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Abstract: When 3D scanning objects, the objective is usually to obtain a continuous surface. However,
most surface scanning methods, such as structured light scanning, yield a point cloud. Obtaining
a continuous surface from a point cloud requires a subsequent surface reconstruction step, which
is directly affected by any error from the computation of the point cloud. In this work, we propose
a one-step approach in which we compute the surface directly from structured light images. Our
method minimizes the least-squares error between photographs and renderings of a triangle mesh,
where the vertex positions of the mesh are the parameters of the minimization problem. To ensure
fast iterations during optimization, we use differentiable rendering, which computes images and
gradients in a single pass. We present simulation experiments demonstrating that our method for
computing a triangle mesh has several advantages over approaches that rely on an intermediate
point cloud. Our method can produce accurate reconstructions when initializing the optimization
from a sphere. We also show that our method is good at reconstructing sharp edges and that it is
robust with respect to image noise. In addition, our method can improve the output from other
reconstruction algorithms if we use these for initialization.

Keywords: 3D surface reconstruction; 3D scanning; structured light; differentiable rendering

1. Introduction

Structured light 3D scanning of an object can be used to produce a point cloud from
which we can reconstruct a triangle mesh. The resulting mesh is a digital representation of
the surface of the scanned object. This has many applications, including cultural heritage
preservation and industrial quality control [1,2]. For most applications, the accuracy of
the recovered surface of the reconstruction is of great importance. Typically, producing
point clouds from phase-shifting structured light images is rather cumbersome. It involves
determining the phases, unwrapping these, re-sampling the unwrapped phases due to
image distortion and rectification, finding point correspondences and finally triangulating
these. Afterwards, the point clouds from different sub-scans need to be merged before
the final reconstruction of a triangle mesh. During this process of producing point clouds
and subsequently a triangle mesh, the image noise propagates non-linearly to affect vertex
positions in the reconstructed triangle mesh. We therefore propose that the point cloud
and the process of creating it could be skipped, instead reconstructing surfaces directly
from image intensities to investigate how that affects the accuracy of the reconstructions.
Using vertex positions as model parameters, we minimize the least-squares error between
rendered and recorded images to obtain a triangle mesh directly. An example is presented
in Figure 1.
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Our method has three major implications: (1) explicit point triangulation from image
correspondences is no longer needed; (2) we understand how noise in the image data affects
the final reconstruction; and (3) the reconstruction is done for all image data simultaneously.

Figure 1. Starting from a sphere, our method reconstructs the Stanford Bunny [3] from images with low levels of noise.
From left to right: Initial mesh (sphere), after 50 iterations, after 750 iterations and the converged result (1952 iterations).
The final reconstruction has 13,780 vertices and a volume error (∆V) of 0.30% when compared to the ground truth (depicted
in Figure 3j).

Similar approaches have been used for multi-view passive stereo but to the best
of our knowledge not for structured light reconstructions. In structured light, dense
correspondences can be established, usually yielding much higher accuracy in weakly
textured areas.

In many reconstruction methods, the raw image data are not considered during the
reconstruction [4]. The reconstruction is instead done using unstructured point clouds that
have been constructed from the image data. This means that noise due to imaging and
point matching processes is not modeled in the reconstruction at all, and this noise is then
non-linearly propagated through to the end result. With our approach, the only step in the
method in which an error is minimized is in the image intensity domain. This enables us to
minimize a more meaningful error, which is especially important in applications with a
low signal-to-noise ratio of the reflected light; e.g., when scanning highly specular objects
or when using short exposure times for fast acquisition.

2. Related Work

Suppose we know the configuration of the light and camera in a vision setup and the
reflectance properties of the imaged object. Obtaining the shape of the object based on its
shading in an acquired image is then referred to as the shape-from-shading problem [5].
The original shape-from-shading method by Horn [5,6] used so-called characteristic curves
to describe the observed shape. The method was based on illumination from point-like
sources, and the shading would then only allow the estimation of the gradient along a path.
This was the reason for using a collection of curves to describe the object shape.

Curves are inconvenient in the sense that they require stitching to become a full
surface description. One way to fit a mesh instead of curves is to use an optimization
technique that does not require gradients. This has been done for a rectangular mesh using
simulated annealing and simplex search [7]. Gradients are however preferable to ease
the optimization problem. For triangle meshes, an approach has been developed based
on image gradients [8]. Unfortunately, the shape can be difficult to recover from image
gradients due to the color variance caused by normal variations in the surface. To keep
gradient-based optimization while developing a method that is more robust to surface
reflectance deviating from an assumption of a specific shading model, we use structured
light with a differentiable pattern.

The combination of shape from shading with a structured light approach, such as
phase-shifting, improves the performance of the shape estimation [9,10] and enables the
simultaneous acquisition of shape and object color (diffuse reflectance) [11]. We do not
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include the estimation of spatially varying reflectance in this study, but we note that this
is an option. Only a height field was reconstructed in this previous work. We take this
concept one step further and reconstruct a closed 3D object as in the work of Zhang and
Seitz [8] but also exploit structured light.

The mesh-based reconstruction method of Zhang and Seitz [8] was improved by
Isidoro and Sclaroff [12,13] through the creation of a better initial mesh and
by Yu et al. [14,15] using a model that more accurately models the physical reflectance.
Another option is to use multiview stereo to acquire a good initial guess and then refine the
mesh using a shape-from-shading approach [16]. Our method can be used similarly with
the innovation of using structured light to improve the robustness of the mesh refinement.

The use of structured light has become a reliable technique for point-based 3D re-
construction [17] but has, to the best of our knowledge, not previously been tested in
mesh-based 3D reconstruction. Our motivation is to have the benefits of a mesh-based tech-
nique. An important benefit is that the connectivity between points (vertices) is retained
throughout the geometric refinement process.

The recent differentiable renderer from Loubet et al. [18] uses ray tracing and reverse
mode automatic differentiation. The use of such a framework for mesh refinement is an
option. However, each rendering is quite computationally demanding, so the optimization
would have a significant run time. Liu et al. [19] introduced the soft rasterizer, which is a
faster differentiable renderer based on a smoothed version of rasterization. This has shown
promising results in other mesh reconstruction tasks, but to make it able to render the
structured light of a projector is nontrivial.

A different but common approach to reconstructing a shape from structured light
images is to first reconstruct a point cloud and then use one of the many methods for the
reconstruction of meshes from point clouds [4,20]. Poisson reconstruction [21], which has
seen several recent improvements [22], is among the most popular of these. Poisson recon-
struction is a volumetric reconstruction method [4]. This means that the reconstruction first
finds a smooth characteristic function and then extracts the polygon mesh using a method
for iso-contouring [23]. Unfortunately, this means that there is no simple relationship
between the final mesh vertices and the points in the intermediate point cloud, making the
reconstruction of sharp features challenging, even if the screened variant [24] improved
precision. To recapture sharp features, one might apply one of several anisotropic mesh-
smoothing methods [25–28]. While these are effective, they operate solely on the mesh
and do not make use of the original images. In particular, this can lead to sharp edges
forming without a basis in data. Thus, the point cloud-based pipeline generally does not
refer back to the original image data after the point cloud has been reconstructed, meaning
that the quantification of the error in the output object is not intrinsic to this pipeline. In
comparison, our differentiable rendering-based method optimizes the output mesh based
on an energy that directly uses the structured light images.

Another approach is based on the additional information provided by a camera that
includes a depth channel (RGB-D). Reconstruction techniques used with depth cameras
are, however, either voxel-based or point-based according to a recent survey [29]. Some
depth cameras retrieve depth images using structured infrared light. Thus, our technique
could be useful for mesh-based reconstruction with a sensor of this kind. Finally, one can
rely on the ability of a deep neural network to reconstruct a 3D shape from a single image
(or multiple images) [30,31]. In this area, the conclusion is interestingly that a mesh-based
method can generate 3D shapes with higher quality than voxel-based and point-based
methods. However, while better with a single image, the deep learning-based methods
currently lack the universality and adaptability of more traditional methods. Thus, in this
work, we suggest a mesh-based method that is not based on deep learning.

3. Method

Our method fits a surface to a set of structured light images by minimizing the
squared differences between rendered images and real images. We parameterize the
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object surface by a triangular mesh, and the parameters we optimize are thus the vertex
positions v. The real images are captured with structured light phase-shifting from multiple
camera-projector positions. We denote these images Ic,p, where c ∈ C is the index of the
camera–projector pair and p ∈ P is the index of the projected pattern. We render images
Ĩc,p(v) of our parameterized surface from the same camera–projector positions and find
the optimal vertex positions by solving the following minimization problem:

argmin
v
L(v) = argmin

v
∑
c∈C

∑
p∈P

∥∥∥Ic,p − Ĩc,p(v)
∥∥∥2

F
, (1)

where ‖ · ‖F is the Frobenius norm; i.e., we minimize the sum of squared differences over
all pixels for all patterns and all camera–projector pairs.

We generate our structured light images by projecting sinusoidal patterns such that
the intensity of each column of the projector is given by

1
2
+

1
2

sin
(
2πnpx + φp

)
, (2)

where x is the x-coordinate of the projector normalized to [0, 1], np is the frequency (number
of periods) of the pattern and φp is a phase-shift. With structured light images, such as
phase-shifted images made from Equation (2), the goal is usually to find the x-coordinate
of the projector, which subsequently can be used for triangulation.

Our method is not specific to phase-shifting patterns; however, we use differentiable
patterns to make the minimization problem tractable.

3.1. Rendering Images

To solve the minimization problem in Equation (1), we need to render the images
Ĩc,p(v) in each iteration. We want to adequately reproduce the structured light images
that would have been obtained if our current parameterized surface was a real object. We
achieve this by simulating the structured light process as seen from the viewpoint of the
camera. We render the images using the formula

Ĩc,p(v) = Ac sin
(

2πnpX̃c(v) + φp

)
+ Bc. (3)

Here, sin(·) is the element-wise application of the sine function, np is the number of
periods as in Equation (2), φp is the phase-shift for the pth pattern and X̃c(v) contains the
x-coordinates of the projector in the [0, 1] range for each pixel. We use the x-coordinate of
the projector as the projector is offset from the camera along its x-axis. The matrices Ac and
Bc are amplitudes and biases that are estimated from the ground truth images by fitting
sinusoids at each pixel location. We find the elements of X̃c(v) by tracing a ray from the
camera through the center of each pixel and projecting the point where it intersects the
surface back to the projector. As we model the projector as a pinhole camera, the point is
projected to the projector as follows:q1

q2
q3

 = P
[

r
1

]
=
[
p1 p2 p3 p4

][r
1

]
, (4)

where P is the projection matrix of the projector, pi is the ith column of P and r is the 3D
point where the ray intersects the triangle face. The i, jth element of X̃c is then given by

X̃i,j
c =

q1

q3
. (5)

If the ray does not intersect the surface, we treat the pixel as background and set X̃i,j
c (v) :=

Xi,j
c such that the corresponding term in the loss L(v) will be zero.
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Note that 2Ac is the proportion of projector light that is reflected into the camera and
Bc−Ac is the amount of global light. We estimate these to allow the renderings to resemble
the true images better. Fortunately, we need only estimate them once for each viewpoint,
as we can then use these estimates repeatedly in each iteration of the optimization.

3.2. Optimizing the Surface

We use gradient descent to solve the optimization problem in Equation (1). In order
to do this, we need the gradient of L(v), which in turn depends on the gradient of the
elements in X̃c(v). Recall that each of these elements is computed by tracing a single ray
from the camera to the surface of the object. The gradient of X̃i,j

c will therefore only have
contributions from the vertices spanning the triangle face that intersects the ray. We can
compute the derivative for one of these three vertices (pa) as follows:

∂X̃i,j
c

∂pa
=

(
p1 − X̃i,j

c p3

q3
· d
)

λan
d · n , (6)

where d is the ray direction, n is the normal of the face, and λa is the barycentric coordinate
corresponding to pa. The equations for the remaining two vertices, pb and pc, use λb and
λc but are otherwise identical. For a derivation of Equation (6), see Appendix A.

As mentioned, we use gradient descent to update the vertex positions; that is,

vi+1 = vi − αi∇L(vi), (7)

where vi and vi+1 are the vertex positions in the ith and (i + 1)th iterations, respectively.
To choose the step-length αi, we use a simple backtracking line-search [32] to choose

αi =
1
2n α, (8)

where α is a fixed constant and n is the smallest non-negative integer such that L(vi+1) <
L(vi) when doing the update.

3.3. Initializing the Optimization

We have so far described how the iterative part of the optimization problem works,
but this is only one half of the problem. A good initial guess is extremely important to
ensure convergence. In the next two sections, we introduce two possible ways to obtain an
initial guess for the minimization problem in Equation (1).

3.3.1. Using Other Reconstruction Methods

One way of getting a good initial guess is by using a reconstruction found via another
reconstruction method. In this way, our method can be seen as a post-processing step that
tries to adjust the reconstruction to fit to the original image data better. In some of our
experiments, we have used Screened Poisson Reconstructions [24] at various depths as
initialization. This method is used as it is able to produce decent reconstructions even from
a very noisy point cloud and therefore yields a good initial guess. However, as Poisson
reconstructions often produce undesired triangulations, we have found it to be beneficial
to remesh the mesh before starting the optimization.

3.3.2. Using a Simple Shape

Another way of obtaining an initial guess is to use a simple shape such as a sphere.
However, as the objective in Equation (1) has many high-frequency sinusoids, the opti-
mization is prone to ending up in local minima when the initial guess is far from a global
minimum. We therefore propose solving a related, but simpler, minimization problem and
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to use the solution as an initial guess for our problem in Equation (1). The simpler problem
is given by

argmin
v

∑
c∈C

∥∥∥Xc − X̃c(v)
∥∥∥2

F
, (9)

where Xc denotes the x-coordinates of the projector from the ground truth images. The
method used to recover Xc depends on the patterns displayed, but for two sets of phase-
shifted patterns, the heterodyne principle can be used [33].

To make the initial problem simpler, we start with a mesh that has few vertices and
gradually increase the number of vertices by remeshing. This enables us to use a simple
shape, e.g., a sphere, as our initial mesh.

3.3.3. Remeshing

As described in Sections 3.3.1 and 3.3.2, we use a remeshing algorithm. The algorithm
we use is adapted from the Python geometry processing library Pymesh [34]. The first step
is to remove any degenerate triangles and to split all edges that are longer than `. Then,
the algorithm repeatedly collapses any edges that are shorter than ` and splits any obtuse
triangles where the angle is greater than 150◦. This collapsing and splitting is repeated
until the mesh no longer changes. Finally, any self-intersections are removed, the mesh is
replaced by the outer hull of the mesh, obtuse triangles with an angle above 179◦ are split
and any isolated vertices are removed.

4. Experiments

To demonstrate the usefulness of our method, we carried out a few experiments
that we briefly introduce here. First, we showed that our method can reconstruct an
object starting from a sphere; see Figure 1. Secondly, we reconstructed three different
objects at multiple levels of noise; see Figure 2. Finally, we compared our method against a
Poisson reconstruction at two levels of noise and showed that our method could reconstruct
sharp edges.

Figure 2. Crop of image shown with varying levels of noise. From left to right: k = 1, k = 102,
k = 103.

4.1. Generating Ground Truth Images

We performed all experiments using synthetic ground truth images in order to have
access to the ground truth shape of the mesh for comparison. Our ground truth images
were made by projecting two sets of phase-shifted patterns with fifteen and sixteen periods,
respectively, with sixteen shifts of the first pattern and eight shifts of the second, such that

np =

{
15 p ∈ [1, 2, . . . , 16]
16 p ∈ [17, 18, . . . , 24]

(10)

and

φp =

{
2πp 1

16 p ∈ [1, 2, . . . , 16]
2π(p− 16) 1

8 p ∈ [17, 18, . . . , 24].
(11)

4.1.1. Rendering

We rendered the ground truth images using ray tracing with 100 samples per pixel
for anti-aliasing, and we used the Lambertian reflectance model to describe the optical
properties of our objects of interest.



Sensors 2021, 21, 1068 7 of 16

4.1.2. Noise

As these ground truth images were noise-free, we added noise to make the images
more realistic. For this, we modeled the noise of a pixel with intensity x by a Gaussian
distribution with mean x and the following variance:

σ2 = σ2
r + xσ2

p , (12)

where the first term σr describes the signal-independent sensor read-out noise and the
second term xσp describes the signal-dependent shot noise. We chose σr and σp by using the
noise levels from a baseline camera [35]. Our noise levels were then defined as multiples of
this baseline noise level, controlled by k as follows:

σ2(x, k) = k(4.5 · 10−7 + x · 2 · 10−5), (13)

such that k = 1 gives the noise levels of a baseline camera for x ∈ [0, 1]. After adding noise,
we clamped pixel values to the [0, 1] range. Examples of images for different values of k are
presented in Figure 2.

4.2. Quantitative Evaluation

We quantitatively evaluated the performance of our method using a metric ∆V closely
related to one minus the volumetric intersection over union (IoU):

∆V =

∣∣(S \ S̃
)
∪
(
S̃ \ S

)∣∣
|S| , (14)

where S and S̃ are the ground truth and reconstruction considered as solids, and | · | is the
volume of a solid. Volumetric IoU has recently been used for 3D object detection [36] and
for comparing volume-based surface representations [37–40]. As demonstrated by Kato
et al. [40], the metric is equally useful for a mesh-based surface representation like the one
we use.

4.3. Experiment Details

We evaluated our method on three different shapes: the Stanford Bunny [3], a combi-
nation of a cylinder and a box with various truncated corners and a dandelion vase [41].
These shapes are presented in the bottom row of Figure 3. When starting from a simple
shape as described in Section 3.3.2, we used the same sphere across all our experiments.
When optimizing the simpler problem in Equation (9), we performed remeshing for every
25th iteration. At each remeshing step, we decreased the target edge length, which yielded
meshes with an increasingly fine resolution. For the ith remeshing step, we set the target to

`i = 0.99i · 0.025 · dBB, (15)

where dBB is the largest diagonal of the bounding box of the current mesh. To be able to
solve the problem in Equation (9), we estimated Xc using the heterodyne principle [33].
In all our experiments, we used 60 camera–projector positions organized in three circles,
with 20 cameras in each circle, to mimic a structured light scanner with the object placed in
three different poses on a turntable rotating 18◦ between each image. One of these circles
is visualized in Figure 4. The camera resolution for all renderings was 1920× 1080 pixels.
Our method used approximately 1 s per iteration depending on the number of vertices and
the resolution of the images.

In Figure 1, we show how our method was able to reconstruct the Stanford Bunny
starting from a sphere. The reconstruction was done for k = 1. After finishing the
optimization based on Equation (9), we remeshed the result by halving the target edge
length ` from the last remeshing step to get a mesh with an even finer resolution. The
two in-progress images shown are during the initial optimization directly on Xc. The final
reconstruction contained many of the fine details of the true bunny (Figure 3j).
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To examine how our method is affected by noise, we reconstructed all three objects
starting from a sphere with varying levels of image noise (k ∈ [1, 102, 103]), which we show
in Figure 3. We see that our method was largely unaffected by noise and was still able to
reconstruct the shape. Figure 5 shows the corresponding results when using a screened
Poisson reconstruction.

Version February 1, 2021 submitted to Sensors 9 of 16

(a) k = 1, ∆V = 0.81% (b) k = 1, ∆V = 0.060% (c) k = 1, ∆V = 0.41%

(d) k = 102, ∆V = 0.83% (e) k = 102, ∆V = 0.074% (f) k = 102, ∆V = 0.47%

(g) k = 103, ∆V = 0.60% (h) k = 103, ∆V = 0.076% (i) k = 103, ∆V = 1.6%

(j) Ground truth (k) Ground truth (l) Ground truth

Figure 4. Reconstructions made by our method on three different objects, for increasing levels of
noise k.

Figure 3. Reconstructions made with our method on three different objects, for increasing levels of
noise k.
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Figure 4. Visualization of one of the circles from our camera–projector setup. In all experiments, we
used three circles with 20 cameras each. Red indicates a camera and blue indicates a projector. The
dotted lines show which cameras and projectors belong together.

Version February 1, 2021 submitted to Sensors 10 of 16

(a) k = 1, ∆V = 2.86% (b) k = 1, ∆V = 1.43% (c) k = 1, ∆V = 4.70%

(d) k = 102, ∆V = 3.33% (e) k = 102, ∆V = 1.77% (f) k = 102, ∆V = 6.06%

(g) k = 103, ∆V = 1.95% (h) k = 103, ∆V = 1.28% (i) k = 103, ∆V = 3.49%

(j) Ground truth (k) Ground truth (l) Ground truth

Figure 5. Poisson reconstructions of three different objects, for increasing levels of noise k. The
reconstructions for k = 103 have lower ∆V than the reconstructions at lower noise levels, as these
reconstructions were done at an increased octree depth to ensure that the reconstructions have more
vertices than the corresponding reconstructions in Figure 4. Red areas do not belong to the largest
connected component and have thus not been used in the computation of ∆V .

Figure 5. Poisson reconstructions of three different objects, for increasing levels of noise k. The
reconstructions for k = 103 had a lower ∆V than the reconstructions at lower noise levels, as these
reconstructions were done at an increased octree depth to ensure that the reconstructions had more
vertices than the corresponding reconstructions in Figure 3. Red areas do not belong to the largest
connected component and have thus not been used in the computation of ∆V .

Finally, we compared our method against Screened Poisson reconstruction, as shown
in Figure 6, for multiple depths of the reconstruction. The point cloud used for the Poisson
reconstruction for k = 1 contained 22 million points, and the point cloud for k = 103

contained 17 million points. Our method consistently achieved a lower error than the
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Poisson reconstruction. The meshes from some of these data points are shown in Figure 7
along with a Robust Implicit Moving Least Squares (RIMLS) reconstruction. Figure 7 also
shows that our method was able to reconstruct sharp features even in the presence of large
amounts of noise compared to other feature-preserving reconstruction methods such as
RIMLS [42]. The result from RIMLS was very poor in this case due to the large amount of
noise in the point cloud.

Version February 1, 2021 submitted to Sensors 11 of 16

103 104 105

10−3

10−2

10−1

Number of vertices

∆
V

Poisson
Opt. from Poisson
Opt. from sphere

(a) Low image noise (k = 1)

102 103 104

10−3

10−2

10−1

Number of vertices

∆
V

(b) High image noise (k = 103)

Figure 6. Comparison showing ∆V as a function of the number of vertices in the mesh for
reconstructions of the box with cylinder. Poisson is the Poisson reconstruction, where only the
connected component with the largest volume has been kept, as the Poisson reconstruction sometimes
produces multiple connected components for high levels of noise. Opt. from Poisson and sphere is
our method using the initial guesses described in Section 3.3. The Poisson reconstruction was done for
spatial octree depths of 4 to 8.

In order to solve the optimization problem, we compute the derivative of our loss function,276

which involves the derivative of our rendering. This is potentially problematic as our rendering is not277

differentiable at depth discontinuities, i.e., where non-neighbouring faces of the mesh are bordering278

each other in the image space. This could e.g., be the ear and body of the Stanford Bunny. Our method279

will in this case experience aliasing error in the renderings and derivatives. However, since the faces280

are observed from multiple views simultaneously, there is often another view where the same edges281

are observed with continuous depth. The problem is thus mitigated and since it occurs only for a282

small percentage of the pixels for each iteration it was not a problem in our optimization experiments.283

Although the optimization problem in Equation 9 is much less prone to ending up in a local minimum,284

it is still not guaranteed to find the global optimum. However, as the graphs in Figure 6 demonstrate285

our method is able to find a good local minimum.286

The choice of using a mesh as the surface representation to optimize has some advantages. It is287

very efficient to compute the gradient of our loss function for a mesh, as each pixel only influences a288

constant number of elements in the gradient, which makes it suitable for parallel implementation on a289

GPU (Graphics Processing Unit).290

5.1. Limitations291

A disadvantage of our method is that it is not able to handle topology changes. In practice, this292

means, that the initial mesh must have the same topology as the true object, but even then it is possible293

that the initial shape needs to be closer to the final shape for objects containing holes. Whether starting294

with a simple shape with the correct topology is sufficient is yet to be determined. However, this295

problem is avoided when using a Poisson reconstruction as the initial guess.296

While our method is quite robust to image noise, there will be extreme situations where the297

structured light decoding scheme fails in so many pixels that either of our initialization methods will298

fail. This is because both of our initial guesses to the method rely on having access to X̃c, which in the299

extreme case only contains noise. The limit to how much noise we can handle is yet to be determined,300

but as seen in Figures 2 and 4 we are able to handle substantial amounts of image noise.301

We can control the complexity of our mesh by adjusting the target number of vertices. This is a302

feature and in some cases also a limitation. The maximum target number of vertices is bounded by303

Figure 6. Comparison showing ∆V as a function of the number of vertices in the mesh for recon-
structions of a box with a cylinder. Poisson is the Poisson reconstruction, where only the connected
component with the largest volume has been kept, as the Poisson reconstruction sometimes produces
multiple connected components for high levels of noise. Opt. from Poisson and from sphere presents
our method using the initial guesses described in Section 3.3. The Poisson reconstruction was done
for spatial octree depths of 4 to 8.
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Figure 7. Our method can reconstruct meshes with sharp edges from very noisy images (k = 103). Our
method has a lower error (∆V) than a Screened Poisson reconstruction with a comparable number of
vertices (spatial octree depth 7). The error of the RIMLS reconstruction could not be evaluated.
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Areas of the object that have not been observed by any of the cameras are not affected by any309

gradient updates, and therefore retain the shape of the initial guess. This means that full coverage of310

the object is necessary to obtain an accurate reconstruction. However, our method is naturally able to311

identify which areas are not seen by any camera in the final solution, which implies that our method312

can be extended to remove or smooth these areas depending on the requirements.313
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reconstruction that we compare with. Further, we have obtained very high robustness to noise by319

optimizing the vertex positions directly from the images. Finally, our approach completely avoids320

partial scans that must subsequently be aligned, because the optimization is done for all images at321

once. This demonstrates the advantage of directly reconstructing a surface from structured light322

images using differentiable rendering. Our method opens up many interesting avenues of future work323

including bringing it from the realm of synthetic data to real-world data and testing the limits with324

respect to image noise. We conjecture that our method may be well-suited for scanning highly specular325

objects and other objects with a low signal-to-noise-ratio where aggregating information from many326

views is beneficial.327

Figure 7. Our method was able to reconstruct meshes with sharp edges from very noisy images
(k = 103). Our method had a lower error (∆V) than a Screened Poisson reconstruction with a
comparable number of vertices (spatial octree depth 7). The error of the Robust Implicit Moving
Least Squares (RIMLS) reconstruction could not be evaluated. (a) A noisy input image. (b) Crop
of noisy image. (c) Point cloud. (d) RIMLS reconstruction [42]. (e) Poisson reconstruction [24] with
7064 vertices. ∆V = 1.28%. (f) our method with 6038 vertices. ∆V = 0.08%.
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5. Discussion

Our method has the same implicit assumption about the appearance of the object
that is necessary for structured light. This assumption is that the amount of global light in
each pixel, i.e., the light that is not directly reflected, is the same for all patterns. This is
approximately true for high-frequency sinusoidal patterns [43].

Although we used the Lambertian reflectance model to render our synthetic data, we
do not expect this to be a limitation of our method. It does not rely on the assumption of
Lambertian reflectance due to the use of structured light, and therefore does not rely on
estimating a texture map of the object, neither implicitly nor explicitly.

In our experiments, we had the advantage of knowing the camera and projector
positions exactly, which would not be the case when working with real data. However,
this can be remedied by including the positions of these as parameters in the optimization
problem. Implementing this is relatively easy as our method only requires first-order
derivatives, which can be computed analytically using an approach similar to that used in
Appendix A. Additionally, we do not need to purely rely on our estimates of Ac, Bc, as these
can also be part of the optimized parameters. However, we expect both Ac, Bc, and the
camera–projector positions to be known quite accurately and would suggest allowing them
to be part of the optimization only once the original optimization problem has converged.

In order to solve the optimization problem, we computed the derivative of our loss
function, which involved the derivative of our rendering. This is potentially problematic
as our rendering is not differentiable at depth discontinuities; i.e., where non-neighbouring
faces of the mesh are bordering each other in the image space. This could, e.g., be the
ear and body of the Stanford Bunny. Our method will in this case experience aliasing
error in the renderings and derivatives. However, since the faces are observed from
multiple views simultaneously, there is often another view in which the same edges are
observed with continuous depth. The problem is thus mitigated, and since it occurs
only for a small percentage of the pixels for each iteration, it was not a problem in our
optimization experiments. Although the optimization problem in Equation (9) is much
less prone to ending up in a local minimum, it is still not guaranteed to find the global
optimum. However, as the graphs in Figure 6 demonstrate, our method is able to find a
good local minimum.

The choice of using a mesh as the surface representation to optimize has some ad-
vantages. It is very efficient to compute the gradient of our loss function for a mesh, as
each pixel only influences a constant number of elements in the gradient, which makes it
suitable for parallel implementation on a GPU (Graphics Processing Unit).

Limitations

A disadvantage of our method is that it is not able to handle topology changes. In
practice, this means that the initial mesh must have the same topology as the true object, but
even then it is possible that the initial shape would need to be closer to the final shape for
objects containing holes. Whether starting with a simple shape with the correct topology is
sufficient is yet to be determined. However, this problem is avoided when using a Poisson
reconstruction as the initial guess.

While our method is quite robust to image noise, there will be extreme situations
where the structured light decoding scheme will fail in so many pixels that either of our
initialization methods will fail. This is because both of our initial guesses to the method
rely on having access to X̃c, which in the extreme case only contains noise. The limit to
how much noise we can handle is yet to be determined, but as seen in Figures 2 and 3, we
are able to handle substantial amounts of image noise.

We can control the complexity of our mesh by adjusting the target number of vertices.
This is a feature and in some cases also a limitation. The maximum target number of
vertices is bounded by the amount of image noise. When the target number of vertices is
increased, each face in the mesh becomes smaller and therefore is more affected by noise.
Being able to set the number of vertices in the mesh, however, also allows the user to
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determine how many vertices are required to describe the given geometry. The number of
vertices also implicitly controls the amount of smoothing our method does, which enables
control over the trade-off between bias and variance.

Areas of the object that have not been observed by any of the cameras are not affected
by any gradient updates and therefore retain the shape of the initial guess. This means that
full coverage of the object is necessary to obtain an accurate reconstruction. However, our
method is naturally able to identify which areas are not seen by any camera in the final
solution, which implies that our method can be extended to remove or smooth these areas
depending on the requirements.

6. Conclusions

Our primary contribution in this work is a novel model for computing a surface mesh
directly from structured light images without the need for an intermediate point cloud.
With this model, we have shown that the direct computation of a triangle mesh gives
high accuracy and is particularly good at reconstructing sharp features such as corners
and edges, which are smoothed out using the two-step Screened Poisson reconstruction
that we used for comparison. Further, we have obtained very high robustness to noise by
optimizing the vertex positions directly from the images. Finally, our approach completely
avoids partial scans that must subsequently be aligned, because the optimization is done
for all images at once. This demonstrates the advantage of directly reconstructing a surface
from structured light images using differentiable rendering. Our method opens up many
interesting avenues of future work, including bringing it from the realm of synthetic data
to real-world data and testing the limits with respect to image noise. We conjecture that
our method may be well-suited for scanning highly specular objects and other objects with
a low signal-to-noise-ratio where aggregating information from many views is beneficial.
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Appendix A. Derivation of Equation (6)

In this appendix, we derive the gradients of the elements of X̃c(v) with respect to the
vertices v. Let X̃i,j

c be the i, jth element of X̃c(v). This is found by tracing a ray through the
center of the i, jth pixel in the camera until it intersects the surface at a point r; that is,

r = o + td, (A1)

for some t, where o is the position of the camera and d is the direction of the ray. Modeling
the projector as a pinhole camera, this point is projected back into the projector byq1

q2
q3

 =

P1,1 P1,2 P1,3 P1,4
P2,1 P2,2 P2,3 P2,4
P3,1 P3,2 P3,3 P3,4

[r
1

]
. (A2)

https://eco3d.compute.dtu.dk/pages/scanning
https://eco3d.compute.dtu.dk/pages/scanning
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If we define p1 =
[
P1,1 P1,2 P1,3

]
and p3 =

[
P3,1 P3,2 P3,3

]
then,

X̃i,j
c =

q1

q3
=

p1 · r + P1,4

p3 · r + P3,4
. (A3)

The point r intersects a triangle with vertices pa, pb, and pc. The normal of this triangle
can be computed by

n = (pc − pb)× (pa − pc). (A4)

Using the normal, we can write t as

t =
(pb − o) · n

d · n . (A5)

Using the chain-rule, we obtain that

∂X̃i,j
c

∂pa
=

∂X̃i,j
c

∂t
∂t

∂pa
(A6)

=

(
3

∑
i=1

∂X̃i,j
c

∂pi

∂pi
∂t

)
∂t

∂pa
(A7)

=

(
∂X̃i,j

c
∂r
· d
)

∂t
∂pa

. (A8)

Here,

∂X̃i,j
c

∂r
=

∂q1
∂r q3 − q1

∂q3
∂r

q32 (A9)

=
∂q1
∂r − X̃i,j

c
∂q3
∂r

q3
(A10)

=
p1 − X̃i,j

c p3

q3
. (A11)

The last missing term in Equation (A8) is

∂t
∂pa

=
∂

∂pa

(pb − o) · n
d · n (A12)

=

∂
∂pa

[(pb − o) · n](d · n)− [(pb − o) · n] ∂d·n
∂pa

(d · n)2 (A13)

=

∂n
∂pa

>
(pb − o)− t ∂n

∂pa

>
d

d · n (A14)

=

∂n
∂pa

>
(pb − o− td)

d · n (A15)

=

∂n
∂pa

>
(pb − r)

d · n , (A16)

with

∂n
∂pa

=
∂

∂pa
(pc − pb)× (pa − pc) (A17)

=
∂

∂pa
(pc − pb)× pa (A18)
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=
∂

∂pa
[pc − pb]×pa (A19)

= [pc − pb]×, (A20)

where we utilize that a cross-product a× b can be written as a matrix-vector product [a]×b
using a skew-symmetric matrix. Inserting this into Equation (A16), we get

∂t
∂pa

=
(pb − r)× (pc − pb)

d · n . (A21)

If we write r using barycentric coordinates, r = λapa + λbpb + λcpc with λa + λb + λc = 1,
then Equation (A21) reduces to

∂t
∂pa

=
(pb − (λapa + λbpb + λcpc))× (pc − pb)

d · n

=
(λa(pc − pa) + (1− λb)(pb − pc))× (pc − pb)

d · n
=

λa(pc − pa)× (pc − pb)

d · n
=

λan
d · n . (A22)

Finally, we obtain (Equation (6))

∂X̃i,j
c

∂pa
=

(
p1 − X̃i,j

c p3

q3
· d
)

λan
d · n . (A23)

The derivatives with respect to pb, and pc can be found with similar derivations.
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