-
fact of the overall limited neuronal sample.
Large-scale neuronal recordings appear to
be a realistic way to attain accuracy and
versatility of BMIs.
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