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Abstract: Motion classification can be performed using biometric signals recorded by electroen-
cephalography (EEG) or electromyography (EMG) with noninvasive surface electrodes for the control
of prosthetic arms. However, current single-modal EEG and EMG based motion classification tech-
niques are limited owing to the complexity and noise of EEG signals, and the electrode placement
bias, and low-resolution of EMG signals. We herein propose a novel system of two-dimensional
(2D) input image feature multimodal fusion based on an EEG/EMG-signal transfer learning (TL)
paradigm for detection of hand movements in transforearm amputees. A feature extraction method
in the frequency domain of the EEG and EMG signals was adopted to establish a 2D image. The input
images were used for training on a model based on the convolutional neural network algorithm and
TL, which requires 2D images as input data. For the purpose of data acquisition, five transforearm
amputees and nine healthy controls were recruited. Compared with the conventional single-modal
EEG signal trained models, the proposed multimodal fusion method significantly improved classifi-
cation accuracy in both the control and patient groups. When the two signals were combined and
used in the pretrained model for EEG TL, the classification accuracy increased by 4.18–4.35% in the
control group, and by 2.51–3.00% in the patient group.

Keywords: brain–computer interface (BCI); convolutional neural network (CNN); electroencephalography
(EEG); electromyography (EMG); transforearm amputees; transfer learning (TL)

1. Introduction

The functional prosthesis is an important rehabilitation aid for upper limb amputees,
as it allows them to successfully perform social activities by restoring lost functions. About
1.6 million people suffer from limb loss in the United States, 35% of whom are upper
limb amputees [1], while 30% of those 35% are transforearm amputees [2]. Prosthesis-
based rehabilitation of amputees enables a return of activities of basic daily life including
community, leisure, and even vocational endeavors [3].
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The first myoelectric prosthesis was commercialized in the 1980s by Otto Bock [4].
Since then, many amputees have benefited from various forms of myoelectric prostheses
controlled by electromyography (EMG). In 2006, Touch Bionics developed a five-finger my-
oelectric prosthesis, which allows for simple gripping as well as various hand movements,
thus helping to further improve the quality of life of upper limb amputees [5]. Starting
with the LUKE, various bionic arms with multiple functions have been developed since
2009 [6–8]. A myoelectric arm should not cause significant inconvenience to users. To that
end, for classification of two different movements, it is necessary to record at least two
independent EMG signals. In recent studies, methods using high-density surface EMG to
record EMG activity from multiple recording sites in a single muscle were suggested [9,10].
However, amputation site conditions are often highly diverse, and muscles tend to become
too weak or atrophied over time; hence, a myoelectric prosthesis may not be usable in many
cases [11,12]. Creating prosthetics for young patients is particularly challenging because
the remaining ranges and parts of muscles are constantly changing as those individuals
grow [13]. Due to low spatial resolution and usability issues, most patients eventually
stop using myoelectric prostheses [14,15]. Therefore, it is necessary to develop a motion
classification technique for prosthesis control based on more general-purpose biosignals
than EMG from the remnant muscles. As a result, intention-based bionic arms using brain
electrodes and chips implanted in the motor cortical region of the brain have attracted ex-
tensive interest recently in the brain–computer interface (BCI) field [16]. However, invasive
brain electrodes are not long-lasting owing to the operation of the immune system of the
central nerves and the chronic inflammation that results [17]. Consequently, there remains
a strong need for prosthetic arms that can detect movement intention using noninvasive
electrodes such as electroencephalography (EEG) and surface EMG signals.

Noninvasive EEG signals might be more appropriate for upper limb amputees’ motion
classification than EMG signals, because, according to the extent of amputation, the forearm
or hand muscles required for performance of daily living activities are not fully intact or
are even absent. In addition, owing to the fact that body movements are fundamentally
controlled by the brain, many previous studies have reported using surface EEG or EMG
signals for motion classification, the impetus of which has driven the primary motion
classification research trend of using noninvasive EEG signals [18,19]. A previous study
that performed motion classification using only EEG signals (and thus can be considered to
be a motor imagery (MI) classification study) employed independent component analysis
(ICA) as a spatiotemporal filter with which to extract signals related to MI tasks in the
left and right hemispheres [20]. In another study, a subject’s intention was recognized
using the restricted Boltzmann machine technique from the viewpoint of rehabilitation
research [21]. Indeed, the most recent trend in research is using EEG signals to detect
motion intention. For example, quadcopter control has been conducted by extraction of
real-time features related to MI tasks in the left and right hemispheres [22]. In this study,
signals for up, down, left, and right controls were extracted from MI tasks that moved
the left and right hands; and, based on the signal, the quadcopter was controlled in real
time. The high spatial resolution of the EEG signal makes it possible to distinguish between
complex motions. However, EEG signals are limited by high signal variability and low
stability resulting from their low signal-to-noise ratio (SNR) [21]. To solve these problems,
multimodal studies have been conducted to complement the shortcomings of EEG or
surface EMG signals by fusion of those two signals. It is possible to combine, for intention
detection, multiple signals, such as EMG with a high signal stability and SNR and EEG
with a high spatial resolution [23]. Previous studies have combined EEG and EMG signals
to distinguish hand and wrist movements using conventional machine learning or deep
learning methods [24–27]. However, in those studies, EMG signals were used only as
auxiliary signals to support the intention detection. Furthermore, simultaneous EEG and
EMG acquisition in daily life is difficult. For example, EEG signals are more versatile, with
much higher spatial resolution than EMG signals. In this context, utilizing both EEG and
EMG signals at only the training stage to enhance accuracy, but using transfer-learned EEG
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for detecting movements in daily life, is a better strategy than using both EEG and EMG
signals simultaneously.

In the present study, we adopted the transfer learning (TL) concept of motion clas-
sification. With it, input data can be enhanced by learning the features of other input
data. Therefore, we tested the hypothesis that a motion classification algorithm of EEG
signals, which is independent of EMG signals, can be improved by learning EMG data
features. First, single-modal classification of EEG and EMG signals was performed. After
that, each EEG-to-EMG and EMG-to-EEG TL was performed, and features extracted from
each signal were trained when the two signals were combined. Preparatorily, we had
recruited six transforearm amputees along with nine nonamputees for the control group,
and then we verified, from experimental data, the effectiveness of the proposed multimodal
classification algorithm for detection of motion intention. We believe that the proposed
multimodal motion classification technique benefits from the advantages of both single
model EEG- and EMG-based techniques.

2. Materials and Methods
2.1. Experimental Procedures

We measured the EEG and EMG signals corresponding to the wrist and hand move-
ments of transforearm amputees and combined them to improve motion classification using
deep learning techniques. We used the event-related desynchronization/synchronization
(ERDS) map [27] as an input feature of the EEG signal and then applied the same process
to the EMG signal to create a 2D image input feature. Features in the ERDS map were
extracted using convolutional neural network (CNN) and TL algorithms, wherein one
signal trains the features of another signal. First, we performed motion intention classifica-
tion based on the CNN algorithm with only single-modal EEG or EMG signal. Next, we
created a pretrained CNN algorithm model from multimodal EEG and EMG signals. After
that, the convolutional layers, except for the last layer, were frozen and the TL concept
was introduced for training of single-modal EEG or EMG signals. In this process, the
classification model learned from multimodal EEG and EMG signals was retrained and
used as input data only with an EEG or EMG signal. Based on the classification result of
this model, we propose the motion intention detection concept, which is independent of
the EMG signal acquisition.

2.2. Experimental Setup

For the experiments, we recruited six transforearm amputees (age 30–50 years, five
males and one female) who had no form of neurological disease and had preserved forearm
muscles and nervous tissues needed to acquire the data necessary for algorithm devel-
opment and verification. The research protocol and procedures were approved by the
Institutional Review Board (IRB) of Dankook University Hospital (IRB No. 2020-05-009).
For the control experiment, we recruited nine healthy controls without amputation (age
20–30, five males and four females). The research protocol was approved by the Pohang
University of Science and Technology and is in compliance with their IRB procedure (IRB
No. PIRB-2020-E016). Figure 1 presents a schematic of the experiment setting, which shows
wrist and hand movements and the flow from data collection to storage. The patients
performed six movements: wrist dorsiflexion and volar flexion, wrist radial deviation and
ulnar deviation, and hand grasping and opening, and the two movements were combined
into pairs as well. During the execution of each motion, we simultaneously acquired EEG
and EMG signals from the skin and scalp of the subjects.
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Figure 1. Schematic of experimental protocol based on two of six wrist and hand movements. 
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(ANT Neuro, Enschede, The Netherlands) at a sampling rate of 500 Hz as shown in Figure 
2. Then, using the same equipment, EMG signals were obtained at a sampling rate of 500 
Hz for determining wrist and hand movements from four muscles of both arms: flexor 
carpi ulnaris, extensor digitorum communis, palmaris longus, and extensor carpi radialis. 
Before positioning the EMG electrode, the subject’s skin was washed with alcohol. We 
used Ag/AgCl disc electrodes with a diameter of 19mm (Catalog No. 019-400400, Natus 
Medical Inc., Pleasanton, CA, USA), and placed an active electrode to the center of each 
muscle belly as suggested in the reference [28], and a reference electrode to the proximal 
tendon of the target muscle near the elbow joint. 
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Figure 1. Schematic of experimental protocol based on two of six wrist and hand movements.

Sixty-four (64) EEG signal channels were acquired from ANTneuro’s EEGO mylab
(ANT Neuro, Enschede, The Netherlands) at a sampling rate of 500 Hz as shown in Figure 2.
Then, using the same equipment, EMG signals were obtained at a sampling rate of 500 Hz
for determining wrist and hand movements from four muscles of both arms: flexor carpi
ulnaris, extensor digitorum communis, palmaris longus, and extensor carpi radialis. Before
positioning the EMG electrode, the subject’s skin was washed with alcohol. We used
Ag/AgCl disc electrodes with a diameter of 19mm (Catalog No. 019-400400, Natus Medical
Inc., Pleasanton, CA, USA), and placed an active electrode to the center of each muscle
belly as suggested in the reference [28], and a reference electrode to the proximal tendon of
the target muscle near the elbow joint.
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Figure 2. Experimental environment. (A) Schematic of experimental environment setting showing
experiment flow, starting from motion of patient and continuing to data collection and storage;
(B) Actual experimental environment and subjects wearing the experimental device, as well as data
collection; (C) Device and sensor collecting EEG and EMG signals; (D) Four EMG electrodes attached
to subject’s distal upper arm and another four EMG electrodes attached to proximal forearm, on
intact and amputated sides, respectively.
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As shown in Figure 1, the subjects performed a target movement from the six motion
classes displayed on the screen in random order and were asked to concentrate on the task
by maintaining the action for 2.5 s. Each experiment was comprised of five sets in which
each movement class was repeated 20 times.

2.3. Data Preprocessing

Figure 3 shows the flow of data processing in this study. The preprocessing step was
performed using EEGLAB (sccn.ucsd.edu/eeglab (accessed on 26 August 2021), which is an
open-source electrophysiological data processing software based on MATLAB (Mathworks,
Natick, MA, USA) that is used for processing electrophysiological data, such as EEG and
EMG signals. It includes various methods such as artifact removal, time domain analysis,
frequency domain analysis, and visualization. After passing through the 60-Hz notch filter,
the EMG signal was passed through a bandpass filter between 15 and 500 Hz. The EEG
signal was passed through a bandpass filter between 5 and 35 Hz; then, frequency analysis
was performed after noise was removed using an ICA technique. We selected nine channels
(Fc3, Fc4, Cz, C1, C2, C3, C4, Cp3, and Cp4) in the motor cortical region as the input values
of the motion classification model. For the EMG signals, we used the signals of all four
measured channels.
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2.4. Feature Extraction

Based on the principle of the ERDS map, which is one of the feature extraction meth-
ods for the EEG signals, a two-dimensional (2D) image visualized along the frequency
axis between 5 and 35 Hz was created using Biosig toolbox (BioSig Technologies, Inc.,
Minneapolis, MN, USA) and averaging the randomly picked 5 trials of the EEG signal.
The principle of the ERDS map was applied to the EMG signal to extract the features in
the frequency domain between 30 and 247 Hz. For ERDS computation, we utilized the
bootstrap resampling technique from the Biosig toolbox [29]. In general, the calculation
of ERD/ERS is performed by bandpass filtering the EEG signals, segmenting individual
trials, detrending the trials, squaring the samples and subsequently averaging over trials
and sample points [27]. Moreover, one ERDS map was generated by averaging the signals
of 5 trials. Because different EEG and EMG input features have different spatial resolutions,
different degrees of contribution may be required for output features [30]. Given that the
characteristics of the two signals and the main analysis frequency domain significantly
differed, the ERDS map was created by dividing the segment into a frequency step size
of 1 Hz at a frequency border of 5–35 Hz and 30–247 Hz for the EEG and EMG signals,
respectively. The ERDS map for the EMG signal was created by dividing the segments into
7-Hz frequency steps at the border. Typically, EEG-based algorithms that detect wrist and
hand gestures use the mu and beta frequency bands. However, ranges of the mu and beta
frequency are ambiguous to define. Previous studies have used the frequency bands such
as 8 to 25, 8 to 26, or 8 to 30 Hz [27,31,32], and there is no absolute agreement of the range
of these frequency bands. Therefore, we set the range of EEG signal between 5 and 35 Hz
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at a step size of 1 Hz with an intention to cover the most of the mu and beta regions. This
diversity of frequency range has been also shown in EMG signals, and relatively arbitrary
frequency bands between 0–500 Hz have been typically used [33]. In our study, since the
number of rows of the EEG input image was 31, we analyzed the EMG from 30 to 247 Hz
grouped in 7 Hz units that organizes the data in 31 rows as well. The time axis progressed
every 0.1 s in a 4.5-s length based on the trigger point at which both signals were present
on the monitor. Thus, the input image generated from the two signals exhibited a size of
46 × 31 for each channel. Figure 4 shows the feature-extracted 2D image projected from
the frequency domain.
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Figure 4. Two-dimensional (2D) image of EMG signal generated using an ERDS principle, a feature
extraction technique for EEG signals in frequency domain. The signals were provided as inputs to
the training model.

Consequently, a 46 × 279 matrix was generated using the EEG data from the nine
channels, a 46 × 124 matrix was generated using the EMG data from the four channels,
and a 46 × 403 matrix was generated in order for a pretrained model to be obtained from
the both EEG and EMG data. Figure 5 shows the 2D images generated for each signal and
channel. We could expand the size of the image created to that of the original size for both
EEG and EMG signals in order to resolve differences in the size of the input data during
TL. However, the condition of a specific location affecting feature extraction is meaningful,
because the signal feature extraction is based on the cue sign timing at the start of the
motion. Therefore, for input size control, the size of the not-included EMG data was treated
as a blank. We set the ERDS value at every 7 Hz in the frequency band, then an image of
46 × 403 size was created. When only EEG data are used, EMG data was set to be zero, so
it was displayed when displayed in color.
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Figure 5. Input data format. Gray scaled ERDS map images generated using EEG signals from nine
selected channels and EMG signals from four selected channels. “m1” refers to the movement of
wrist dorsiflexion and volar flexion, “m2” refers to the movement of wrist radial deviation and ulnar
deviation, and “m3” refers to the movement of hand grasping and opening.

2.5. Motion Classification
2.5.1. Convolutional Network

The CNN algorithm does not extract information from data to learn, but rather extracts
the features of data and identifies the patterns of those features [34]. The CNN algorithm
uses the convolution and pooling processes. These two layers are combined to create a
model. In the present study, 2D images were formed by visualizing the effective frequency
axis which is y-axis of each EEG and EMG signal based on the time axis, which is x-axis.
These images, as input data, were then used to train the CNN model. In this model, a
five layer and max pooling function was used. This subject-specific model was created for
performance comparison with the transfer learning model, which used both EEG and EMG
signals. Therefore, only the EEG or EMG signal, not both, were used as input data for this
classification model. Figure 6 shows the structure of the CNN algorithm. The algorithm was
trained with five shallow convolutional layers using only the feature extraction process for
extracting a relatively small number of input data features, and the synthesis process was
performed only on the time axis. The hyperparameter used in this model was optimized
based on the grid search. We trained the neural network with an initial learning rate of
0.01 (initial search range: 0.1 to 0.001 for log scale) using Stochastic Gradient Descent with
Momentum (SGDM). The training epoch was 10 times, the validation frequency was three
times, and the data were shuffled every epoch. Because the model was generated using
clinical data, the training data were relatively small in order to prevent overfitting and a
dropout layer was created for regularization.

2.5.2. Pretrained CNN for TL

The TL concept was implemented to create a pretrained model using both EEG and
EMG signals. Transfer learning (TL) is an emerging method in computer vision because it
can achieve high accuracy in a relatively short time [35]. By learning a new feature from a
background model trained with a large data set, it is possible to solve a new target problem
that is similar to the problem to be solved in the existing pretrained model. Hence, it is
possible to apply previously learned patterns instead of building models from the start. In
this study, the overall TL process from the generation of pretrained models to classification,
was completed using that data. Figure 7 shows an overall schematic of the TL model. The
model was also tested on part of the experimental data.
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Figure 7. Architecture of present model showing (A) training model for motion classification based
on pretrained CNN algorithm and (B) TL process based on that model.

In the pretrained model, the image size in the network input layer was 46 × 403 × 1
because it consisted of gray-scale images. The five convolutional layers of the CNN
architecture were defined. Thereafter, a fully connected layer and Softmax activation
function layer were used to normalize the output value of the fully connected layer. Finally,
in the classification layer, using the probability returned by the Softmax activation function
for each input value, the input value was assigned to one of the mutually exclusive classes
and the loss was calculated. The maximum number of epochs was set to 10. The validation
data were not used to update the neural network weights.

An important characteristic of deep learning models is their ability to learn instrumen-
tal features. The later the layers are in the model structure, the more advanced learning
is achieved, specifically by extracting more specific features. At this point in the process,
the layers at the front can be reused when learning images from other datasets, although
the layers in the back will need to be learned anew whenever they encounter a new
problem [36].
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2.5.3. TL Model

Retraining the entire pretrained model involves using only the structure of the prelearn-
ing model and performing all retraining based on the data set. Therefore, such operations
require a high level of computation and a large data set. If the data set is small, there is
a risk of overfitting if the entire set is newly trained [37]; hence, it might be necessary to
freeze many layers and perform retraining at the higher-level layers. In this study, because
the size of the data set was small and the objective was to verify similarities between data,
we selected a strategy of freezing most of the convolutional base layers and learning only
the last layer. From a data set of 300 trials for three actions generated per subject, 70% of
the data were randomly extracted to generate the TL model, and the remaining 30% was
used for testing.

The convolutional layer of the neural network extracts image features that are used by
the last learnable layer and the last classification layer to classify the input image. For training
the pretrained neural network to classify new images, the last layer with learnable weights are
trained as a new layer. The first-half layers fix weights to accelerate neural network training
and prevent overfitting to new data sets. The learning speed is set to a relatively small value
of 3 × 10−4 so as to slow the learning of the nonfixed transferred layer.

2.6. Statistics

Statistical analysis was performed using IBM SPSS Statistics 26 (International Business
Machines Corp., Armonk, NY, USA). A Kolmogorov–Smirnov test was used to confirm
the normal distributions of obtained data, and according to the results, a nonparametric
test was chosen. Mann–Whitney U tests were also performed to detect any differences in
the classification accuracies between the control and patient groups, left and right sides
in the control group, and the intact and amputated sides in the patient group. Wilcoxon
signed-rank test was used to compare the classification accuracies between single-modal
EEG and transfer-learned EEG in the control and patient groups. p-values less than 0.05
were considered to indicate statistical significance.

3. Results
Average Classification Performance of Single-Modal and Multimodal Models

After the classification, the performance of each fusion method was evaluated. For
this study, performance analysis based on two types of metrics was adopted [38]. The
first metric applied was classification accuracy in which the performance of the single-
modal classification model was based on the CNN algorithm and that of the multimodal
classification model was based on TL. This value was calculated using Equation (1). This
ratio reflects how well the classifier can properly distinguish between different types of
arm motions. Thus, the higher the classification accuracy value, the better the performance
of the classifier.

Classification accuracy = (Number of correct classifications)/(Total number of testing samples) × 100% (1)

We created the single-modal classification model using EEG/EMG signals as input
data for both the amputated and nonamputated subjects based on the CNN classification
algorithm. Furthermore, we formulated a new multimodal CNN classification algorithm
using both the EEG and EMG signals as input data for the training model, as obtained
from both the control and patient groups. Then, the lower four layers of the multimodal
classification model were reused as a pretrained model for TL. In this TL model, only the
EEG or EMG signal was used as the training input data; then, the features of the pretrained
model were trained. We tested the classification accuracy of the three sets of wrist and
hand movements: wrist dorsiflexion and volar flexion, wrist radial deviation and ulnar
deviation, and hand grasping and opening.

Table 1 shows the average model classification accuracies for all subjects in the control
and patient groups according to each classification model. Because the SNR of the EMG
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signal was high, a relatively distinct feature extraction process was possible, and as a result,
the EEG signal was more effective in EMG signal feature learning [28,39]. In addition, the
average classification accuracies of single-modal EMG in amputated and intact sides were
94.2 ± 3.42 % and 94.8 ± 3.43 % respectively in the patient group, and those in right and
left sides were 93.3 ± 3.43 % and 93.0 ± 4.81 % respectively in the control group (data not
shown in Table 1).

Table 1. Average classification accuracy [%] of single-modal EEG, multi-modal EEG and EMG, and
transfer-learned EEG of each subject in control and patient groups.

Group Subject

Lt. Side Rt. Side

Single-
Modal
EEG

Multi-
Modal EEG
and EMG

Transfer-
Learned

EEG

EEG
Difference
before and

after
Training

p-
Value

Single-
Modal
EEG

Multi-
Modal

EEG and
EMG

Transfer-
Learned

EEG

EEG Dif-
ference
before

and after
Training

p-
Value

Control

Case 1 58.8 91.6 64.2 5.4 61.78 79.33 68.22 6.44
Case 2 59.67 94.11 63.11 3.44 67.45 90.22 69.78 2.33
Case 3 60.71 91.43 66.25 5.54 52.67 87.67 64.67 12
Case 4 62.78 92.67 66.56 3.78 58.6 87.8 57.6 -1
Case 5 60.11 88.18 65.33 5.22 64.22 87.89 69.89 5.67
Case 6 55 89.89 59.45 4.45 65.56 87.98 64.04 -1.52
Case 7 71 83.67 76.33 5.33 65.53 82.89 70 4.47
Case 8 56.11 74.33 59.21 3.1 62.22 89.56 67.44 5.22
Case 9 62.57 81.57 65.43 2.86 63.22 80 67.22 4

Mean ± SD 60.75 ± 4.64 87.49 ± 6.44 65.10 ± 5.01 4.35 ± 1.07 0.008 * 62.36 ±
4.46

85.93 ±
4.09

66.54 ±
3.99

4.18 ±
4.07 0.021 *

Patient

Subject

Intact side Amputated side

single-
modal
EEG

multi-modal
EEG and

EMG

transfer-
learned

EEG

EEG
difference
before and

after
training

p-
value

single-
modal
EEG

multi-
modal

EEG and
EMG

transfer-
learned

EEG

EEG
difference

before
and after
training

p-
value

Case 1 60.44 86.56 67 6.56 58.92 79.64 60.17 1.25
Case 2 60 77.5 60.8 0.8 65.45 85.11 68.45 3
Case 3 66.33 79.78 69.56 3.23 70.11 87.33 71.66 1.55
Case 4 60.4 79.6 61 0.6 49.89 77.33 53.11 3.22
Case 5 63.99 87 65.33 1.34 59.78 77.33 65.78 6

Mean ± SD 62.23 ± 2.80 82.09 ± 4.38 64.74 ± 3.81 2.51 ± 2.49 0.028 * 60.83 ±
7.61

81.35 ±
4.61

63.83 ±
7.33

3.00 ±
1.89 0.028 *

p-value 0.766 0.037 ** 0.628 0.205 0.823 0.031 ** 0.881 0.233

* p < 0.05 compared between single-modal EEG and transfer-learned EEG by Wilcoxon signed-rank test, ** p < 0.05
compared to both sides in control group by Mann–Whitney U test.

The convergence curve of the accuracy (upward convergence curve) and loss rate
(downward convergence curve) according to cyclic iteration training is shown in Figure 8.
This subject showed the highest classification accuracy increase among the patient groups.
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Figure 9 plots the average classification accuracy of motion classification performed
by each control subject. In this graph, the average classification accuracy of single-modal
EEG was shown initially when using only EEG signals as the input data for the training
model for each left and right arm, and then the transfer-learned EEG, which was trained
and classified using the CNN network model was matched. When pretrained weights from
the multimodal model were used for EEG signal classification, the average classification
accuracy increased by 4.35 and 4.18% for the left and right arms, respectively (Table 1). The
classification accuracy of each subject in the EEG signal TL increased, except for the right
arm in Cases 4 and 6 in the control group.
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Figure 9. Classification accuracy for wrist dorsiflexion and volar flexion, wrist radial deviation and
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refers to the accuracy result for the left arm, and “Rt side” to that for the right arm. * p-value between
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Figure 10 shows that when pretrained weights from the multimodal model were
used for EEG classification, the average classification accuracy increased by 2.51 and
3.0% for the intact and amputated sides, respectively (Table 1). In the patient group, the
classification accuracy increased for all subjects including the intact and amputated sides
after TL using both trained EEG data. This result demonstrates that EEG data successfully
trained the weighted features of the combined EEG and EMG signals for the amputated
subjects. The classification accuracy based on EEG data increased the most, showing a
6.56% improvement on the intact side of case 1 in the patient group; and notably, case 5
showed a 6.0% improvement in classification accuracy for the amputated side (Table 1 and
Figure 10).
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4. Discussions

The prediction of motion classification based on EEG or EMG signals is very important
to the development of prosthetic arms for amputees. However, technical challenges to
motion classification studies based on single-modal EEG or EMG signals remain. To solve
these problems, in this study, we developed a motion classification algorithm for intention-
based prosthesis control using EEG and EMG signals with a CNN-based TL algorithm.
We improved the input feature extraction method based on 2D images of an EEG signal
in the frequency domain by applying the same process to the EMG signal. The proposed
classification technique can be used in the following way: in the rehabilitation of upper
limb amputees, the multimodal fusion model is pretrained using both the EEG and EMG
signals with the TL technique, and then, in real-life usage, the pretrained model detects
patients’ intention using only the single-modal EEG or EMG signal in order to greatly
enhance both the usability and accuracy of the motion detection algorithm.

Other means of improving a muscle signal’s low spatial resolution exist. If we acquire
electroneurography signals by invasive insertion of electrodes, we can obtain more accurate
muscle signals with a higher spatial resolution of muscles. However, in the present study,
a noninvasive method was adopted because an invasive electrode entails surgical steps
and cannot be used for a long period. For feature extraction with high spatial resolution,
it will be possible to develop an algorithm for ultimate high-fidelity prosthetic control by
extracting additional high-quality features.

For amputees, it is difficult to control, in real life, a prosthetic arm using both sensor
types in multimodal sensor fusion. However, patients can usually wear both sensors during
the rehabilitation period. Therefore, the scenario becomes more realistic where TL with
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both EEG and EMG signals are performed during the rehabilitation session, after which the
actual prosthetic arm is controlled by a single EEG signal in daily life outside the hospital.
In addition, the approach to movement intention detection with only a single EEG signal
is needed for the goal of avoiding eventual EMG-signal dependence owing to various
muscle problems, such as the conditions of the amputation site, the signal strength, and/or
the need for surgery [11,13,40]. If the motion intention of the EMG data enhances the
EEG data, this approach could be realized, owing specifically the advantage of the high
spatial resolution of the EEG signal. For this, the concept of TL was adopted for learning of
other signals’ features. Deep learning technology, with its automated end-to-end learning
processing capability, affords a significant advantage for signal processing [41]. Transfer
learning (TL), which extracts features from existing learning models and newly acquired
signals, is suitable for discriminating and training motion intentions using the fusion of
individual EEG and EMG signals. In this study, the classification algorithm based on the TL
process showed significantly improved performance over that of the single-signal motion
classification model of the EEG signal. This improved performance may have been due to
the proposed algorithm’s complementary benefit of multimodal sensor fusion, such that
the stability of the EMG signal compensates for the noise issue of the EEG signal while
the high spatial resolution of the EEG signal solves the EMG’s problem associated with
muscle deformation or muscle strength reduction after amputation. The proposed process
can be implemented for development of an algorithm that drives a prosthetic arm using
single-modal EEG signals.

In this study, when the EEG and EMG signals were fused, the fusion accuracy of the
EEG signal increased while that of the EMG signal tended to decrease. It seems that the
signal was saturated due to the fact that the classification accuracy of the single-modal EMG
sensor was high. The current classification accuracy result seems biased to the surface EMG
signal. In addition, since the accuracy of the EMG signal was somewhat low in the patient
group experiment, the rate of accuracy increase was also somewhat low in the transfer-
learned EEG. We believe that this was due to the study protocol having included only
relatively simple movements. The purpose of this study was to show that the EEG signal
can be trained using the EMG signal and that the multimodal fusion algorithm enhances
the performance of motion classification. When more complex motions such as finger
movements are performed, the high-resolution characteristics of the EEG signal might
be required, and furthermore, its resolution can be further increased by incorporation
of a larger number of electrodes. In recent studies, high-density EMG also has been
highly accurate in predicting finger movements [9,42,43]. In this light, the role of this
multimodal fusion algorithm becomes more important. This study is the first step toward
the achievement of the goal of training the EEG signal with the EMG signal within a person.
The present results serve to demonstrate the possibility of overcoming the shortcomings
of prosthetic arm dependency on EMG signals by combining BCI technologies (EMG and
EEG). Furthermore, they will help to solve known problems in the fields of EEG/EMG
signal fusion and prosthesis research and will contribute, thereby, to the development of
more highly functional prostheses.

In this study, the classification accuracy of EEG signals was increased by 2.51–4.35%
in the control and patient groups after training (Table 1). Previous studies have reported
increments of classification accuracy for upper-limb amputees. Li et al. achieved an 11.9%
increment of classification accuracy by an optimized fusion method of EEG and EMG
signals compared with 64-ch EEG alone for an upper-limb amputee [44], whereas our
results showed about a 20% increment after TL of EEG and EMG signals relative to single-
modal EEG for amputees (Table 1). Paek et al. obtained 75% accuracy (incurring a 25%
error rate) of EEG signals in distinguishing objects held or not held, which is a simpler task
than ours [45].

We found that the accuracy of multimodal EEG and EMG was lower in the patient
group than in the control group (82.09 ± 4.38% and 81.35 ± 4.61% on intact and amputated
sides in patient group vs. 87.49 ± 6.44% and 85.93 ± 4.09%, Table 1). For accurate detection
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of wrist and hand movements, contraction of all active forearm muscles should be obtained
by surface electrodes. Although the extent of amputation for the five patients differed,
it would not have been possible to obtain the same EMG signal as for the control group,
because all of them (the patients) had a partial forearm muscle defect. However, since
the accuracy of the multimodal EEG and EMG of the intact side also was reduced relative
to that of the control, this reason alone is not a sufficient explanation. Recent studies
have found that the cortical area occupying the center of gravity was shifted laterally in
the affected hemisphere after upper-limb amputation [39], and that sensorimotor map
reorganization is quite variable over time and also depends on the use of the prosthesis,
intact hand use, and the existence of phantom pain [46]. Therefore, it can be explained that
the accuracy decrement of the multimodal EEG and EMG in the patient group was due
to the combination of the partial loss of forearm muscles on the amputated side and the
simultaneous changes of brain mapping.

Brain reorganization after transforearm amputation might also have affected EEG
accuracy changes after the use of pretrained weights from the multimodal model in the
patient group, which results were lower in the patient group (2.51 and 3.0% on the intact
and amputated sides, respectively) than in the control group (4.35 and 4.18% on the left
and right sides). Although this difference was not obvious statistically, if it is possible to
modify EEG signal processing according to the reorganization of brain mapping, a further
improvement of EEG accuracy also will be possible.

In this study, the image generated by the features of the EEG or EMG signal in the
frequency domain was provided as input to the CNN and transfer learning classification
models. When the single-signal classification accuracy of the EEG data was high, the EEG
and EMG data showed high-quality feature learning and improved classification accuracy
when TL was performed. Additionally, the classification accuracy of EMG TL tended to
decrease when the classification accuracy of EEG data was relatively low, owing to the
difference in accuracy between the EEG and EMG data. Conversely, the classification
accuracy of EEG TL tended to increase when the classification accuracy of EMG data was
relatively high. These findings serve to highlight the potentiality of high-quality feature
learning of EEG data.

The data-level fusion of motion classification can be further divided into data-level,
feature-level, and decision-level fusions after the data processing step [47]. Various studies
have been conducted on the sensor fusion method according to each level of fusion of EEG
and EMG signals, and certainly, it is important to determine the optimal combination to
achieve better performance. Data-level fusion of physiological signals has been attempted
after processing raw data at a high sampling frequency for each data set [47]. Further-
more, feature-level fusion is used in various applications pertaining to upper-limb motion
classification recognition; this is the most common technique. The use of feature-level
fusion is extracted from segmented data for each sensor in order to simplify calculations,
combined to create a higher-dimensional functional vector, and finally provided as inputs
to a classifier [41]. The data fusion conducted in this study is classified as feature-level
fusion. Feature-level fusion independently performs acquisition and classification for each
sensor and obtains the results for each value. In that way, we can consider the reliability
and plausibility of each sensor [40]. This approach facilitates the comparison of motion
intentions using the two signals, specifically by creating a single-modal classification model
from each EEG and EMG signal and then a multimodal classification model from the
two signals. Feature-level fusion, such as in linking two different feature sets, has some
limitations. As the dimension of the feature vector increases, the computational overhead
increases; moreover, each extracted feature can have a different dimension [48,49]. In this
study, to prevent any increase in computational overhead, both the EEG and EMG signals
were generated as a 2D image and used as inputs for classification.

The key challenges associated with the use of deep learning in BCI research are related
to the amount of data involved. The training data set used for the classification network
model proposed in this study was relatively small, because data were obtained from
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a limited number of subjects in a relatively uncomplicated experimental environment.
Therefore, the learning model was also performed in a shallow-depth structure to avoid
the overfitting problem. If the amount of available data increases, it will be possible to
establish a more complex-structured deep learning network and TL model that will afford
enhanced classification accuracy. In this study, we had intended to increase the accuracy
of EEG signals for the control of wrist and hand movement. However, the classification
accuracy of EEG was not superior to that of EMG, even after transfer learning, which is
the main limitation of our study. Since EMG signals vary greatly depending on the extent
of remnant forearm muscle(s), and cannot be obtained from nonexistent intrinsic hand
muscles, they are difficult to standardize. Therefore, to increase the usefulness of EEG
signal employment, we plan to further apply our deep learning algorithms to complicated
hand motions that involve additional hand muscles.

In general, the classification accuracy of EMG data is higher than that of EEG data.
Therefore, using EMG signals together will inevitably increase the accuracy rather than
using EEG signals alone, and it is general that the accuracy is the highest when EMG signals
is used alone. However, current prosthetic prostheses based on EMG data experience many
inconveniences for users. Therefore, it is necessary to develop direction of prosthetic
development for motion classification using EEG signals rather than EMG signals. As a
first step, our thesis focused on transfer learning by fusion of EEG and EMG signals.

There is a limit in real-life rather than EMG signals measurement due to the use of
EEG cap. However, convenience is also developing in measuring equipment such as dry
electrode caps. Although we did not fully train with EMG, we proposed a fusion of EEG
and EMG because the purpose of the study itself was to try transfer learning. In this case,
since the classification accuracy of EMG data is high, the classification accuracy of EEG
data can also be improved. Recently, a primary contributing factor for poor myoelectrical
control is variability in muscle contraction intensity. Our study tried to control this in
the experimental design. However, the muscle contraction intensity may not have been
completely controlled in our study, and a study in which the muscle contraction intensity
was controlled is needed in the future.

5. Conclusions

In this study, we revealed that the proposed multimodal fusion method using EEG and
EMG signals significantly improved classification accuracy of wrist and hand movements in
transforearm amputees and healthy controls. We concluded that the proposed multimodal
fusion method might contribute to develop a more practical prosthesis for patients with
upper extremity amputation.
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