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(yroid cancer is the most prevalent endocrine malignancy with an increasing incidence in the past few decades. Neferine
possesses various pharmacological activities, which have been applied in diverse disease models, including various tumors.
However, the detailed effect and mechanism of neferine on thyroid cancer are still unclear. In the current study, the viability of
IHH-4 and CAL-62 cells was examined by the CCK-8 assay. (e effect of neferine on the proliferation, apoptosis, invasion,
vascular endothelial growth factor (VEGF), epithelial-mesenchymal transition (EMT), and ferroptosis was evaluated by CCK-8,
flow cytometry, western blot, and spectrophotometry assays. Mechanically, the expressions levels of Nrf2/HO-1/NQO1 signaling
were first determined by a western blot, which was then verified by Nrf2 overexpression. In vivo validation was also conducted on
BALB/c nude mice with an inoculation dose of 2×106 IHH-4 cells. (e results showed that neferine repressed the viability of both
IHH-4 and CAL-62 cells both in a dose-dependent way and in a time-dependent fashion, in which the IC50 value of neferine on
IHH-4 and CAL-62 cells was 9.47 and 8.72 μM, respectively. Besides, neferine enhanced apoptosis but suppressed invasion,
angiogenesis, and EMT of IHH-4 and CAL-62 cells. Moreover, neferine induced the activation of ferroptosis in thyroid cancer
cells. Notably, it was revealed that the Nrf2/HO-1/NQO1 pathway was strongly associated with the effect of neferine on the
modulation of thyroid cancer. Furthermore, these outcomes were validated in xenografted mice. (erefore, neferine exerted an
antitumor effect and ferroptosis-inducing effect on thyroid cancer via inhibiting the Nrf2/HO-1/NQO1 pathway.

1. Introduction

(yroid cancer is the most prevalent endocrine malignancy,
whose incidence has rapidly increased in the past few de-
cades [1]. It mainly comprises three histological types, in-
cluding undifferentiated, differentiated, and medullary
thyroid cancer [2]. Among them, the differentiated thyroid
cancer contains follicular, and papillary thyroid cancer ex-
hibits an excellent prognosis with 80–95% 10-year survival
rates, while undifferentiated thyroid cancer designates an-
aplastic, and poorly differentiated thyroid cancer has an
extraordinary poor survival with prominent invasiveness
[3, 4]. Moreover, both the differentiated and undifferentiated
thyroid cancer forms show distant metastasis [5, 6].

Currently, several therapies have been applied in the
treatment of thyroid cancer, such as radioactive iodine
therapy, surgery, thyroid-stimulating hormone (TSH) as
well as immunotherapeutic agents [7, 8]. Despite the en-
couraging advance, much exploration remains to contribute
to the understanding and development of pathogenesis and
treatment of thyroid cancer.

Ferroptosis distinguished from both apoptosis and ne-
crosis that is a fresh form of cell death featured with iron-
induced lipid peroxidation [9]. Although ferroptosis can be
activated in a variety of pathological states, such as lung
injury, neurodegeneration, and renal failure [10, 11], tumor
cells can adapt to the oxidative environment to confine
ferroptosis, thereby remodeling the tumor niche to facilitate
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cancer growth and development [12]. (us, ferroptosis
activation is a potential option for the treatment of diverse
cancers, including thyroid cancer. Wang et al. [13] reports
that E26 transformation specific (ETS) variant 4 (ETV4), an
ETS family transcription factor, can suppress ferroptosis,
which facilitates the progression of papillary thyroid cancer.
Consistently, the suppressive effect of vitamin C on ana-
plastic thyroid cancer is also demonstrated to be through the
induction of ferroptosis [14]. In addition, Chen et al. [15]
shows that circKIF4A inhibits ferroptosis to promote the
malignant development of papillary thyroid cancer via the
miR-1231/GPX4 axis.

Neferine is one of the most abundant bisbenzylisoqui-
noline alkaloids extracted from the seed embryos of lotus
[16]. Eviden+ces have revealed that neferine owns various
pharmacological activities, including anti-inflammation,
antioxidation, antiarrhythmia, antihypertension, antith-
rombosis, antiplatelet, and antiamnesia; thus, it has been
employed for the treatment of high fevers, arrhythmia,
hypertension, occlusion, platelet aggregation, obesity, and
hyposomnia [16]. Moreover, a growing number of studies
have illustrated that neferine has a therapeutic effect on
various cancers. For instance, neferine impedes growth
and mobility of human prostate cancer stem cells via
activating the p38 MAPK/JNK pathway [17]. Neferine
restricts lung carcinogenesis induced by diethylnitros-
amine in Wistar rats [18]. Neferine is a powerful anti-
cancer agent against SiHa and HeLa cervical cancer cells
by the induction of autophagy and apoptosis associated
with reactive oxygen species (ROS) [19]. Nevertheless, the
detailed effect and mechanism of neferine on thyroid
cancer remain intricate.

(erefore, the current study aimed to discuss the detailed
effect and mechanism of neferine on thyroid cancer. We first
discussed the effect of neferine on the growth, invasion, and
epithelial-mesenchymal transition (EMT) of thyroid cancer
cell lines, IHH-4, and CAL-62. (en, the role of neferine in
the ferroptosis was investigated in IHH-4 and CAL-62 cells.
Moreover, the underlying mechanism was also explored
through the examination of the expressions involved in the
Nrf2/HO-1/NQO1 signaling pathway. Furthermore, in vivo
verification was executed on the xenografted mice. We hope
our results can establish a theoretical basic for the therapy of
thyroid cancer in the clinical practice.

2. Materials and Methods

2.1. Cell Culture. Human thyroid cancer cell lines IHH-4
(JCRB1079) and CAL-62 (CL-0618) were bought from
JCRB Cell Bank (Tokyo, Japan) and Procell (Wuhan, China),
respectively. Both of cells were cultured in the DMEM
medium (PM150210, Procell) with 10% fetal bovine serum
(FBS, 164210–500, Procell) and 1% streptomycin-penicillin
(P/S, PB180120, Procell) at 37°C with 5% CO2.

2.2. Cell Counting Kit-8 (CCK-8) Assay. IHH-4 and CAL-
62 cells with an inoculation density of 1× 105 cells/well were
sowed into 96-well plates and incubated at 37°C with 5%

CO2 overnight. After cells were administrated with diverse
concentrations (0, 0.3, 0.6, 1.25, 2.5, 5, 10, 20, 40, and 80 μM)
of neferine for 96 h, 10 μl CCK-8 reagent (Dojindo Labo-
ratories, Kumamoto, Japan) was added into each well and
then incubated at 37°C for 2 h. (e microplate reader
((ermo Fisher Scientific, Waltham, MA, USA) was applied
to record the absorbance at 450 nm. In addition, to deter-
mine the effect of neferine on the proliferation of IHH-4 and
CAL-62 cells, both cells were inoculated into 96-well plates
and maintained at 37°C in 5% CO2. After being cultured for
1 d, cell density was normalized and then incubated with 5
and 10 μM neferine for further 48, 72, and 96 h, and the
proliferation of cells was assessed by CCK-8. Neferine was
bought from MedChemExpress (Monmouth Junction, NJ,
USA, Cat No.: HY-N0441, CAS No.: 2292-16-2, purity:
99.92%) and dissolved in 0.1% dimethylsulfoxide (DMSO,
Beyotime, Shanghai, China).

2.3. Flow Cytometry Analysis. (e apoptosis of IHH-4 and
CAL-62 cells was examined by the flow cytometry assay [20].
In brief, IHH-4 and CAL-62 cells were sowed into 24-well
plates with a density of 2.5×105 cells/well and cultured
overnight at 37°C with 5% CO2. After being treated with 5
and 10 μM neferine, both cells were gathered, rinsed with
phosphate buffer saline (PBS) (Solarbio, Beijing, China),
resuspended with 0.5mL bind buffer, and stained with 5 μL
Annexin V/FITC ((ermo Fisher Scientific) and 5 μL pro-
pidium iodide (PI) ((ermo Fisher Scientific) at room
temperature for 15min.(e cells apoptosis was evaluated on
FACScan flow cytometry with CellQuest software (BD
Biosciences, NJ, USA).

2.4. Western Blot. Western blot assays were conducted as
previous reports [21]. In brief, cells or tumor tissues were
lysed with RIPA lysis buffer (Beyotime), and the concen-
tration of total protein was calculated with the BCA kit
((ermo Fisher Scientific) based on the operation manual.
20 μg protein samples were dissolved with 10% SDS-PAGE
and then electrically transferred onto PVDF membranes
(Millipore, Billerica, MA, USA) for the conventional pro-
cesses of the western blot experiment. After being rinsed
three times, the membrane was treated with goat anti-rabbit
IgG H&L (HRP) (1 : 50000, ab205718, Abcam, Cambridge,
UK) for 1 h at 37°C.(e bands were visualized with the DAB
kit (Sigma, St. Louis, MO, USA), and the gray value was
measured by QUANTITY ONE software (Bio-Rad, Her-
cules, CA, USA). (e primary antibodies applied in the
present study were anti-Ki67 (1 :1000, ab16667), anti-Bax (1 :
500, ab53154), anti-Bcl-2 (1 : 2000, ab196495), anti-cleaved
caspase-3 (1 : 500, ab2302), anti-VEGF (1 :1000, ab46154),
anti-E-cadherin (1 :1000, ab40772), anti-N-cadherin (1 :
1000, ab18203), anti-Vimentin (1 :1000, ab45939), anti-
SLC7A11 (1 :1000, ab216876), anti-GPX4 (1 :1000,
ab231174), anti-Nrf2 (1 :1000, ab92946), anti-HO-1 (1 :
2000, ab13243), anti-NQO1 (1 : 3000, ab227520), anti-
Lamin B1 (1 :1000, ab16048), and anti-β-actin (1 : 5000,
ab8227, all from Abcam).
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2.5. Transwell Assay. (e cell invasion was analyzed by the
transwell assay based on the previous description [22]. In
brief, IHH-4 and CAL-62 cell suspension with about 5×104
cells was filled into the upper chambers containing the FBS-
free medium and matrix, whereas the lower chamber was
supplemented with the medium including 10% FBS. After
being maintained for 24 h, both cells in the lower chamber
were immobilized with 4% paraformaldehyde, stained with
0.1% crystal violet, and imaged with a microscope (Olympus,
Tokyo, Japan).

2.6. IronAssay. IHH-4 and CAL-62 cells with an inoculation
density of 1× 105 cells/well were seeded into 96-well plates
and incubated for 24 h at 37°C with 5% CO2. Subsequently,
both cells were introduced with 5 μM neferine, 10 μM
neferine, 5 μM Ferrostatin-1 (Fer-1, the inhibitor of fer-
roptosis), 5 μMneferine plus 5 μMFer-1, and 10 μMneferine
plus 5 μM Fer-1 for 24 h. (e relative iron level of cells was
measured by an iron assay kit (Abcam, Cambridge, UK) in
line with the handling instruction.

2.7. Determination of the ROS Level. Following adminis-
tration with 5 μM neferine, 10 μM neferine, 5 μM Fer-1,
5 μM neferine plus 5 μM Fer-1, and 10 μM neferine plus
5 μM Fer-1 for 24 h, IHH-4 and CAL-62 cells were washed
and treated with 5-(and-6)-chloromethyl-2-,7-dichloro-
fluorescin diacetate (DCHF-DA) for 30min at 37°C in the
dark. (en, the relative fluorescence intensities of IHH-4
and CAL-62 cells were analyzed by FACScan flow cytometry
(BD Biosciences).

2.8. Measurement of Glutathione (GSH) Level. After IHH-4
and CAL-62 cells were hatched with 5 μM neferine, 10 μM
neferine, 5 μM Fer-1, 5 μM neferine plus 5 μM Fer-1, and
10 μM neferine plus 5 μM Fer-1 for 24 h, the level of GSH
was detected with the total glutathione/oxidized glutathione
assay kit (A061-2-1, Nanjing Jiancheng Bioengineering In-
stitute, Nanjing, China) based on the instruction descrip-
tion. (e absorbance was read at 405 nm with a microplate
reader ((ermo Fisher Scientific).

2.9. Cell Transfection. According to the previous study [21],
transfection assays were carried out as follows: the Nrf2
sequence was cloned and inserted into pcDNA3 plasmid to
overexpress the Nrf2 (pcDNA-Nrf2). (e pcDNA-Nrf2
plasmid or pcDNA3 empty plasmid was then transfected
into IHH-4 and CAL-62 cells with lipofectamine 3000
(Invitrogen, Carlsbad, CA, USA). Following transfection for
48 h, both cells were collected for further determinations.

2.10. In Vivo Analysis. All animal experiments were deter-
mined by the Animal Research Ethics Committee of the First
Hospital of Shanxi Medical University. 4-week-old BALB/c
nude mice were bought from Vital River (Beijing, China)
and housed in a temperature-controlled SPF animal room
with a 12 h cycle of light-dark. Ten mice were

subcutaneously inoculated with a total of 2×106 of IHH-4
cells [23, 24] and then assigned into two groups randomly:
control group and neferine 20mg/kg group. Mice in the
neferine 20mg/kg group were intraperitoneally adminis-
trated with 20mg/kg neferine [25, 26], while mice in the
control group were obtained with the same amount of
DMSO. (e tumor volume and mice body weight were
monitored every five days. After sequential monitoring for
30 days, mice were sacrificed with an intraperitoneal in-
jection of sodium pentobarbital (100mg/kg), and the tumors
samples were extracted, weighed, and stored for the fol-
lowing examination. Tumor volume was calculated
according to the following formula: volume� 1/
2× length×width [2].

2.11. TUNEL Assay. (e TUNEL assay was conducted with
an in situ cell death detection kit (Roche, Budapest, Hun-
gary) based on the operational instruction.(e tumor tissues
were immobilized in 4% formaldehyde solution and then
embedded with paraffin. Tumor tissues were cut into 5 μm
thickness sections, dehydrated with the graded concentra-
tions of ethanol, and cleared in xylene. Sections were then
incubated with proteinase K for 20min at 37°C and sealed
with 3% H2O2 for 10min followed by immobilization with
4% paraformaldehyde. Subsequently, sections were treated
with the TUNEL reaction mixture at 37°C for 1 h. After the
biotinylated antibody was incubated with sections, TUNEL
positive cell number among the total cell number was
counted.

2.12. Immunohistochemistry (IHC). As per previous de-
scription [23], tumor tissues were removed, immobilized in
4% formaldehyde, dehydrated, embedded, and cut into
sections. Sections were repaired with 10mM sodium citrate
buffer (pH 6.0, Beyotime) for 15min at 94°C and cooled to
room temperature. Subsequently, sections were continu-
ously sealed with1% bovine serum albumin (BSA, Beyotime)
for 30min and treated with primary antibodies (VEGF, 1 :
1000, ab51745, Abcam) and biotinylated secondary anti-
body. Next, after being rinsed with PBS for three times,
sections were restained with hematoxylin and imaged with a
light microscope (Olympus).

2.13. Statistical Analysis. Data were displayed as the
mean± standard deviation (SD) and analyzed by SPSS 20.0
software (IBM, Armonk, New York, USA). Statistical dif-
ferences between the two groups were tested by Student’s t-
test, whereas the differences among multiple groups were
detected with one-way analysis of variance (ANOVA) fol-
lowed by post hoc Bonferroni test. P< 0.05 was considered
significant difference.

3. Results

3.1. Neferine Inhibits the Growth of �yroid Cancer Cells.
To determine the effect of neferine (Figures 1(a) and 1(b)) on
the progress of thyroid cancer, IHH-4 and CAL-62 cells were
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first stimulated with a variety of neferine, including 0, 0.3,
0.6, 1.25, 2.5, 5, 10, 20, 40, and 80 μM for 96 h. CCK-8 results
showed that neferine repressed the cell viability of both
IHH-4 and CAL-62 cells in a dose-dependent way, among
which neferine ranged from 5 μM to 80 μM notably sup-
pressing the cell viability of both IHH-4 and CAL-62 cells
(Figure 1(c)). Meanwhile, the IC50 value of neferine on
IHH-4 and CAL-62 cells was 9.47 and 8.72 μM, respectively
(Figure 1(c)). (us, two concentrations of neferine, in-
cluding 5 and 10 μM, were selected for subsequent assays.
Results from Figure 1(d) figured that both 5 and 10 μM
neferine induced a prominent decrease in viability of both
IHH-4 and CAL-62 cells, among which both 5 and 10 μM
neferine observably reduced the viability of both IHH-4 and
CAL-62 cells at 96 h. In addition, both 5 and 10 μM neferine
markedly increased the apoptosis rate of IHH-4 and CAL-62
cells (Figure 1(e)), accompanied with a remarkable dimin-
ishment of the relative protein level of Bcl-2 and an obvious
enhancement of the relative protein expression of Bax and
cleaved caspase-3 (Figures 1(f )–1(i)). Besides, both 5 and
10 μM neferine also markedly declined the relative protein
expression of Ki67 of IHH-4 and CAL-62 cells (Figures 1(f )–
1(i)). (erefore, these results indicated that neferine
inhibited the growth and promoted apoptosis of thyroid
cancer cells.

3.2. Neferine Suppressed �yroid Cancer Cell Invasion and
EMT. Transwell results exhibited that both 5 and 10 μM
neferine expectedly declined the invaded cell numbers of
IHH-4 and CAL-62 cells prominently, indicating an ex-
tremely repressive effect of neferine on the invasion of
thyroid cancer cells (Figure 2(a)). Also, both 5 and 10 μM
neferine induced a noteworthy reduction of the relative
protein expression of VEGF in IHH-4 and CAL-62 cells
(Figure 2(b)). Moreover, both 5 and 10 μM neferine

memorably increased the relative protein expression of
E-cadherin, while notably declined the relative protein level
of N-cadherin and vimentin of IHH-4 and CAL-62 cells,
suggesting that neferine overtly hindered the EMTof thyroid
cancer cells (Figures 2(c)–2(e)). (us, neferine suppressed
the invasion and EMT of thyroid cancer cells.

3.3. Neferine Induces Ferroptosis in �yroid Cancer Cells.
To investigate the effect of neferine on ferroptosis in thyroid
cancer cells, the level of Fe2+ was first measured after IHH-4
and CAL-62 cells were hatched with 5 and 10 μM neferine.
(e results revealed that both 5 and 10 μM neferine sig-
nificantly elevated the level of Fe2+ of IHH-4 and CAL-62
cells (Figure 3(a)). Consistently, 5 and 10 μM neferine also
induced a remarkable enhancement of ROS production of
IHH-4 and CAL-62 cells (Figure 3(b)). On the contrary, the
relative protein expressions of SLC7A11 and GPX4 were
notably reduced after IHH-4 and CAL-62 cells were hatched
with 5 and 10 μM neferine (Figure 3(c)). A prominent de-
crease of the relative GSH level was also observed in IHH-4
and CAL-62 cells induced with 5 and 10 μM neferine
(Figure 3(d)). Moreover, to further validate the stimulative
effect of neferine on ferroptosis in thyroid cancer cells, IHH-
4 and CAL-62 cells were treated with Fer-1, a recognized
inhibitor of ferroptosis. (e results revealed that Fer-1
administration significantly reversed the neferine-induced
changes in the level of Fe2+, ROS production, and the relative
level of GSH of IHH-4 and CAL-62 cells (Figures 3(e)–3(g)).
Hence, neferine activated ferroptosis in thyroid cancer cells.

(e anticancer effect of neferine on thyroid cancer was
involved in the Nrf2/HO-1/NQO1 pathway.

To determine the underlying mechanism of neferine on
thyroid cancer, the relative protein expressions associated
with the Nrf2/HO-1/NQO1 pathway were detected by the
western blot.(e relative protein expressions of Nrf2, HO-1,
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and NQO1 were all observably downregulated after IHH-4
and CAL-62 cells were exposed with both 5 and 10 μM
neferine (Figure 4(a)). To further verify the direct connec-
tion between the anticancer effect of neferine and the Nrf2/
HO-1/NQO1 pathway, Nrf2 was overexpressed in IHH-4
and CAL-62 cells (Figure 4(b)). As expected, overexpression
of Nrf2 markedly elevated the relative protein expressions of
Nrf2, HO-1, and NQO1 of IHH-4 and CAL-62 cells
(Figure 4(c)). Meanwhile, upregulation of Nrf2 also sig-
nificantly partly rescued the neferine-induced relative pro-
tein level of Nrf2, HO-1, NQO1 of IHH-4 and CAL-62 cells
(Figure 4(c)). Furthermore, Nrf2 overexpression alone
prominently declined the apoptosis rate, and Nrf2 over-
expression also notably antagonized the neferine-induced
apoptosis rate of IHH-4 and CAL-62 cells (Figure 5(a)),
while an inverse tendency was discovered in the invaded cell
numbers (Figure 5(b)). More importantly, Nrf2 over-
expression neutralized the neferine-induced ROS produc-
tion, the relative level of GSH, and the level of Fe2+ of IHH-4

and CAL-62 cells (Figures 5(c)–5(e)). Nrf2 overexpression
alone observably reduced ROS production and the level of
Fe2+, whereas enhanced the relative level of GSH of IHH-4
and CAL-62 cells (Figures 5(c)–5(e)). Altogether, these data
illustrated that the anticancer effect of neferine on thyroid
cancer was involved in the Nrf2/HO-1/NQO1 pathway.

3.4.Neferine InhibitsTumorigenesis and Induces Ferroptosis in
Nude Mice. In addition, the inhibitory effect and relevant
mechanisms of neferine on thyroid cancer were validated in
vivo. BALB/c nudemice were subcutaneously received with a
total of 2×106 of IHH-4 cells and then intraperitoneally
injected with 20mg/kg neferine. Neferine treatment sig-
nificantly reduced the tumor volume and weight, though no
statistical difference was observed in mice body weight
between the control group and the neferine 20mg/kg group
(Figures 6(a)–6(d)). Similar to the in vitro results, neferine
administration notably promoted apoptosis and inhibited
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Figure 3: Neferine induced the activation of ferroptosis in thyroid cancer cells. (a) (e relative iron level was measured by an iron assay kit.
∗∗P< 0.01 and ∗∗∗P< 0.001 vs. control. (b) (e ROS level was detected by flow cytometry after IHH-4 and CAL-62 cells were treated with
DCHF-DA. ∗∗P< 0.01 and ∗∗∗P< 0.001 vs. control. (c)(e relative protein expressions of both SLC7A11 and GPX4 were determined by the
western blot. (e data were expressed after being normalized to β-actin. ∗∗P< 0.01 and ∗∗∗P< 0.001 vs. control. (d) (e levels of GSH were
quantified by using the commercial kit. ∗∗P< 0.01 and ∗∗∗P< 0.001 vs. control. (e–g) After IHH-4 and CAL-62 cells were stimulated with
Fer-1, neferine or their combination, the level of Fe2+, ROS production, and the relative level of GSH were assessed by using the iron assay
kit, flow cytometry, and commercial kit, respectively. ∗∗P< 0.01 and ∗∗∗P< 0.001. All assays were performed in triplicate.
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Figure 4: Neferine downregulated the Nrf2/HO-1/NQO1 signaling in thyroid cancer cells. (a)(e relative protein expressions of Nrf2, HO-
1, and NQO1 were detected after IHH-4 and CAL-62 cells were exposed with both 5 and 10 μMneferine for 96 h ∗∗P< 0.01 and ∗∗∗P< 0.001
vs. control. (b) Nrf2 sequences were cloned and inserted into the pcDNA3 plasmid to overexpress Nrf2 via the transfection into IHH-4 and
CAL-62 cells with lipofectamine 3000. ∗∗∗P< 0.001 vs. control. (c) (e relative protein expressions of Nrf2, HO-1, and NQO1 were
determined after IHH-4 and CAL-62 cells were treated with Nrf2, neferine, or their combination. (e data were expressed after being
normalized to lamin B1 or β-actin. ∗∗∗P< 0.001. All assays were performed in triplicate.
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the VEGF level in xenografted mice (Figures 6(e)–6(g)).
Also, neferine introduction significantly decreased the rel-
ative protein expression of SLC7A11, GPX4, Nrf2, HO-1,
and NQO1 but increased the relative level of ROS
(Figures 6(h)–6(j)). Besides, the neferine injection markedly
downregulated the relative level of GSH (Figures 6(h)–6(k)).
Altogether, these data expounded that neferine suppressed
tumorigenesis and induced ferroptosis in nude mice, which
was associated with the Nrf2/HO-1/NQO1 pathway.

4. Discussion

(yroid cancer is the most prevalent endocrine malig-
nancy with an increasing incidence in the past few de-
cades due to various contributors, such as immune
infiltration [27, 28]. Neferine has a variety of pharma-
cological effects, and thus, it has been applied in diverse
disease models, including tumors [16]. However, the
detailed effect and mechanism of neferine on thyroid
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Figure 5: (e anticancer effect of neferine on thyroid cancer was associated with the Nrf2/HO-1/NQO1 pathway. IHH-4 and CAL-62 cells
were treated with Nrf2, neferine, or their combination. (a)(e apoptosis rate was examined by flow cytometry. (b)(e invaded cell numbers
were determined by transwell assays. (c) (e ROS level was measured by flow cytometry after IHH-4 and CAL-62 cells were hatched with
DCHF-DA. (d) (e levels of GSH were analyzed by using the commercial kit. (e) (e relative iron level was detected by an iron assay kit.
∗∗P< 0.01 and ∗∗∗P< 0.001. All assays were performed in triplicate.
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cancer are still unclear. In the current study, neferine
suppressed the cell viability of both IHH-4 and CAL-
62 cells both in a dose-dependent manner and in a time-
dependent fashion. In addition, neferine promoted ap-
optosis, but it inhibited invasion, angiogenesis, and EMT
of IHH-4 and CAL-62 cells. Moreover, neferine activated
ferroptosis in thyroid cancer cells. Notably, it was
revealed that the Nrf2/HO-1/NQO1 pathway was
strongly associated with the effect of neferine on the
modulation of thyroid cancer. Furthermore, these out-
comes were validated in xenografted mice. (erefore,
based on these results, we concluded that neferine
exerted an antitumor effect and ferroptosis-inducing
effect on thyroid cancer through Nrf2/HO-1/NQO1
inhibition.

A series of hallmarks have been identified in tumors,
such as proliferation, apoptosis, invasion, angiogenesis, and
EMT [29], thus agents targeting these characteristics are
potential candidates for the treatment of cancers. Neferine
has been demonstrated to regulate the progresses of a variety
of tumors. (e inhibitory effect of neferine on the growth
and migration has been discussed in prostate cancer [17, 30],
cervical cancer [19], and retinoblastoma [31], and the en-
couraging role of neferine in apoptosis has also been re-
ported in prostate cancer [32], renal cancer [33], and colon
cancer [34]. In line with these studies, our results also
showed that neferine suppressed the cell viability of both
IHH-4 and CAL-62 cells both in a dose-dependent manner
and in a time-dependent fashion. Besides, neferine also
declined the relative protein expression of Ki67 of IHH-4
and CAL-62 cells. Ki67 is a positive marker of the prolif-
eration of tumors [35]. (us, neferine inhibited the growth
of thyroid cancer cells, which was also confirmed in vivo.
Meanwhile, neferine increased the apoptosis rate of IHH-4
and CAL-62 cells, accompanied with a remarkable dimin-
ishment of the Bax expression and an obvious enhancement
of the Bcl-2 and cleaved caspase-3 levels. Bax, Bcl-2, and
cleaved-caspase-3 are pivotal proteins of apoptosis
[36].(erein, proapoptosis protein Bax and antiapoptosis
protein Bcl-2 are two vital members of Bcl-2 family, which

modulate the apoptosis [37]. Cleaved-caspase-3 is the ac-
tivation form of caspase-3 that regulated the various phases
in the apoptotic pathway [38]. In addition, neferine reduced
the invaded cell numbers, indicating that neferine sup-
pressed the invasion of thyroid cancer cells. Meanwhile,
neferine decreased the VEGF expression of IHH-4 and CAL-
62 cells. VEGFs are important signaling of angiogenesis,
which is essential for tumor growth and enables metastasis
[39]. (us, neferine might also inhibit the angiogenesis of
thyroid cancer cells; however, the tube formation assay and
other marker detection are needed in the subsequent assays.
Furthermore, neferine increased the relative protein ex-
pression of E-cadherin, while decreased the relative protein
expression of N-cadherin and vimentin of IHH-4 and CAL-
62 cells, suggesting that neferine hindered the EMT of
thyroid cancer cells. Diminishment of E-cadherin leads to
the reduction of adhesion and the increase of invasion and
migration, whereas inverse effects are observed in N-cad-
herin and vimentin [40–42]. Hence, upregulation of
N-cadherin and vimentin with downregulation of E-cad-
herin are the hallmark of EMT [43]. In all, these results
indicated that neferine inhibited the proliferation, invasion,
angiogenesis, and EMT but promoted apoptosis of thyroid
cancer both in vitro and in vivo.

Ferroptosis is an emerging feature of tumor including
thyroid cancer, and ferroptosis activation is an underlying
option for the treatment of thyroid cancer. CircKIF4A
dampens ferroptosis to enhance the malignant development of
papillary thyroid cancer [15]. Vitamin C can be the underlying
strategy for anaplastic thyroid cancer therapy through the
induction of ferroptosis [14]. Here, in vitro and in vivo results
from the present study exhibited that neferine elevated the level
of Fe2+ and ROS production, but decreased the relative GSH
level and the relative protein expressions of SLC7A11 and
GPX4. Iron plays a key role in the growth of cells, especially for
tumor cells, whose demand is higher than normal cells [44].
ROS are strongly related in the various progresses of tumor
cells. Notably, the deposition of ROS can directly cause fer-
roptosis generated by mitochondria [45]. GPX4 and SLC7A11
are two critical ferroptosis-related proteins. Among them,

0.0
Neferine 0 20 mg/kg

0.5

1.0

Re
lat

iv
e l

ev
el

 o
f G

SH

1.5

**

(k)

Figure 6: Neferine impeded tumorigenesis and induced ferroptosis in vivo involving in the Nrf2/HO-1/NQO1 pathway. (a) Representative
images of tumors from nude mice in the control group and neferine 20mg/kg group. (b, c) (e tumor volumes and mice body weight were
monitored every five days. ∗∗P< 0.01. (d) Tumor samples were weighted after mice were administrated with 30 days. ∗∗P< 0.01 vs. 0mg/kg
neferine. (e–g) (e apoptosis and VEGF expression were detected by TUNEL and IHC, respectively. ∗∗∗P< 0.001 vs. 0mg/kg neferine. (h)
(e relative protein expressions of SLC7A11 and GPX4 were examined by the western blot. (e data were expressed after being normalized
to β-actin. ∗∗∗P< 0.001 vs. control. (i)(e relative protein expressions of Nrf2, HO-1, and NQO1 were assessed by the western blot.(e data
were expressed after being normalized to lamin B1 or β-actin. ∗∗P< 0.01 and ∗∗∗P< 0.001 vs. control. (j, k)(e levels of ROS (j) and GSH (k)
were measured using commercial kits. ∗∗P< 0.01 and ∗∗∗P< 0.001 vs. 0mg/kg neferine. All assays were performed in triplicate.
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GPX4, a member of the glutathione peroxidase family, plays a
vital role in the ferroptosis resistance [46]. (us, inhibition of
GPX4 induces ferroptosis [47]. SLC7A11 is a composition of
the cystine/glutamate antiporter that is principally involved in
the transportation of extracellular cystine into cells in exchange
for glutamate [48]. Inhibition of xCT has been demonstrated to
impeded cystine uptake and has resulted in ferroptosis [49, 50].
Repression of GSH synthesis leading to ferroptosis is one of the
essential ways of modulation and signaling of ferroptosis. GSH
is a momentous intracellular antioxidant that protects cells
from oxidative injury. Aberrant GSH synthesis can cause the
accumulation of lipid peroxidation, which results in ferroptosis
[51]. (us, our results also suggested that neferine inhibited
ferroptosis of thyroid cancer cells, which was further validated
with the application of the ferroptosis inhibitor, Fer-1. Alto-
gether, neferine activated ferroptosis in thyroid cancer cells.

Transcription factor Nrf-2 is an crucial regulator for a
variety of cell biological processes, especially oxidative stress
[52], which can modulate the expression of antioxidant en-
zymes and conjugation/detoxification enzymes, such as HO-1
and NQO-1 [53]. It has been revealed that both HO-1 and
NQO-1 can neutralize the oxidative stress through enhancing
the removal of ROS [54]. ActivatedHO-1 can prevent oxidative
injury and regulate the infiltrating inflammatory cells, thus it is
generally directly involved in the mobility and invasion of
tumor cells [55]. On the other hand, NQO-1 can suppress
carcinogenesis via stabilizing the P53 tumor suppressor [56].
Nrf2 signaling is strongly associated with papillary thyroid
cancer [57], anaplastic thyroid cancer [58], and thyroid cancer
[59]. Moreover, the regulative effect of neferine on Nrf2 sig-
naling is also revealed in different disease models, such as
benign prostate hyperplasia [60] and esophageal squamous cell
carcinoma [61]. In the present study, neferine downregulated
the relative protein expressions of Nrf2, HO-1, andNQO1 both
in vitro and in vivo, which could be partly rescued by over-
expression of Nrf2 in vitro. In addition, upregulation of Nrf2
also partly reversed the neferine-induced apoptosis and in-
vasion of IHH-4 and CAL-62 cells. More importantly, Nrf2
overexpression neutralized the neferine-induced ROS pro-
duction, the relative level of GSH, and the level of Fe2+ of IHH-
4 andCAL-62 cells. Song et al. [62] summarizes themechanism
of Nrf2 modulating ferroptosis in neurodegenerative diseases.
Wu et al. [63] shows that the high-mobility group box-1
(HMGB1) modulates ferroptosis induced by high glucose in
mesangial cells through the Nrf2 pathway. (erefore, these
outcomes elaborated that the anticancer effect of neferine on
thyroid cancer was associated with the Nrf2/HO-1/NQO1
pathway.

In conclusion, the present study elucidated that neferine
exerted an antitumor effect and ferroptosis-inducing effect
on thyroid cancer, which was involved in the inhibition of
the Nrf2/HO-1/NQO1 signaling pathway. In brief, our re-
sults offer a solid theoretical foundation for clinical devel-
opment and therapy of thyroid cancer.

Data Availability

All data, models, and code generated or used during the
study appear in the submitted article.

Additional Points

(yroid cancer is themost prevalent endocrinemalignancy with
an increasing incidence in the past few decades, and thus, much
exploration remains to contribute to the understanding and
development of pathogenesis and treatment of thyroid cancer.
Although neferine possesses various pharmacological activities,
which have been applied in diverse disease models, including
various tumors, the detailed effect andmechanismof neferine on
the thyroid cancer are still unclear. (e present study revealed
that neferine exerted an antitumor effect and ferroptosis-in-
ducing effect on thyroid cancer via inhibiting the Nrf2/HO-1/
NQO1 pathway. As far as we know, this is the first time to report
the effect of neferine on thyroid cancer. Besides, the effect of
neferine on ferroptosis in thyroid cancer is first to be explored. In
brief, our results offer a solid theoretical foundation for clinical
development and therapy of thyroid cancer.
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