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Introduction

An abdominal aortic aneurysm (AAA) is a focal dilatation 
of the abdominal aorta with a diameter greater than 3 cm or 
50% larger than its normal size.1 Its prevalence is 4–8% in 
screening studies, affects mostly males above 65 years old, 
and carries a high risk of mortality due to rupture.2–6 
Currently, the management of AAA relies exclusively on 
screening, surveillance, and prophylactic surgical repair at 
AAA diameter ⩾ 5.5 cm.7 The unmet need for medical 
therapy to halt the progression of small aneurysms, thus 
alleviating the need for surgery, provides an impetus for 
exploratory research for possible molecular targets for 
AAA medical therapy.8 In a prior international survey of 
vascular surgery professionals, novel medical treatments to 
attenuate AAA growth or novel medications to ‘regress’ 
AAA size are considered among the top priorities of 
research in AAA.9

The pathological hallmark of AAA is chronic inflamma-
tion with proteolytic extracellular matrix (ECM) degrada-
tion, vascular smooth muscle (VSM) cell apoptosis and 

elastin destruction.10 The inflammatory microenvironment 
in AAA is laden with cellular infiltrates such as B and T 
cells that release proteases, including dipeptidyl peptidase 
IV (DPP-IV) and a related protein, attractin, thought to 
have a role in AAA pathogenesis.11,12

DPP-IV (CD26) is a glycoprotein and a member of the 
proline-specific peptidases family of related proteins.13 As a 
type II transmembrane serine protease and an exopeptidase, 
DPP-IV is involved in cleavage and inactivation of various 
substrates including incretins such as glucagon-like peptide 
(GLP-1 and 2), peptides such as neuropeptide Y, and 
cytokines including tumour necrosis factor (TNF) and 
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interleukin 6 (IL-6).14,15 Attractin (mahogany peptide), is a 
DPP-IV-like enzyme and also a member of the proline-spe-
cific peptidases family.16 Also, it is a glycoprotein known to 
have an intrinsic DPP-IV activity and shares a similar exten-
sive physiologic feature profile to DPP-IV.17–21 Both DPP-IV 
and attractin exist in two forms: membrane-bound and solu-
ble.15,18 Interestingly, although the soluble form of DPP-IV 
has been shown to result from proteolytic cleavage of the 
intracellular portion of the membrane-bound form, the solu-
ble form of attractin, present only in humans, is a result of 
alternative RNA splicing.18,22,23 Both attractin and DPP-IV 
have a ubiquitous distribution in human tissues and are 
involved in multiple physiological processes, including 
immune regulation and inflammation, cell adhesion, 
metabolism, neuroendocrinology, and cardiovascular effects 
(Figure 1). Attractin is also involved in other additional pro-
cesses such as myelination and pigment synthesis.21,24–28

DPP-IV is known to act through the incretin pathway by 
proteolytically degrading endogenous GLP-1, an incretin 
hormone released by enteroendocrine L cells in the distal 
intestines.29 Administration of DPP-IV inhibitors halts the 
GLP-1 biodegradation process, thus allowing GLP-1 to 
assert its effects, including insulin biosynthesis and secre-
tion, endothelial and cardio-protection, appetite and satiety 
control, and immune and inflammatory response regula-
tion.30–33 Various studies have reported low incidences of 
AAA among patients with diabetes, which has partly been 
attributed to the use of antidiabetic drugs such as met-
formin, DPP-IV inhibitors, and GLP-1 analogues.34–40 
Although the use of DPP-IV inhibitors and GLP-1 ana-
logues was previously reported to have reduced overall car-
diovascular events, hence sparking interest in their 
vasculoprotective and anti-inflammatory effect, and a 
potential utility outside diabetes, subsequent clinical trials 
investigating cardiovascular outcomes with their use did 
not conclusively support these findings.41

DPP-IV and attractin are thought to exert their inflam-
matory effect by acting upstream of the inflammasome cas-
cade.42,43 The inflammasome complex consists of three 
components, the NOD-like receptor protein 3 (NLRP3), an 
adaptor protein known as apoptosis-associated speck-like 
protein (ASC), and an effector, caspase-1.44 DPP-IV inhibi-
tion of GLP-1 leads to the activation of the inflammasome 
pathway with the release of proinflammatory cytokines 
IL-1β, chemokines, reactive oxygen species (ROS) and 
matrix metalloproteinases (MMPs).45–47 Inhibition of the 
inflammasome activity using specific inhibitors of NLRP3 
and IL-1β was shown to reduce the release of cytokine 
MMP-9 and ROS release with resultant reduction in elastin 
degradation, and neutrophil and macrophage infiltration, 
which are key processes in AAA pathogenesis.48–54

Identifying molecular targets of AAA pathogenesis that 
can be used to develop effective drugs for AAA manage-
ment remains a top priority in vascular surgery. Although 
numerous studies support the hypothesis that DPP-IV and 
attractin are involved in the immune and inflammatory 
response, sparse and isolated evidence is currently availa-
ble on the involvement of these two proteins, specifically in 
AAA pathogenesis. Also, little is known about the potential 
use of DPP-IV inhibitors in AAA management. In light of 
these gaps, this current review sought to recapitulate 

available evidence of the involvement of DPP-IV and 
attractin in the AAA pathogenesis. Further, we assessed 
findings from the experimental use of DPP-IV inhibitors in 
the management of AAA in murine models.

Methods

Study design

This was a review of original studies investigating the role 
of DPP-IV and attractin in AAA pathogenesis and the 
experimental use of DPP-IV inhibitors in AAA in murine 
models. To guide the review process, the objectives, out-
come measures, inclusion and exclusion criteria, and analy-
sis methods were developed in a protocol before the formal 
review commenced.

Search strategy

Embase, Science Direct, PubMed, and MEDLINE databases 
were searched comprehensively for studies. Furthermore, 
the reference lists of the identified studies were screened for 
potentially relevant studies. All identified studies were col-
lated, and duplicates eliminated. The Preferred Reporting 
Items for Systematic Reviews and Meta-Analysis (PRISMA) 
protocol was used to narrow down to key relevant studies.55 
The following search terms were used: (‘Dipeptidyl pepti-
dase IV’ OR ‘DPP-IV’ OR ‘DPP-4’ OR ‘DPP-IV inhibitors’ 
OR ‘GLP-1’ OR ‘Attractin’ OR ‘ATRN’ OR ‘Mahogany’ 
OR ‘Sitagliptin’ OR ‘Vildagliptin’ OR ‘Saxagliptin’ OR  
‘Linagliptin’ OR ‘Teneligliptin’ OR ‘Alogliptin) AND 
(‘Abdominal aortic aneurysm’ OR ‘aortic aneurysm’ OR 
‘AAA’).

Eligibility criteria

Studies that measured the levels of DPP-IV and attractin in 
patients with AAA and the experimental use of DPP-IV 
inhibitors in AAA management in murine models were 
included. Only full articles were considered. Editorials, 
case reports, series, and letters were excluded. All studies 
published until Dec 31, 2020 were included.

Article selection and data extraction

Two independent reviewers (EN and PL) undertook a sys-
tematic search on the databases. Article selection was made 
on the basis of title and abstract. All excluded studies and 
the reasons for exclusion were discussed and agreed on by 
the two reviewers. In the event of a disagreement between 
the two reviewers, a third researcher was asked to adjudi-
cate. A data extraction tool was developed, which included 
author name, year of publication, study design, sample size, 
study objectives, method of AAA induction, type of DPP-IV 
inhibitor used, and key observations.

Quality assessment

Assessment of risk of bias of the experimental studies 
included in this review was assessed using the Systematic 
Review Centre for Laboratory Animal Experimentation 
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(SYRCLE) Risk of Bias (RoB) tool.56 This tool is adapted 
from the Cochranes RoB tool but is specifically tailored for 
methodological quality assessment of animal studies. The 
SYRCLE RoB tool has criteria that assesses selection, per-
formance, detection, attrition, and reporting bias.

Data synthesis

Reported findings from the selected studies were collated 
in a table format (Table 1 and Table 2) and a narrative syn-
thesis approach was taken to analyse the findings from the 
studies. No further statistical analysis or meta-analysis was 
done due to the heterogeneity of the studies.

Results

Literature search results

A total of 64 articles were obtained from database searching. 
Upon removal of duplicates, 52 studies remained. We fur-
ther excluded 41 studies that did not address the questions at 
hand. In the final analysis, 11 (17.2%) of the total identified 
studies from the search were included. Four studies were 
conducted in humans investigating the role of DPP-IV or 
attractin in AAA pathogenesis. The other seven studies were 

conducted in murine models and investigated the use of 
DPP-IV inhibitors for AAA management. The PRISMA 
flow diagram of all the studies is presented in Figure 2. A 
summary of all the studies is provided in Tables 1 and 2. The 
risk of bias assessment scores for the individual studies 
investigating experimental use of DPP-IV inhibitors in AAA 
is summarised in Table 3.

DPP-IV and attractin in AAA

Four studies investigating the potential involvement of 
DPP-IV or attractin in AAA were identified. Lu et al.’s 
work investigated the underlying mechanisms of DPP-IV 
in AAA among 113 participants (93 AAA and 20 con-
trols).57 Using computer tomography (CT) analysis, patients 
with AAA were further divided into small AAA (< 5 cm = 
16) and large AAA (⩾ 5 cm, n = 77) groups. They reported 
increased plasma levels of DPP-IV in an AAA diameter-
dependent manner among patients with AAA (control: 2.3 
± 1.5; small AAA: 10.0 ± 10.9; large AAA: 32.2 ± 15.0). 
On the other hand, plasma GLP-1 levels decreased in a 
diameter-dependent manner (control: 3.7 ± 2.4; small 
AAA: 2.1 ± 0.9; large AAA: 1.8 ± 1.1). There was also an 
associated decline in monocytic differentiation with the 

Table 1. Summary of studies investigating the role of DPP-IV and attractin in abdominal aortic aneurysm pathogenesis.

Author name Objective n (sample size) Findings

Hsu et al. 
201658

To investigate the associa-
tion between the use of 
oral antidiabetic drugs and 
the development of AAA

4468 AAA
4468 controls

Nested control study using data from Taiwan’s national re-
search institute with 1.2 million patients
DPP-IV inhibitors were not associated with any risk of AAA 
development

Lu et al. 
201757

To investigate the un-
derlying mechanisms of 
DPP-IV-regulated AAA 
mechanisms

93 AAA
20 controls

Plasma levels of DPP-IV were shown to increase in patients 
with AAA in a diameter-dependent manner
A decline in monocyte CD26 expression in AAA compared to 
controls
Inhibition of DPP-IV led to monocytic differentiation with in-
creased CD68 and p21 expression, increased phosphorylation 
of PYK2 and paxillin in PMA-induced THP-1 cell differentiation
Mice in vitro studies

Liljeqvist et al. 
202011

To investigate the role 
of DPP-IV in human AAA 
disease

76 AAA
13 controls

Using microarray analysis and qPCR to investigate the role of 
DPP-IV in AAA
Increased expression of DPP-IV in both media and adventitia 
of AAA persisting even after adjustment for age, sex, smoking. 
Strong expression of DPP-IV in most cells in AAA qualitatively 
stronger compared to controls
DPP-IV activity in plasma was reported to be lower in AAA 
patients compared to their controls
DPP-IV localises in macrophages and T cells, B cells and 
VSMCs
DPP-IV correlates with the expression of inflammation, prote-
olysis, and apoptosis-related genes

Lee et al. 
202012

To investigate proteins as-
sociated with AAA growth

62 AAA Using LC-MS/MS proteomics to identify novel protein 
biomarkers of AAA. Attractin was reported to be uniquely 
present in the ILT, released by ILT secretome, reduced in 
systemic circulation after surgery, correlated significantly 
with future AAA growth (Spearman r = 0.35, p < 0.005) 
even after adjusting for history of CAD and AAA diameter 
(p < 0.05). 

AAA, abdominal aortic aneurysm; CAD, coronary artery disease; CD68, cluster of differentiation 68; DPP-IV, dipeptidyl peptidase-IV; ILT, intralumi-
nal thrombus; LC-MS/MS, liquid chromatography–tandem mass spectrometry; p21, cyclin-dependent kinase inhibitor-1; PMA, phorbol-12-myristate 
13-acetate; PYK2, protein tyrosine kinase 2 beta; qPCR, quantitative polymerase chain reaction; THP-1, human acute monocytic leukaemia cell line; 
VSMCs, vascular smooth muscle cells.
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Table 2. Summary of studies investigating the experimental use of DPP-IV inhibitors for management of AAA in murine models.

Study DPP-IV inhibi-
tor

Objective Study 
model

Findings

Noda et al. 
201363

Vildagliptin Investigating the effects 
of vildagliptin on AAA 
formation

Mice  • Significant retardation of the formation of AAA (external 
diameters: 1.11 ± 0.06 mm [CaCl2] vs 0.95 ± 0.05 mm 
[CaCl2 + vildagliptin] vs 0.64 ± 0.02 mm [saline], p < 0.05, 
respectively)

 • Suppression of the induction of IL-6 by LPS in U937 cells 
(62% reduction compared to scramble siRNA)

 • Reduction in macrophage infiltration into AAA adventitia 
as shown by histological analysis (no vildagliptin 3.3 ± 2.0 
cell/μm2 vs vildagliptin group 1.2 ± 2.2 cell/μm2, p < 0.05)

 • Reduction in the expression of MMP2 and MMP9
 • Suppression of induction of IL-6 by LPS in U937

Bao et al. 
201461

Alogliptin Investigating the effects 
of orally administered 
alogliptin on AAA 
development

Rats  • Reduction in ROS levels (4.6 ± 0.6 in the group control 
[C], 2.7 ± 0.3 in group low dose [LD], and 1.7 ± 0.5 in 
group high dose [HD]; p < 0.0001)

 • Reduction in MMP2 and MMP-9 levels (MMP-2: 2.1 ± 0.4 
in C, 1.3 ± 0.3 in group LD, and 0.9 ± 0.2 in group HD; 
p < 0.001; MMP-9: 2.0 ± 0.5 in C, 0.3 ± 0.3 in group LD, 
and 0.3 ± 0.2 in group HD; p < 0.001)

 • Reduction in aortic dilatation ratio: 199.2% ± 11.8% in 
group C, 159.6% ± 2.8% in group LD, and 147.1% ± 1.9% 
in group HD; p < 0.02 group C vs HD

 • Increased elastin content

Lu et al. 
201562

Sitagliptin Investigating the effects 
of sitagliptin on AAA 
formation

Mice  • Reduction of AAA formation from 55.5% to 4–8%
 • Decreased elastin degradation
 • Decreased macrophage infiltration
 • Increased GLP-1 expression

Kohashi et al. 
201659

DPP-IV inhibi-
tor (MK0626)

Investigating the effects 
of DPP-IV inhibitors 
and incretins on AAA in 
murine models

Mice  • Reduced AAA formation rate by 40%
 • Suppression of AAA progression
 • Reduced thrombosis and fibrosis
 • Reduced expression of IL-6
 • Increased ratio of TIMP-2: MMP-9, increased medial thickness

Yu et al. 
201666 

Alogliptin and 
GLP-1 agonist 
lixisenatide

Investigating the effect 
of lixisenatide on AAA

Rats  • Significant reduction in AAA growth in rats
 • Significant reduction in ROS levels and 8-OHdG expres-

sions in AAA wall
 • Western blot analysis showed decreased ERK expression
 • TNF-α and CD68 expression also significantly reduced

Byrne et al. 
201765

DPP-IV inhibi-
tor (MK0626)

Investigating the effect 
of DPP-IV inhibition on 
AAA development

Mice  • Attenuation of AAA formation control: 1.26 ± 0.05 mm, 
n = 8; MK0626: 1.07 ± 0.05 mm, n = 10; p = 0.03

 • Suprarenal dilatation was attenuated by MK0626 control: 
2.26 ± 0.34 mm, n = 8; MK0626: 1.66 ± 0.32 mm, n = 
10; p = 0.0001

 • Increased matrix deposition, increased medial thickness, 
and elastic fibre fragmentation

Takahara et al. 
201860

Teneligliptin Investigating the ef-
fects of DPP-inhibitor 
teneligliptin on AAA 
formation

Mice  • AAA formation reduction: 30.7% vs 71.4% in the control; 
p < 0.05

 • Retarded AAA growth: 1.32 ± 0.09 mm vs 1.76 ± 0.18 
mm in the control; p < 0.05

 • Elastin degradation reduced: 2.83 ± 0.17 vs 3.45 ± 0.16 in 
the control; p < 0.05

 • Reduced macrophage infiltration: 51.8 ± 29.8/section vs 
219.5 ± 78.5/section

 • Reduced phosphorylation of ERK and monocyte chemoat-
tractant protein 1 MCP-1 in VSMC

AAA, abdominal aortic aneurysm; CaCl2, calcium chloride; CD68, cluster of differentiation 68; DPP-IV, dipeptidyl peptidase-IV; ERK, extracellular 
signal-regulated kinase; GLP-1, glucagon-like peptide-1; IL-6, interleukin 6; LPS, lipopolysaccharide; MCP-1, monocyte chemoattractant protein-1; 
MMP, matrix metalloproteinase; 8-OHdG, 8-hydroxydeoxyguanosine; ROS, reactive oxygen species; siRNA, small interfering RNA; TIMP-2, tissue 
inhibitor of metalloproteinase-2; TNF-α, tumour necrosis factor-α; VSMC, vascular smooth muscle cell.

expression of CD68 in patients with AAA compared to con-
trols.57 Inhibition of DPP-IV induced several effects such 
as monocytic differentiation with increased CD68 and P21 

expression, increased phosphorylation of protein-tyrosine 
kinase (Pyk2) and paxillin in phorbol-12-myristate-13-ace-
tate (PMA)-induced THP-1 cell differentiation.
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Figure 1. Diagram illustrates the involvement of Dipeptidyl peptidase IV (DPP-IV) in multiple physiological and pathological processes. 
DPP-IV regulates the inflammatory and the immune responses, controls glucose metabolism through its proteolytic effects on incretins 
and have a wide range of cardiovascular effects, including endothelial dysfunction and increased vascular permeability. Further, DPP-IV 
plays a role in the neuroendocrine system and has been implicated in neuroinflammatory and neurodegenerative disorders such as 
Alzheimer’s and Parkinson’s disease.
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Figure 3. Schematic representation of the cascade initiated by dipeptidyl peptidase IV (DPP-IV) that propagates the inflammatory 
micro-environment leading to aneurysmal growth and eventual rupture. DPP-IV activates the inflammasome pathway through 
biodegradation of GLP-1. NLRP-3 activation further leads to the activation of pro-caspase-1 to caspase-1 which then activates 
interleukin 1-beta. IL-1-beta initiates downstream effects including ros release, macrophage infiltration, cytokine and chemokine 
release, DNA damage, and pyroptosis. DPP-IV biodegradation of GLP-1 also activates two other pathways, NFkB and STAT. These 
two pathways lead to similar downstream effects as the inflammasome pathway with resultant VSMC apoptosis, elastin destruction, 
endothelial damage, and extracellular matrix degradation. DPP-IV inhibitors work by blocking DPP-IV activity thus allowing GLP-1 
to exert its anti-inflammatory effect by inhibiting PKC activation and subsequent expression of inflammasomes.
AMPK, 5’ AMP-activated protein kinase; AAA, abdominal aortic aneurysm; ASC, apoptosis-associated speck-like protein containing a CARD; 
cyclic AMP, cyclic adenosine monophosphate; DNA, deoxyribonucleic acid; DPP-IV, Dipeptidyl peptidase-4; ECM, extracellular matrix; ERK1/2, 
extracellular signal-regulated kinases 1 and 2; GLP-1, glucagon-like peptide-1; ICAM-1, intercellular adhesion molecule 1; IL-1β, interleukin-1β; IL-2, 
interleukin-2; IL-6, interleukin-6; MCP-1, monocyte chemoattractant protein-1; NLRP3, NLR family pyrin domain containing 3; NF-κB, nuclear factor 
kappa-light-chain-enhancer of activated B cells; PKA, protein kinase A; PKC, protein kinase C; ROS, reactive oxygen species; STAT1, signal transducer 
and activator of transcription 1; TNF, tumour necrosis factor; VCAM-1, vascular cell adhesion protein 1; VSMCs, vascular smooth muscle cells.

Liljeqvist et al. investigated the role of DPP-IV in human 
AAA disease.11 Eighty-nine participants were recruited into 
the study (76 AAA and 13 controls from abdominal aortic 
tissue from organ transplant donors). Using microarray anal-
ysis, they reported significantly increased expression of 
DPP-IV in both media (p < 0.001) and adventitia (p < 
0.001) of AAA tissue persisting after adjustment for age, sex, 
and smoking compared to the controls. These observations 
were further validated by quantitative polymerase chain 
reaction (qPCR) (media p < 0.01, adventitia p < 0.01).11 
There was also an increased expression of DPP-IV across 
cells in AAA compared to age-matched controls. However, 

unlike in the Lu et al. study,57 this study reported a lower 
DPP-IV activity in plasma of patients with AAA compared 
to their age and sex-matched controls. Using immunohisto-
chemistry (IHC), DPP-IV was shown to co-localise in mac-
rophages, and B, T, and VSM cells. Gene-set enrichment 
analysis showed that DPP-IV expression correlated with 
genes that regulate inflammation, apoptosis, and proteolysis, 
ECM remodelling and angiogenesis.11

Hsu et al. investigated the association between the use of 
oral antidiabetic drugs and the development of AAA using 
a nested case–control study using data from 1.2 million 
patients with diabetes from Taiwan’s national research 
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institute.58 They identified 4468 patients with AAA and an 
equal number of age-matched controls. Although some 
antidiabetic drugs, including metformin, sulfonylureas, and 
thiazolidinediones, were associated with a lower risk of 
AAA formation, DPP-IV inhibitors were not associated 
with any risk of AAA development. There was a 28% 
reduced risk of developing AAA in those taking metformin 
compared to their controls (CI: 0.64–0.80).58

The work from Lee et al. observed the presence of pro-
teins associated with AAA growth using liquid chromatogra-
phy–tandem mass spectrometry (LC-MS/MS).12 In a panel 
of proteins, attractin was identified to be uniquely present in 
the intraluminal thrombus (ILT) and released by ILT 
secretome. Also, a reduction of attractin in systemic circula-
tion after surgery was reported. Attractin significantly corre-
lated with future AAA growth both in slow and fast AAA 
growth groups of patients. The combination of attractin and 
AAA antero-posterior diameter (APD) as two-input varia-
bles in a growth prediction algorithm was superior to APD as 

the only input variable for predicting the future 12-month 
AAA growth: APD alone: Area Under the Receiver Operating 
Characteristics (AUROC) 0.76 (95% CI: 0.59 to 0.87) vs 
APD + attractin: AUROC 0.85 (95% CI: 0.69 to 0.93), p < 
0.001, for slow/no growth; APD alone: AUROC 0.52 (95% 
CI: 0.35 to 0.66) vs APD + attractin: AUROC 0.76 (95% CI: 
0.59 to 0.87), p = 0.001, for fast growth.12

Experimental use of DPP-IV inhibitors and 
GLP-1 receptor agonists in murine models

Several experimental studies have investigated the utility of 
currently available DPP-IV inhibitors in the management 
of AAA in murine models.59–66 Kohashi et al. studied the 
effect of MK0626, a nonselective DPP-IV inhibitor on 
angiotensin II-induced AAA, in managing AAA in mice.59 
There was a 40% reduction in AAA formation with signifi-
cant suppression of AAA progression (Ang II, 3.7 ± 1.0; 
Ang II + MK0626, 2.8 ± 0.8; p < 0.05) associated with 

Table 3. Risk of bias assessment using the SYRCLE tool.

Item Type of 
bias

Domain Question Kohashi 
et al. 
201659

Takaha-
ra et al. 
201860

Bao 
et al. 
201461

Lu et al. 
201562

Noda 
et al. 
201363

Byrne 
et al. 
201765

Yu et al. 
201666 

1 Selection 
bias

Sequence 
generation

Was the allocation sequence 
adequately generated and 
applied?

– – – – – – –

2 Selection 
bias

Baseline 
characteris-
tics

Were the groups similar 
at baseline, or were they 
adjusted for confounders in 
the analysis?

      

3 Selection 
bias

Allocation 
concealment

Was the allocation  
adequately concealed?

–    – – 

4 Perfor-
mance bias

Random 
housing

Were the animals randomly 
housed during the  
experiment?

   -   –

5 Perfor-
mance bias

Blinding Were the caregivers and/
or investigators blinded 
from knowledge of which 
intervention each animal 
received during the  
experiment?

 –   – – 

6 Detection 
bias

Random 
outcome  
assessment

Were animals selected at 
random for outcome  
assessment?

      

7 Detection 
bias

Blinding Was the outcome  
assessor-blinded?

 –    – 

8 Attrition 
bias

Incomplete 
outcome data

Were incomplete outcome 
data adequately addressed?

–   –   

9 Reporting 
bias

Selective 
outcome

Are reports of the study 
free of selective outcome 
reporting?

      

10 Other Other 
sources of 
bias

Was the study apparently 
free of other problems that 
could result in a high risk of 
bias?

      

Total 
scorea

7 8 9 7 7 6 9

aAssessment of quality of the experimental studies done using murine models. This assessment was done using the Systematic Review Centre for 
Laboratory Animal Experimentation (SYRCLE) tool.56 The scale runs from 1 to 10 points, with 10 as the maximum score. Dash symbol means that 
the study does not meet the criteria for that section. The lowest score was 6, recorded by Bryne et al., and the highest was 9, recorded by Yu et al. 
and Bao et al. Three studies (Kohashi et al., Lu et al., and Noda et al.) scored 7 and Takahara et al. scored 8.
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DPP-IV inhibition. The use of MK0626 also reduced the 
expression of proinflammatory cytokine IL-1β and MMP-
9. Interestingly, incretins did not have any effect on AAA, 
and the administration of incretin receptor blockers did not 
reverse the effects of DPP-IV inhibitors. Similarly, Byrne 
et al. reported that MK0626 attenuated AAA formation in 
mice treated for 2 weeks with oral beta-aminopropionitrile 
(BAPN) and 4 weeks of angiotensin II via mini-osmotic 
pump (control: 1.26 ± 0.05 mm, n = 8; MK0626: 1.07 ± 
0.05 mm, n = 10; p = 0.03).65

Takahara et al. investigated the effect of yet another 
DPP-IV inhibitor, teneligliptin, on AAA in mice.60 
Teneligliptin administration significantly reduced AAA 
formation (30.7% vs 71.4% in the control p < 0.05), sup-
pressed AAA growth (p < 0.05), and decreased elastin deg-
radation (p < 0.05) and macrophage infiltration into the 
aortic wall (p < 0.05). There was also an associated reduc-
tion in phosphorylation of extracellular signal-regulated 
kinase (ERK) and mRNA expression of monocyte chem-
oattractant protein-1 (MCP-1) in VSM cells.60

Bao et al. explored the effects of orally administered 
DPP-IV inhibitor alogliptin on mice with AAA induced 
using elastase and calcium chloride.61 AAA formation in the 
mice receiving alogliptin was significantly lower compared 
to controls (dilatation ratio: 199.2% ± 11.8% in controls, 
159.6% ± 2.8% in the low-dose alogliptin group, and 
147.1% ± 1.9% in the high-dose alogliptin group; p < 0.02 
controls vs high dose). There was an accompanying reduc-
tion in ROS levels (p < 0.0001) and a significant reduction 
in the expressions of MMP-2 (p < 0.001) and MMP-9 (p < 
0.001). Histological examination of aortic tissue from mice 
treated with alogliptin showed increased elastin formation.61

Similar findings were observed by Morimoto et al. and 
Yu et al., where alogliptin was shown to increase the levels 
of GLP-1 6.3 ± 0.8 pmol/L in the control group, 7.6 ± 0.9 
pmol/L in the alogliptin group, p < 0.05).64,66 The use of 
both the DPP-IV inhibitor alogliptin and the GLP-receptor 
agonist lixisenatide decreased the expressions of ROS and 
CD68 macrophage infiltration in aneurysm walls.66 Western 
blot analysis showed decreased expressions of ERK, TNF-
α, MMPs, and CD68. By the 28th day of administration, 
both alogliptin and lixisenatide had significantly reduced 
AAA growth in rats: 199.2 ± 10.0% in the control group, 
155.1 ± 2.3% in the alogliptin group, p < 0.01; and 188.0 
± 5.6% in the control group, 162.0 ± 6.0% in the low-dose 
group, and 151.5 ± 4.9% in the high-dose group, p < 0.01, 
respectively.66

Noda et al. investigated the effect of another DPP-IV 
inhibitor, vildagliptin, on AAA and its effect on monocyte 
inflammatory response and vascular remodelling in mice 
models.63 AAA was induced in mice using calcium chloride. 
Vildagliptin significantly diminished the formation of AAA 
(external diameters: 1.11 ± 0.06 mm [CaCl2] vs 0.95 ± 0.05 
mm [CaCl2 + vildagliptin] vs 0.64 ± 0.02 mm [saline], p < 
0.05). Histological analysis revealed decreased macrophage 
infiltration into the adventitia (p < 0.05), and qPCR analysis 
showed that vildagliptin reduced expression of MMP-2, 
MMP-9, and IL-6. Further in vitro experiments demonstrated 
that DPP-IV inhibition using vildagliptin suppressed the 
induction of IL-6 by lipopolysaccharide (LPS) in U937 cells 
(model cell line used to study monocyte differentiation).63

Lu et al. studied the effect of sitagliptin on angiotensin 
II-induced AAA in mice.62 There was a drop in AAA for-
mation from 55.5% to 4% in mice induced with angiotensin 
II. Histological analysis revealed decreased elastin degra-
dation, macrophage infiltration, and increased GLP-1 
expression associated with sitagliptin administration.62

Discussion

The aim of this review was to collate and recapitulate avail-
able evidence on the involvement of DPP-IV and a related 
protein, attractin, in AAA pathogenesis. Further, we sought 
to assess the findings from the experimental use of DPP-IV 
inhibitors in AAA management in murine models. This 
review revealed evidence of the involvement of DPP-IV 
and attractin in the pathogenesis of AAA through propagat-
ing the inflammatory cascade that precedes ECM degrada-
tion, elastin destruction, and SMC apoptosis. This is further 
supported by observations from the seven studies on exper-
imental use of DPP-IV inhibitors (gliptins).

Attractin and DPP-IV are not only increased in plasma and 
AAA tissues of aneurysm patients, they also seem to correlate 
with genes regulating inflammation and apoptosis which are 
key processes in AAA pathogenesis.11,12,62 In addition, their 
correlation with AAA growth highlights their potential utility 
as biomarkers for prediction of AAA growth.12,62 Although 
Liljeqvist et al. reported lower plasma activity of DPP-IV 
among patients with AAA compared to their age-matched 
controls, there was an increased level of DPP-IV in aortic tis-
sues of the patients, which supports observations from previ-
ous studies implicating DPP-IV as a potential driver of the 
inflammatory microenvironment observed in AAA.11

Murine model studies investigating the use of DPP-IV 
inhibitors (gliptins) reported significantly attenuated AAA 
formation with a reduction in elastin destruction, mac-
rophage infiltration, MMPs, and ROS activity.59–66 DPP-IV 
seems to propagate the inflammatory microenvironment 
seen in AAA by activating the inflammasome pathway 
(NLRP3), promoting immune cell migration cell adhesion, 
macrophage aggregation, and the release of ROS, MMPs 2 
and 9, and IL-6 (Figure 3).67–69 This is supported by other 
studies that have reported that DPP-IV inhibition attenuates 
inflammation with reduced expression of NLRP3, cas-
pase-1, and IL-1β.42,43,45,49,70,71 Also, attractin seems to have 
a role in T cell maturation, differentiation, and enhance-
ment of direct migration of T cells to sites of inflamma-
tion.17,68 This may explain the reported increase in DPP-IV 
and attractin levels during the natural progression of AAA 
as demonstrated by Lee et al. and Lu et al. and the effective 
AAA attenuation by use of DPP-IV inhibitors.11,12,59–66

Besides DPP-IV and GLP-1 agonists, other oral antidia-
betic medications, including metformin, have also been 
shown to reduce the incidence of AAA among diabetic 
patients, as reported by Hsu et al. and other previous stud-
ies.35,58,72,73 The Hsu et al. study reported 28% lower odds of 
developing AAA in those taking metformin compared to 
their controls (CI: 0.64–0.80). This study, however, did not 
report any change in the incidence of AAA with the use of 
DPP-IV inhibitors. Although only 3.9% of participants were 
on DPP-IV inhibitors, this study was larger than most of the 
other studies in this review that supported the reported 
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DPP-IV’s involvement in AAA. This underscores the need 
for more studies investigating the role of DPP-IV inhibitors 
in AAA, as current evidence is inconclusive. Interestingly, 
metformin seems to work predominantly through activation 
of the adenosine monophosphate-activated protein kinase 
(AMPK) pathway, with similar downstream effects includ-
ing the reduced release of MMP 2 and 9, ROS, and mac-
rophage infiltration, as seen with DPP-IV inhibitors.74,75

Observations from the preclinical studies in this review 
suggest that DPP-IV inhibitors (gliptins) seem to confer 
other cardiovascular benefits, including improvement in 
endothelial function, reduction in inflammatory markers, 
and oxidative stress. DPP-IV inhibitors are also thought to 
reduce cardiovascular risk factors through glucose control, 
favourable body weight profile, reduction in blood pres-
sure, and circulating free fatty acids, leading to an overall 
reduction in cardiovascular events such as strokes and 
ischemic heart disease.76–81 It is postulated that these bene-
ficial effects are due to the release of vasculoprotective 
endothelial progenitor cells (EPCs), stromal cell-derived 
factor 1 alpha (SDF-1α), and monocyte chemoattractant 
protein-1 (MCP-1).82–86 Although these preclinical and 
mechanistic studies have provided compelling evidence for 
potentially beneficial cardiovascular effects of DPP-IV 
inhibition, recent clinical trials including CAROLINA 
(Cardiovascular Outcome Study of Linagliptin vs 
Glimepiride in Patients with Type 2 Diabetes), EXAMINE 
(Examination of Cardiovascular Outcomes with Aloglitin 
versus Standard Care), and TECOS (Trial Evaluating 
Cardiovascular Outcomes with Sitagliptin) did not fully 
support these observations.87–89 Although the TECOS and 
EXAMINE trials did not support the results from the 
CAROLINA study of a possible risk of increased heart fail-
ure with the use of linagliptin, none conclusively supported 
the initial compelling observations of cardiovascular bene-
fit from the preclinical studies.

Evidently, there is a significant translational gap from ani-
mal model findings to clinical trials, particularly in AAA 
management.90–92 This may be attributable to the difference in 
AAA induced in animal models using angiotensin II or cal-
cium chloride versus the slow chronic inflammatory process 
observed in human AAA.93 This is exemplified by the failed 
clinical trial targeting IL-1β, which is a downstream mediator 
in the inflammatory cascade initiated by DPP-IV. This clini-
cal trial used IL-1β inhibitor ACZ885 (canakinumab) and 
was stopped for reasons of futility despite promising results in 
preclinical studies involving IL-1β inhibition.53,70,71,94 
Although various DPP-IV inhibitors including sitagliptin, 
vildagliptin, alogliptin, and linagliptin have been shown to be 
effective in AAA in animal models, there has been very lim-
ited application of these drugs in AAA clinical trials, possibly 
due to the risk of hypoglycaemic events in nondiabetic 
patients with AAA due to insulin surge.

Conclusion

DPP-IV and its related protein attractin seem to play a cru-
cial role in the pathogenesis of AAA through activation of 
the inflammasome cascade and correlate with AAA growth. 
This highlights their potential use as biomarkers for the 

prediction of AAA growth. Further, the experimental use of 
DPP-IV inhibitors in murine models demonstrates their 
effectiveness in reducing ECM degradation, elastin destruc-
tion, and VSM cell apoptosis by reducing the release of 
MMPs, ROS, and ILs, leading to reduced AAA formation. 
These observations offer promise in the search for realistic 
molecular targets for the development of effective medical 
therapy. However, there is a translational gap from experi-
mental animal model observations to clinical trials. This 
calls for more explorative research into the role of DPP-IV-
like enzymes in AAA pathogenesis and the potential use of 
nonsurgical treatment of AAA.
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