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ABSTRACT
Ubiquitination is a modification after protein transcription that plays a vital role in maintaining 
the homeostasis of the cellular environment. The Homologous to E6AP C-terminus (HECT) 
family E3 ubiquitin ligases are a kind of E3 ubiquitin ligases with a C-terminal HECT domain 
that mediates the binding of ubiquitin to substrate proteins and a variable-length N-terminal 
extension. HECT-ubiquitinated ligases can be divided into three categories: NEDD4 superfamily, 
HERC superfamily, and other HECT superfamilies. HECT ubiquitin ligase plays an essential 
role in the development of many human diseases. In this review, we focus on the physiological 
and pathological processes involved in oxidative stress and the role of E3 ubiquitin ligase of 
the HECT family.
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UBIQUITIN–PROTEASOME 
SYSTEM

The ubiquitin–proteasome system is 
an important mechanism that regulates 
the protein levels in the body as well as 
intracellular protein levels. It is used to 
degrade misfolded, damaged, or useless 
proteins[1]; 80%–90% of  the proteins in cells 
are degraded by this pathway.[2] However, 
more and more evidence now shows that 
ubiquitination and even the combination 
of  ubiquitinated protein and proteasome 
may not lead to protein degradation.[3]  
Ubiquitin is a protein consisting of  
76 amino acids. It is typically linked to 
substrates through an isopeptide bond 
between the ε-amino group of  a substrate 
lysine residue and the carboxyl terminus 
of  ubiquitin, making it as a substrate for 
the proteasome.[4-6] The main feature of  
ubiquitin is its seven lysine residues, and 
all of  these residues can be ubiquitinated, 
resulting in a ubiquitin chain linked to 
an isopeptide. There are several different 
types of  ubiquitination. Some substrate 
proteins can only be monoubiquitinated 
or multi-monoubiquitinated, and substrate 

proteins can form polyubiquitin chains 
at a single lysine site. This polyubiquitin 
chain can be divided into single, mixed, 
and dendritic structures according to the 
lysine site connecting the ubiquitin chain. 
When ubiquitin is linked to the N-terminus 
of  the second ubiquitin, an eighth chain 
type is produced.[7] In the ubiquitin chain, 
the ubiquitin moiety can bind through 
one of  its lysine residues (K6, K11, 
K27, K29, K33, K48, and K63) or the 
N-terminal methionine residue, providing 
countless possibilities of  assembling 
specific polymers.[8] Because the tools and 
techniques for detecting posttranslational 
modifications are still lacking, the cellular 
function of  K6-connected ubiquitin chains 
is still unclear. There are literature reports 
that HUWE1 can be modified by K6 to 
connect ubiquitin chains.[9] The linear 
ubiquitin chain assembly complex is 
the only known mammalian ubiquitin 
ligase that makes methionine 1 (Met1)-
linked polyubiquitin. Nowadays, evidence 
suggests that Met1-linked polyubiquitin is 
inextricably linked to NF-κB signaling, cell 
death, inflammation, immunity, and cancer. 
K11 is a powerful degradation signal.[10, 11] 
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K11-linked chains can drive proteasome degradation and 
mitotic exit. K11-linked chains are the product of  the 
human E3 anaphase-promoting complex (APC/C), which 
can regulate cell division. When APC/C is activated during 
mitosis, K11-linked chains increase substantially.[12] K27-
linked chains participate in the DNA damage response. 
According to reports, RNF168-dependent chromatin 
ubiquitination requires K27-linked chain residues, which 
is an important ubiquitin-based modification marking 
chromatin upon DNA damage.[13] K29-linked chains can 
negatively regulate Wnt signaling pathway.[14] Deletion of  
the Really Interesting New Gene/U-box (RING)-type E3 
ligase Cbl-b and the Homologous to E6AP C-terminus 
(HECT)-type E3 ligase Itch resulted in an increase in 
T-cell activation and an autoimmune response. The two E3 
ligases cooperate to induce K33-linked polyubiquitination 
of  TCR-ζ, functionally altering receptor phosphorylation 
and protein binding.[15] K48-K63–linked chains can 
also regulate NF-κB signaling.[16] Protein ubiquitination 
requires three enzymes: E1 ubiquitin-activating enzyme, 
E2 ubiquitin-conjugating enzyme, and an E3 ubiquitin  
ligase.[17] First, the E1 enzyme forms a thioester bond 
between its active site Cys and the C-terminal Gly of  
ubiquitin in an ATP-dependent manner. Ubiquitin is then 
transferred on to the Cys residue in the active site of  the 
E2 enzyme; E2 can bind to E3-ubiquitinated ligase after 
activation. E3-ubiquitinated ligase recognizes degraded 
proteins and links ubiquitin to the substrate (Figure 1).[7,18,19] 
E3-ubiquitinated ligases are divided into three categories: 

the largest class is the RING-type E3s, followed by the 
HECT-type E3s and the RING between RING (RBR)-type 
E3s.[20] The majority of  the 600 E3s present in humans 
belong to the RING family, which are characterized by a 
cross-brace structure with two zinc ions coordinated by 
cysteine and histidine residues.[19] In the past 10 years, the 
ubiquitin–proteasome system has been extensively studied 
in the cardiovascular field, including atherosclerosis, familial 
cardiac protein disease, idiopathic dilated cardiomyopathy, 
and myocardial ischemia.[21–24] At the same time, there are 
related reports that the ubiquitin–proteasome system can 
also promote the metabolism of  toxins, fats, and cancer 
cells, and the energy generated by metabolism can stimulate 
cells to self-replicate and undergo self-metabolic repair 
(Figure 2).[25–28]

Proteasomes are widely distributed in the cytoplasm and 
nucleus, have multiple proteolytic enzyme activities, and 
are ubiquitin dependent. Polyubiquitin-labeled proteins are 
often degraded by the 26s proteasome. The 26S proteasome 
can be divided into two subcomplexes: the 19S regulatory 
particle (RP) and the 20S core particle (CP). The function 
of  19s is to recognize, expand, and deubiquitinate and 
translocate substrates into the 20s proteasome, which 
contains the proteolytic site.[29] The dyad-symmetric CP is 
a highly conservative complex composed of  four stacked 
heptameric rings, and the two inner rings create an internal 
chamber that houses the proteolytic active sites responsible 
for protein cleavage; these rings are each formed by seven 

Figure 1: The ubiquitination cascade. The E1 enzyme forms a thioester bond between its active site Cys and the C-terminal Gly of ubiquitin in an ATP-dependent manner. 
Ubiquitin is then transferred on to the Cys residue in the active site of the E2 enzyme. E2 can bind to E3-ubiquitinated ligase. After activation, E3-ubiquitinated ligase 
recognizes degraded proteins and links ubiquitin to the substrate.
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β subunits.[30] The 20S proteasomes degrade unfolded 
or loosely folded proteins and peptides in a manner 
independent of  ATP.[5] 

HECT FAMILY E3 UBIQUITIN LIGASE

The difference between HECT family E3 ubiquitin ligases 
and other ubiquitin E3 ligases is that they have an active site 
for cysteine, which forms an intermediate thioester bond 
with ubiquitin before it is linked to its substrate.[31] HECT 
family E3 has a key domain, the HECT domain (homologous 
to the C-terminus of  E6AP), which is a conservative 
carboxy-terminal catalytic domain composed of  about 350 
amino acids.[32] The N-terminus of  the HECT family E3 is 
generally not conserved, but the N-terminus can specifically 
recognize the substrate.[33] The HECT domain consists of  
two lobes: a larger N-terminal lobe (N-lobe) and a smaller 
C-terminal lobe (C-lobe). Structural studies show that the 

two lobes are connected by a flexible hinge region, which 
is essential for the catalytic Cys residues (HECT domains) 
incorporated into E2 and E3 during ubiquitin transfer.[34] 
Based on the existence of  different amino acid sequence 
motifs in these N-terminal extensions, the human HECT E3 
family consists of  28 members, of  which 15 members can 
be divided into two subfamilies based on the commonness 
of  the N-terminal domain. The human NEDD4 subfamily 
has nine members characterized by the existence of  a WW 
domain and a C2 domain, and is the most famous and 
researched. Another family is the six-member HERC E3 
ligase with two characteristic domains in its sequence: the 
HECT domain and the RCC1-like domain (RLD). Other 
HECT E3 families lack WW or RLD domains and have 
various N-terminal domains. Yeast has five HECT E3 ligases: 
Rsp5, Ufd4, Hul4, Hul5, and Tom1. Rsp5 is a member of  
the NEDD4 family, while the other four yeast HECT E3s 
do not belong to any family (Figure 3).[35–38]

Figure 2: Classification of the HECT E3 family. The family of HECT E3. All members of the HECT E3 family are characterized by the C-terminal HECT domain, which consists 
of approximately 350 amino acid residues and represents the catalytic domain. The NEDD4 subfamily has nine members that are characterized by an N-terminal C2 
domain and the presence of several WW domains. The HERC family comprises six members, which are characterized by the presence of one or several RLD domains. 
Members of other HECT E3 subfamily are characterized by the notion that they contain neither RLDs nor WW domains.

Figure 3: Overview of related functions of different HECT E3 ubiquitin ligases under oxidative stress.



Qian et al.: HECT E3 ubiquitin ligases and their role in oxidative stress

74 JOURNAL OF TRANSLATIONAL INTERNAL MEDICINE / APR-JUN 2020 / VOL 8 |ISSUE 2

NEDD4 subfamily
NEDD4 is a founding member of  the NEDD4 family 
of  ubiquitin ligases, a highly evolved and conserved 
protein from yeast to humans. It is one of  the earliest 
discovered HECT E3 ubiquitin ligases.[39] It includes an 
N-terminal C2 domain, three to four WW domains, and a 
C-terminal catalytic HECT domain for ligation of  ubiquitin  
proteins.[40] The C2 domain is a calcium-dependent lipid-
binding domain with a length of  about 116 amino acids. 
The C2 domain not only binds to lipid membranes, but 
has also been shown to bind proteins.[41] The WW domain 
consists of  35–40 amino acids and has two conserved 
tryptophan residues. These domains usually bind to PY 
(PPxY) motifs in substrates and regulatory proteins. 
Multiple WW domains in NEDD4 members suggest they 
may interact with multiple proteins simultaneously.[42] 
In humans, NEDD4 includes nine members: NEDD4, 
NEDD4-2/NEDD4L, ITCH, Smad ubiquitin regulators1,2 
(Smurf1, Smurf2), WWP1, WWP2, NEDL1, and NEDL2. 
NEDD4 was originally thought to be a developmental 
regulatory gene in the central nervous system.[43] Smurf1 
and Smurf2 are related members of  the NEDD4 family, 
both of  which contain three WW structures. Smurf1 is 
involved in many important biological functions, including 
the bone morphogenetic protein, cell growth, and  
morphogenesis.[44] Smurf2 was originally thought to 
negatively regulate the BMP/TGF-β signaling pathway 
and play a vital role in the pathogenesis of  embryogenesis, 
adult tissue homeostasis, tumors, and various human 
diseases.[45,46] WWP1 contains four WW domains. WWP1 
regulates a variety of  cellular biological processes, including 
transcription, degradation, and protein transport. WWP1 
is linked to many diseases such as cancer, acute myeloid 
leukemia, and immune-related diseases.[47] Like other 
NEDD4 family members, ITCH is ubiquitous in patients 
with inflammatory skin diseases and patients with systemic 
and neurological diseases, and it can seriously affect the 
quality of  life.[48]

HERC subfamily
The HERC subfamily has six members. Based on the 
molecular weight, it can be further divided into “large” 
HERCs (molecular weights greater than 500 kDa, HEC1 
and HEC2) and “small” HERCs (molecular weights about 
100–120 kDa), which are characterized by having HECT 
domain and one or more RLDs of  ubiquitin ligase activity.[49]  
The large HERC family contains multiple RCC-like domains, 
but the small HERC family usually carries only one.[50] 
HERC protein is mainly located in the cytoplasm, from 
the cytoplasm to the membrane or vesicular structure.[36]  
The RLD of  HERC E3s usually consists of  seven repeats 
of  50–70 amino acids. Structural studies show that RCC1 
is composed of  seven β blades resembling the shape of  a 
propeller. Each repeat sequence corresponds to a blade.[51]

Other HECT E3 subfamilies
Ube3A (E6 associated protein [E6AP]) has a conserved 
N-terminal domain (residues 24–87), a novel Zn-
binding fold called amino-terminal Zn-finger of  Ube3a 
ligase (AZUL).[52] E6AP can form a complex with 
human papillomavirus E6 oncoprotein and target the 
degradation of  tumor suppressor p53, thereby promoting  
canceration.[53,54] Other HECT subfamilies include 
HUWE1, UBR5, and TRIP12. HUWE1 contains two 
N-terminal unknown functional domains, DUF908 and 
DUF913, similar to the domain in Saccharomyces cerevisiae 
HECT ligase Tom1, followed by the ubiquitin-related 
UBA domain.[55] HACE1 can be targeted to bind to p53 
and many other substrates involved in tumorigenesis[56]; it 
has received widespread attention as a target for anticancer 
drugs.[57] UBR5 is widely expressed in a variety of  cell types. 
The catalytically active HECT domain of  UBR5 is made up 
of  N- and C-lobes separated by a linker sequence. UBR5 
is highly conserved in metazoans and involved in many 
biological functions, including DNA damage response, 
metabolism, transcription, and apoptosis. UBR5 is a 
cellular signal regulator related to many cancer biological 
processes. However, the mechanisms of  UBR5 involved in 
tumorigenesis and development are not clear.[58]

OXIDATIVE STRESS

Oxidative stress injury is the basis of  the occurrence and 
development of  many diseases. In order to maintain the 
stability of  the internal environment, there is a balance 
between oxidation and antioxidants; but when this balance 
is broken by various factors, it will have a series of  negative 
effects.[59] Reactive oxygen species (ROS) is a type of  one-
electron reduction product of  oxygen in the body, including 
superoxide anion (O2−), one-electron reduction product of  
oxygen; hydrogen peroxide (H2O2), two-electron reduction 
product; hydroxyl radical (•OH); nitric oxide, etc.[60]

Mitochondrial metabolism is the main source of  ROS, 
including singlet oxygen (O2), superoxide anion (O2•−), 
hydrogen peroxide (H2O2), nitric oxide (NO•), hydroxyl 
radical (OH•), and hydroxyl ion (OH−).[61] It is generally 
believed that most of  the mitochondrial ROS are formed 
in complex I (NADH-CoQ reductase) and complex III 
(cytochrome C oxidase), where electrons can react with 
oxygen to generate O2−.[62–64] In addition, mitochondrial 
flavin proteases, especially pyruvate dehydrogenase and 
α-ketoglutarate dehydrogenase, are also considered sources 
of  O2−.[65]

The main ROS production in the cell membrane is mainly 
NADPH oxidase.[66] The heterodimer transmembrane part 
of  the classic NADPH oxidase complex from phagocytes 
consists of  NOx2 and p22phox. The NADPH-dependent 
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oxidoreductase (NOx enzyme) family is mainly divided 
into four types (NOx1, NOx2, NOx4, and NOx5). 
NOx1 is mainly expressed in smooth muscle cells, but 
is also found in endothelial cells. NOx2 is expressed in 
endothelial cells, adventitial fibroblasts, inflammatory 
cells, platelets, and microvascular smooth muscle cells. 
NOx4 is widely expressed in vascular cells and is the 
most abundant NOx homolog.[67] NOx4 is different in 
that it can quickly convert O2− to H2O2, while H2O2 
does not interact with NO signals and degrade NO. 
NOx4 in the vascular system has been reported to 
promote angiogenesis and reduce inflammation [68].  
At the same time, NOx4 can reduce inflammation, fibrosis, 
and improve endothelial function without affecting 
dyslipidemia in atherosclerosis.[69,70]. In the vessel wall, ROS 
production systems include NADPH oxidase, xanthine 
oxidase, mitochondrial electron transport chain, and 
uncoupled endothelial nitric oxide.[71,72] Under physiological 
conditions, low concentration of  ROS has the function 
of  signal transduction. However, excessive or sustained 
production of  ROS can lead to oxidative stress injury.[73] 
In the arterial wall, oxidative stress not only causes direct 
and irreversible oxidative damage, but also destroys the key 
redox-dependent signal transduction process. The literature 
indicates that the mechanism by which oxidative stress can 
promote vascular disease is through the destruction of  
vascular protective NO signaling pathway.[74] In addition to 
NO inactivation, ROS can also directly promote vascular 
inflammation and remodeling. Indeed, many adverse 
effects of  ROS on the arterial wall are attributable to the 
oxidation of  key signaling proteins and activation of  the 
pro-inflammatory redox-dependent transcription factor 
NF-κB; this leads to the expression of  adhesion molecules 
on the endothelium and the proliferation and migration of  
vascular smooth muscle cells.[75] 

The endoplasmic reticulum contains various oxygenases 
and oxidases (e.g. cytochrome P450 enzymes, flavin 
monooxygenases, prolyl and lysyl hydroxylases), and 
these enzymes are important sources of  ROS formation. 
Especially during protein folding, ROS and glutathione 
disulfide (GSSG) form by-products under the action of  
endoplasmic oxidoreductase 1 (Er1) thiol oxidase. The 
same endoplasmic reticulum and nucleus are also related 
to the production of  RO.[76,77]

HECT SUBFAMILY AND OXIDATIVE 
STRESS

NEDD4 subfamily and oxidative stress 
Dexmedetomidine (Dex) is a widely used anesthetic and 
has some anti-inflammatory effects.[78] Dex significantly 
inhibits the production of  pro-inflammatory factors such 

as interleukin (IL)-6 and tumor necrosis factor alpha 
(TNF-α) in endotoxemia.[79] In addition, there are also 
reports in literature demonstrating the protective effect of  
Dex on lipopolysaccharide (LPS)-induced acute lung injury 
through HMGB1-mediated TLR4/NF-κB and PI3K/Akt/
mTOR pathways.[80] It has been reported that upregulation 
of  XIAP inhibits chondrocyte apoptosis in degenerated 
nucleus pulposus and osteoarthritis.[81,82] XIAP is a member 
of  the apoptosis inhibitory protein (IAP) and represents 
a family of  endogenous caspase inhibitors. Upregulating 
XIAP can block degenerative nucleus pulposus and 
osteoarthritis chondrocyte apoptosis.[82] It is well known 
that the NF-κB signaling pathway is a key molecular switch 
for cells to respond to oxidative stress.[83] In a model of  
degenerative disk disease, Dex blocked the activation of  
NF-κB signaling pathway by H2O2. Dex inhibits NLRP3 by 
inhibiting the NF-κB signaling pathway. Activated NLRP3 
recruits ASC and caspase-1 to form a protein complex that 
is essential for caspase-1 activation. Activated caspase-1 
leads to the maturation of  pre-IL-1β and pre-IL-18. XIAP 
not only directly inhibits initiation and execution of  the 
caspase cascade during programmed cell death, but also 
regulates a series of  cellular activities that enhance survival 
signals, including NFκB activity, in a caspase-independent 
manner.[84,85] In a model of  H2O2-induced chondrocyte 
death and degeneration, H2O2 stimulation increased the 
expression of  NEDD4. Co-treatment with Dex and H2O2 
caused an increase in XIAP protein level. Dex can reduce 
the amount of  NEDD4 bound to XIAP, thereby protecting 
the XIAP protein from NEDD4-mediated ubiquitination 
and degradation. Dex destroys the effects of  H2O2 on 
NF-κB/NLRP3, JNK/NLRP3, and NEDD4/XIAP, thus 
preventing the death and degradation of  chondrocytes.[86]

The Hippo signaling pathway was originally discovered in 
the genetic study of  Drosophila. The core components of  
the Hippo signaling pathway (MST1/2, LATS1/2, YAP, 
and TAZ) are involved in many important biological 
functions.[87] Its main function is to restrict the growth of  
adult tissues and regulate cell proliferation, differentiation, 
and migration in developmental organs.[88] Besides, 
dysregulation of  the Hippo pathway leads to abnormal 
cell growth and tumor formation.[89] During apoptosis, 
PARP1 is cleaved by caspase-3,[90] so that PARP1 loses its 
enzyme activity, and then completes the biological process 
of  apoptosis.[91] Under high concentrations of  oxidative 
stress, NEDD4 is cleaved by various activated caspases. 
Interestingly, the kinetics of  NEDD4 cleavage is similar to 
that of  PARP1.[91] In human bone marrow–derived stem 
cells (hBMSCs), low-concentration H2O2 stimulation can 
increase the expression of  NEDD4 and activate the Hippo 
signaling pathway. NEDD4 can regulate the differentiation 
of  osteoblasts in hBMSCs under oxidative stress and 
further reduce the differentiation of  osteoblasts.[92]
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Thioredoxin-interacting protein (TXNIP) is expressed in 
most eukaryotic cells; it remains stable under oxidative 
stress and acts as a ROS scavenger [93]. Under conditions 
of  high ROS levels and oxidative stress, TXNIP dissociates 
from thioredoxin to associate with NLRP3.[94] It can 
activate inflammatory cells and mediate inflammatory 
signals.[95] It has been reported that the E3-ubiquitinated 
ligase ITCH degrades TXNIP through the ubiquitin–
proteasome pathway to maintain cellular homeostasis and 
response to ROS. ITCH increases proteasomal TXNIP 
degradation and augments thioredoxin activity, leading 
to inhibition of  ROS generation, p38 MAPK, and p53, 
improvement of  oxidative stress response in ROS-induced 
cardiotoxicity, and improvement of  survival in ROS-
induced cardiotoxicity and myocardial infarction.[96] 

WWP1 also belongs to the E3 ubiquitinated ligase HECT 
family. It has been reported that WWP1 can degrade p53 
through the ubiquitin–proteasome pathway.[97] It is also 
reported that deletion of  the WWP1 gene inhibits the 
growth of  liver cancer cells and leads to apoptosis of  
liver cancer cells. Knockout of  WWP1 can promote the 
expression of  caspase-3 protein and p53 in liver cancer 
cells.[98] In obesity, excessive supply of  energy substrate 
leads to increased ROS level, which leads to inflammation 
and insulin resistance. Mitochondrial antioxidant enzymes 
such as superoxide dismutase and glutathione peroxidase 
are impaired in obese patients with type 2 diabetes.[99] 
In vivo, WWP1 is a new obesity-inducing protein and p53-
dependent E3 ubiquitin ligase that can help protect fat cells 
from oxidative stress.[101] 

Endothelial dysfunction caused by oxidative stress is the 
initial event and main cause of  cardiovascular system 
diseases such as atherosclerosis and hypertension vascular 
disease.[100,101] WWP2 is involved in the cell cycle.[102] At 
the same time, in endometrial cancer, there may be a 
correlation between increased WWP2 transcription levels 
and loss of  PTEN protein.[103] Septin4 is a member of  
the GTP-binding protein family and is involved in the 
formation of  the cytoskeleton during mitotic, apoptotic, 
fibrotic, and other cellular processes.[104] WWP2, a member 
of  NEDD4 family, is involved in endothelial cell injury and 
vascular remodeling as a new regulator. In addition, WWP2 
ubiquitinates the Septin4-K174 site by interacting with 
the Septin4-GTP domain, and degrades Septin4 via the 
ubiquitin–proteasome pathway. This inhibits the formation 
of  Septin4–PARP1 complex to suppress endothelial injury 
and vascular remodeling after endothelial injury.[105]

The NADPH (NOx) family is an important source of  ROS. 
The literature shows that NOxs regulates the growth and 
death of  hepatocytes through the TGF-β signaling pathway 
of  hepatocytes and the activation of  hepatic stellate 

cells on myofibroblasts, which are the key to the fibrotic  
process.[106] In myxomatous mitral valve disease, multiple 
TGF-β receptors and their ligands are increased, and 
NOx2 and NOx4 aggravate oxidative stress in the mucus 
mitral valve, which in turn increases fibrosis and matrix 
remodeling. At the same time, the expression of  E3 
ubiquitin ligases Smurf1 and Smurf2 is upregulated, but the 
expression of  TGF-β1 and phosphorylation of  SMAD2/3 
are also increased. Increased expression of  Smurf1/2 plays 
a role in limiting the increase in typical Smad signals, but 
not sufficient to eliminate the rise in profibrosis or matrix-
remodeling genes.[107]

HERC subfamily and oxidative stress
Little is known about the HECR superfamily under 
oxidative stress. Only one literature mentions it. Engineered 
fullerenes (C60) is used in many clinical and industrial 
routes. For example, its lipophilicity is used for potential 
antibacterial activity, and various chemical modifications 
(–OH, –COOH, –NH2) are easily made, making it suitable 
as a pharmacological agent. This study reports that tris-C60 
can inhibit apoptosis and cell proliferation. Studies have 
shown that apoptotic cells are mainly distributed in the S 
cell cycle, while cells that have stalled are mainly distributed 
in the G1/M and G2/M cell cycle. H2O2 pretreatment 
can induce G1 cell cycle arrest and apoptosis. Increased 
expression of  p16, p21, and p53 proteins in cells exposed 
to tris-C60, which are related to cell aging.[108,109] Despite 
evidence that ROS plays a role in triggering aging.[110,111] 
no increase in intracellular ROS levels was observed in 
tris-C60–treated cells. In contrast, tris-C60 appears to 
reduce total ROS levels. At the same time, HERC5 gene and 
protein levels are significantly reduced.[108]. HERC5 belongs 
to the HECT E3 family of  RCC-like domains. HERC5 may 
be regulated by p53 and Rb, which can interact with cyclins. 
However, to date, there is no evidence that HERC5 is 
involved in cellular aging.[112] The interconnection between 
HERC and oxidative stress needs further exploration.

Other HECT subfamily and oxidative stress
Kaposi’s sarcoma (KS) remains one of  the most common 
malignancies in patients with human immunodeficiency 
virus (HIV) infection.[113] KS-associated herpesvirus 
infection also induces ROS in endothelial cells to 
facilitate its entry and amplify the infection.[114] The E3 
ubiquitination protein ligase HACE1 protein can act on 
Rac1 protein and degrade through ubiquitin–proteasome, 
and block the production of  ROS by Rac1-dependent 
NADPH oxidase. HACE1 can also promote Nrf2 activity 
of  endothelial cells and play an essential role in regulating 
KSHV-induced oxidative stress. ROS in HACE1-deficient 
mouse embryonic fibroblasts are dependent on glutamine 
uptake. Cells lacking HACE1 show uncontrolled ROS 
production, and cell death further increases after glutamine 
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withdrawal. In KSHV-infected cells, knocking out HACE1 
results in high RAC1 and NOx 1 activity, increased ROS, 
increased cell death, and decreased KSHV gene expression. 
HACE1 slows oxidative stress in KSHV infection mediated 
by Nrf2.[115]

It has been reported in the literature that the absence of  
HACE1 can cause abnormalities in the zebrafish heart, 
especially a circular or “inverted” circular defect in the heart. 
Knockout of  Rac1 in myocardial cells of  mice showed that 
cardiac NOx activity and cardiac hypertrophy in these 
animals were reduced, suggesting that Rac1 is also critical 
for cardiac hypertrophy.[116] Knockout of  zebrafish HACE1 
can lead to cardiac malformations, especially circulation 
defects, and increased Rac1 expression. Importantly, this 
phenotype appears to be directly related to NOx enzyme-
dependent ROS production, as both genetic inhibition by 
NOx1 and NOx2 morpholinos or pharmacologic rescue 
using ROS scavenging agents restore normal cardiac 
structure.[117] There is a strong relationship between the loss 
of  function of  HACE1 and oxidative stress; especially, the 
ROS level in myocardial cells is significantly increased. An 
increase in ROS levels can promote the development of  
tumors.[118,119] HACE1 expression can negatively regulate 
NOx-dependent ROS production (Figure 3).
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