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Abstract

Relations between chemicals and diseases are one of the most queried biomedical inter-

actions. Although expert manual curation is the standard method for extracting these re-

lations from the literature, it is expensive and impractical to apply to large numbers of

documents, and therefore alternative methods are required. We describe here a crowd-

sourcing workflow for extracting chemical-induced disease relations from free text as

part of the BioCreative V Chemical Disease Relation challenge. Five non-expert workers

on the CrowdFlower platform were shown each potential chemical-induced disease rela-

tion highlighted in the original source text and asked to make binary judgments about

whether the text supported the relation. Worker responses were aggregated through vot-

ing, and relations receiving four or more votes were predicted as true. On the official

evaluation dataset of 500 PubMed abstracts, the crowd attained a 0.505 F-score (0.475

precision, 0.540 recall), with a maximum theoretical recall of 0.751 due to errors with

named entity recognition. The total crowdsourcing cost was $1290.67 ($2.58 per abstract)

and took a total of 7 h. A qualitative error analysis revealed that 46.66% of sampled errors

were due to task limitations and gold standard errors, indicating that performance can

still be improved. All code and results are publicly available at https://github.com/SuLab/

crowd_cid_relex
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Introduction

Spurred by advancements in high-throughput analytical

techniques like genomic sequencing and microarrays, biol-

ogy is undergoing a rapid transition to a field requiring

large scale data analysis (1, 2). Inexpensive methods for

generating plentiful data have enabled precision medicine

to emerge as the next frontier of adaptive, responsive and

individualized health management and patient care (3, 4).

In this new era of biology, predictive modeling and infor-

mation retrieval now play influential roles in determining

experimental success (5). Precision medicine’s need for a

clear and comprehensive big picture in the resulting data

deluge has in turn driven exploration of systems biology-

and literature-based approaches using complex network-

based models (6, 7).

The drug discovery field in particular has embraced lit-

erature-based approaches in an attempt to increase the prob-

ability of drug candidate success in an era of increasingly

stringent clinical trials (8–10). A critical component of creat-

ing successful drugs involves accurately predicting adverse

effects, which are one major reason why drugs fail during

clinical trials (11, 12). Mining the existing biomedical litera-

ture for chemical–disease relations (CDRs) is central to being

able to accurately predict adverse effects, and therefore of

great interest to pharmaceutical companies (13).

Although well-known manual curation efforts like the

Comparative Toxicogenomics Database have already cura-

ted over a hundred thousand documents for CDRs, alter-

native methods are needed, since expert manual

biocuration would be impractically expensive to apply to

the entire literature (14). Researchers have therefore turned

to automated CDR extractors to address issues of scalabil-

ity. Knowledge-based (15) and machine learning-based

(16) methods have been applied to PubMed abstracts and

medical case reports (17) with varying levels of success.

However, difficulties with named entity recognition (NER)

and anaphora resolution, common among many biological

natural language processing (NLP) methods, have hindered

progress (18–20).

We sought to improve upon current CDR extraction

methods and circumvent the experienced difficulties

through crowdsourcing. Crowdsourcing, a collection of

approaches involving outsourcing tasks to members of the

public, has gained traction in recent years in the NLP do-

main for its ability to quickly and cheaply gather large num-

bers of independent human judgments (21). It is used to

generate gold standard data for training machine learning

systems (22) and as a way to directly enhance the efficiency

of annotation pipelines that involve manual labor (23–25).

Although Burger et al. (23) extracted gene-mutation rela-

tions using crowdsourcing, and Khare et al. (24) tackled

disease indications from drug labels, crowdsourcing has not

yet been applied to annotating PubMed abstracts for CDRs.

Here we describe a crowdsourcing approach to extract-

ing CDRs from PubMed abstracts in the context of the

BioCreative V community-wide biomedical text mining

challenge (26, 27), and provide an assessment of its effi-

ciency and accuracy as compared with the expert-gener-

ated gold standard.

Materials and Methods

Of the two subtasks for the CDR challenge, we focused

our crowdsourcing approach exclusively on the relation

extraction subtask. We used the provided tools of tmChem

(28) and DNorm (29) to perform chemical and disease

NER, respectively, and processed potential chemical-

induced disease (CID) relations either automatically or

with one of two crowdsourcing workflows (Figure 1).

First, we used tmChem and DNorm to generate a set of

Medical Subject Heading (MeSH) annotations from the pro-

vided raw text. To boost NER performance, we resolved

acronyms without attached MeSH identifiers by matching

them to other identified annotations using a rule-based

Figure 1. Crowdsourcing workflow for extracting CID relations from free

text. DNorm and tmChem were used to annotate disease and chemical

concepts in the text. All possible pairwise combinations of chemicals and

diseases were generated and processed either automatically or via a sen-

tence- or abstract-scoped crowdsourcing task using the CrowdFlower

interface.
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pattern (Supplementary Material 1). With this rule, ex-

amples like the six instances of ‘BPA’ from PMID 23871786

(‘mice following BPA exposure . . . 50 mg BPA/kg diet . . .

pubertal BPA exposure’) were resolved to the MeSH ID for

‘bisphenol A’. We found that NER performance on an an-

notation level for chemicals increased from 0.814 to 0.854

F-score after resolving acronyms (Supplementary Material

1). Disease NER performance did not change.

Next, all unique chemical–disease MeSH identifier pairs

were generated from the set of annotations. Concepts miss-

ing MeSH identifiers or using identifiers from other ontolo-

gies (e.g. Chemical Entities of Biological Interest (CHEBI))

were ignored. This set of all possible potential relations was

divided into three mutually exclusive classes. Relation pairs

which matched a simple CID pattern (chemical annotation

occurred no >15 characters before disease annotation, and

the text between them contains ‘induce’) were filtered auto-

matically and judged to be true, and were never shown to a

crowd. This pattern was chosen because earlier work

showed that it was the pattern most frequently used to de-

scribe drug side effects in FDA drug labels (16).

Remaining pairs were divided into those which never co-

occurred within any sentence, and those which co-occurred

at least once within a sentence. Lingpipe was used to split

abstracts into individual sentences (30). A separate crowd-

sourcing task was used to process the two sets of relation

pairs. In both tasks, five workers were shown one relation

identifier pair in the original context (either a single sentence

or the full abstract) and asked to make a judgment about

whether the provided text supported a CID relation between

the chemical and disease. All annotations of the chemical

and disease were highlighted in the text. For the abstract-

level task, the judgment contained two choices, ‘true’ or

‘false’ (Figure 2). For the sentence-level task, previous test-

ing showed that workers were falsely annotating CDRs fol-

lowing a ‘[chemical]-induced [intermediate disease] causes

[disease]’ pattern as CID relations. Therefore, a third choice

was included to capture these low frequency relations

(which were treated as ‘false’ during evaluation) (Figure 3).

Instructions provided to workers (Supplementary Figures S1

and S2) were designed from scratch.

Crowdsourcing framework

We used the CrowdFlower platform (www.crowdflower.

com) to gather all judgments. CrowdFlower gathers mil-

lions of judgments per month from workers in 154 coun-

tries around the world (31, 32). In order to ensure high

quality results, workers for both of our tasks had to pass

an initial six-question quiz. Quiz questions for each worker

were randomly selected by CrowdFlower from a pool of

test questions (Table 1). After passing the initial quiz,

workers had to then maintain an overall minimum accur-

acy of at least 70% on test questions hidden in the task

stream. Those who fell below this limit were automatically

removed and had their judgments discarded, but were still

compensated for their time. Workers were paid 2 and 4

cents, and required to spend a minimum of 3 and 10 s per

sentence- and abstract-level task, respectively (Table 1).

Result aggregation

Worker judgments were aggregated using a voting scheme.

Any abstract-scoped relation which received four or more

positive votes was judged to be a CID relation. This thresh-

old was empirically determined using previous experiments

with a subset of the BioCreative development set (which

resulted in 0.587 F-score, 0.528 precision, 0.661 recall).

Since multiple sentences from the same abstract could con-

tain the relation pair, votes for individual sentence-scoped

tasks were first tallied to determine whether each sentence

supported the CID relation. Afterwards, the sentence-

scoped task with the most positive votes was taken to rep-

resent whether the relation was true for that abstract. This

aggregation scheme assumed that the relation was true for

the entire abstract if at least one sentence supported the re-

lation. Finally, both sentence- and abstract-scoped rela-

tions receiving four or more votes were combined with the

Figure 2. Example of an abstract-scoped relation extraction task.

Workers were shown the entire abstract when none of the annotations

of the chemical–disease pair ever co-occurred within the same sen-

tence. Workers were asked to make a single choice about whether the

text supported a CID relation between the highlighted concepts. This is

a true CID relation according to the gold standard (PMID 3952818).

Figure 3. Example of a sentence-scoped relation extraction task.

Workers were presented with one sentence containing all mentions of a

single chemical–disease pair and asked to make a judgment about

whether the text explicitly supported a CID relationship between the

concepts. This is not a CID relation according to the gold standard

(PMID 9669632).
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automatically determined CID-pattern relations to gener-

ate the final predicted list of CID relations.

Performance evaluation

Relation extraction performance was calculated by com-

paring the predicted set of relations against those of the

gold standard. Each relation consisted of a 3-tuple of the

document ID, the chemical MeSH ID, and the disease

MeSH ID (26). Two relations were considered equivalent

if all components were exactly equal. Relations for all ab-

stracts were combined together into one set for comparison

(micro-average).

True positives were defined as the intersection of gold

standard and predicted relations. False positives were

defined as the predicted relations minus the gold relations,

and false negatives as the gold relations minus the pre-

dicted relations. Precision was defined as true positives div-

ided by true positives plus false positives, and recall as true

positives divided by true positives plus false negatives. F-

measure was the balanced harmonic mean of precision and

recall. NER performance for the competition was only cal-

culated for diseases, and was evaluated in the same way as

relations, except a 2-tuple of document ID and concept

MeSH ID was used instead (26).

Results

Official BioCreative evaluation performance

The crowd completed 2940 and 2766 sentence- and ab-

stract-level tasks for the official evaluation dataset of 500

abstracts within 6 and 7 h at a cost of $439.63 and

$851.04, respectively ($2.58 per abstract overall). A total

of 90 and 224 unique workers from 25 and 43 countries

worked on a median of 120 and 48 sentence- and abstract-

level tasks, respectively. There were 33 workers who

worked on both tasks. Peak performance of 0.505 F-score

(0.475 precision, 0.540 recall) against the gold standard

occurred at a threshold of four or more votes for both sen-

tence and abstract scoped tasks (Figure 4).

NER performance

Due to errors in the NER process, the theoretical max-

imum recall for the crowdsourcing workflow was calcu-

lated to be 0.751, which occurred when all co-occurring

concepts were judged as CID relations. This means that

24.9% of gold standard relations used a concept MeSH ID

which was never identified in that abstract by the NER

tools, and therefore unindexable due to NER loss.

Examination of the NER tools revealed that tmChem’s

performance for chemicals was excellent (0.9273 F-score,

0.9731 precision, 0.8856 recall), but DNorm’s perform-

ance for diseases was substantially poorer (0.8061 F-score,

0.8100 precision, 0.8023 recall).

Relation performance only

In order to better understand errors caused by the crowd’s

judgments and not by NER, we applied a filter which sub-

setted predictions and gold standard relations to those

which used concepts that had an exact match on an anno-

tation level with the gold standard. Annotations were con-

sidered to match if the positions and MeSH IDs matched

exactly. By applying this filter, any unindexable gold rela-

tions due to missing concept IDs in the predictions were

removed (NER false negatives). Predicted relations

Table 1. Summary of crowdsourcing task settings

Setting Sentence-task Abstract-task

Judgments per relation 5 5

Pay per judgment (USD) 2 cents 4 cents

Minimum time per judgment 3 s 10 s

Maximum theoretical pay $24/h $14.40/h

Number of tasks 2940 2766

Number of test questions 551 228

Total cost (USD) $439.63 $851.04

Figure 4. Crowd performance on evaluation test set with and without

NER errors removed. Precision, recall and F-score are plotted as func-

tions of the number of positive votes a relation received. Solid lines de-

pict the performance of the full workflow from free text. Dotted lines

represent the performance when relations generated using incorrect

and unindexed concept annotations were removed. Peak performance

of 0.505 F-score (0.475 precision, 0.540 recall) and 0.645 F-score (0.565

precision, 0.752 recall) occurred at 4 or more votes without and with

NER errors removed, respectively.
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generated using incorrect annotations (either identifier mis-

match or location mismatch) were also removed (NER

false positives).

After applying this filter to the evaluation set of 1066

relations and the crowd’s predictions, we were left with

485 gold standard relations (45.49%) from 290 different

abstracts. Crowd performance on this subset also peaked

at four or more of five votes on both abstract-level and sen-

tence-level tasks, resulting in a F-score of 0.645 (0.565 pre-

cision, 0.752 recall) (Figure 4). Area under the receiver

operating characteristic (ROC) curve increased from

0.6934 to 0.8763 when the NER error filter was applied

(Figure 5). Improvement in the area under the curve is

mostly due to removal of true gold standard relations

which were never presented to the crowd. When generating

the ROC curve, these unindexable relations were treated

like relations which the crowd unanimously voted to be

false (zero positive votes).

Qualitative error analysis

In order to understand why relations were incorrectly pre-

dicted by the crowdsourcing workflow, we performed a

qualitative analysis of the NER-filtered erroneous relations

(Supplementary Materials). Fifteen relations from each of

the four categories (sentence-scoped false positive, sen-

tence-scoped false negative, abstract-scoped false positive,

abstract-scoped false negative) were randomly selected for

analysis in order to examine both crowdsourcing work-

flows (Table 2).

Relations were reviewed by one author (T.S.L.) and

classified into one of the following main error categories:

i. Gold error: relations which were errors due to prob-

lems with the gold standard.

ii. Task limitation: relations which were judged incor-

rectly because of limitations and problems with the

crowdsourcing workflow design.

iii. Crowd wrong: errors resulting from crowd judgment

inaccuracies.

Each relation was also given a more specific error reason

label (Table 3).

The source text, crowdsourcing tasks and gold standard

annotations were examined and reviewed prior to catego-

rizing each error. A judgment was first made as to whether

the gold standard was correct according to the BioCreative

biocuration guidelines (27). If there was no gold standard

error, we then decided whether the crowd could have cor-

rectly judged the relation based on the crowdsourcing task

and instructions they were provided. Finally, any remain-

ing errors were classified as crowd mistakes. Any relations

classified as gold standard errors were independently

confirmed by a second author (B.M.G.), and any disagree-

ments were resolved by a third author (A.I.S.).

Of the 60 sampled errors, a total of 14 (23.33%) relations

were due to problems with the gold standard, 14 (23.33%)

were due to limitations in the crowdsourcing workflow de-

sign, and the remaining 32 (53.33%) were due to poor judg-

ments made by the workers (Figure 6). The crowd made

more mistakes on abstract-scoped relations (65.62%) than

sentence-scoped relations (34.37%). Gold standard mistakes

were equally distributed between sentence- and abstract-

scoped relations. Finally, the majority (64.28%) of task limi-

tation issues involved showing sentences out of context.

Figure 5. ROC curve for crowd predictions. Crowd prediction perform-

ance for the full workflow is plotted in solid lines, and performance with

NER errors removed is plotted in dashed lines. Labels represent vote

thresholds. Area under the curve is 0.6934 and 0.8763 for full and NER

error filtered workflows, respectively.

Table 2. Confusion matricies of crowd predictions without

and with NER error-filtering

a) No NER-error filtering. Not all false negatives were generated

due to unindexable relations.

Crowd prediction

TRUE FALSE

Gold TRUE 576 (444, 132) 490 (123, 102)

FALSE 635 (390, 245) 3484 (1203, 2281)

b) With NER-error filtering.

TRUE FALSE

Gold TRUE 365 (290, 75) 120 (55, 65)

FALSE 281 (181, 100) 1796 (575, 1221)

Total instances of each class are given along with the distribution of rela-

tion origin (sentence and abstract task). Sentence-scoped relations include

CID-pattern relations.
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Crowd errors

Workers had trouble correctly understanding a substantial

number of tasks. In particular, workers had difficulty cor-

rectly determining relations when highlighted chemicals

were actually part of other concepts in context. In the fol-

lowing sentence-scoped false positive from PMID

24040781, four workers said that ‘rapamycin causes

proteinuria’:

‘Proteinuria is an unexpected complication in transplant

patients treated with mammalian target of rapamycin

inhibitors (mTOR-i).’

In this example, workers likely equated ‘rapamycin’

with ‘mammalian target of rapamycin inhibitors’, leading

them to vote that this relation is true. Although

‘rapamycin’ is indeed a chemical, we consider this an ex-

ample of incomplete highlighting, since ideally the more

complete ‘mammalian target of rapamycin inhibitors’

would have been highlighted instead.

Workers also had difficulty identifying the main subject

of some sentences, resulting in erroneous relations. This

often occurred when workers needed to differentiate be-

tween different chemicals or between chemicals and chem-

ical classes. All workers judged that ‘organophosphate

causes lung cancer’ when shown the following sentence

(PMID 25907210):

‘OBJECTIVE: Diazinon, a common organophosphate

insecticide with genotoxic properties, was previously

associated with lung cancer . . ., but few other epidemio-

logical studies have examined diazinon-associated can-

cer risk.’

Workers failed to identify that ‘diazinon’ was the main

subject, resulting in the false positive relation.

Workflow limitations

Showing workers individual sentences without the rest of

the abstract for context was the main task limitation (nine

relations, 64.28%). Our simplifying assumption that the

sentence containing two co-occurring concepts would

alone be sufficient to judge the relation did not always

hold. This led workers to make judgments with incomplete

information, which commonly resulted in false negative

errors.

For instance in PMID 3191389, the crowd missed the

relation ‘phenylbutazone causes seizures’, because the only

sentence they were shown was

‘The present study was designed to investigate the effect

of 5 non-steroidal anti-inflammatory drugs, . . ., phenyl-

butazone, . . ., on seizures produced by pilocarpine.’

Workers needed to see the following sentence,

Table 3. Categories of crowdsourcing errors

Error category Definition

Lack of comprehension Crowd workers made incorrect judgments

about the relation due to errors in

judgment.

Gold missing relation Gold standard does not include the

relation, but should.

Gold false relation Gold standard should not include the

relation.

Lack of instructions Crowdsourcing task instructions did not

say how to judge this type of relation.

Lack of context Text presented to workers was taken out

of context (only applies to sentence

tasks).

Hierarchy error A relation which does not use the most

specific MeSH term.

Figure 6. Qualitative analysis of errors after NER error filtering. A sample of 60 relations were chosen from the NER error-filtered erroneous crowd

predictions and categorized according to the reason why the relation did not match the gold standard. Sentence-scoped relations (a) and abstract-

scoped relations (b) were categorized separately.
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‘Pretreatment of rats with sodium salicylate, . . ., and

phenylbutazone, . . ., converted the non-convulsant dose

of pilocarpine, . . ., to a convulsant one.’

in order to correctly judge that phenylbutazone exacerbated

the seizure-inducing properties of pilocarpine. Sentences

most likely to follow this structure were titles and research

objective declarations, where the intent to study or examine

an effect was stated, but the outcome was not.

Gold standard errors

Of the 60 sampled relations, 9 (64.28%) gold standard

errors resulted from relations that should have been in the

gold standard, and 5 (35.71%) were relations which were

incorrectly included in the gold standard. Relations miss-

ing in the gold standard, which were treated as false posi-

tives, often were included in long lists of symptoms. For

instance, relations linking hand–foot syndrome with doxo-

rubicin and carboplatin were identified by the crowd but

missing from the gold standard for PMID 11745287. The

abstract states:

‘The combination of carboplatin . . . and liposomal

doxorubicin . . . was administered . . . to patients with

recurrent squamous cell cervical carcinoma to deter-

mine antitumor activity . . .’

Later in the results section, it states:

‘Grade > or¼ 2 nonhematologic toxicity included nau-

sea in 17 patients, . . ., constipation in 6 patients, . . .,

hand-foot syndrome in 2 patients, and skin reactions in

3 patients.’

The gold standard contains relations between carboplatin

and doxorubicin for nausea, constipation and skin reac-

tions, but omits hand–foot syndrome. In these authors’

view, these links are true relations that are missing in the

gold standard.

Some gold standard relations seem to have been incor-

rectly added. For example, in PMID 9578276, the gold

standard links carbetocin with vomiting and abdominal

pain. The abstract states:

‘To determine the maximum tolerated dose of carbeto-

cin . . . when administered immediately after vaginal de-

livery at term.’

Later in the results section it states:

‘Recorded were dose-limiting adverse events: hyper- or

hypotension (three), severe abdominal pain (0), vomiting

(0), and retained placenta (four).’

The gold contains relations between carbetocin and all five

adverse events, but the text states that zero patients suf-

fered vomiting or severe abdominal pain. This seems to be

a biocurator mistake.

Comparison against two machine learning

systems

In order to better understand the strengths and weaknesses

of the crowd’s performance, we compared crowd-predicted

relations against predictions from two machine learning

systems which also participated in the BioCreative V chal-

lenge: BeFree (33, 34) and UTH-CCB (UTexas, (35)). The

UTexas system ranked first in the BioCreative evaluation

with a F-score of 0.5703 (0.5567 precision, 0.5844 recall)

(26, 35).

The predicted relations of each method were strikingly

different. For the full workflows, each method had at least

two hundred unique predicted relations (Figure 7a). A core

subset of 277 gold relations (25.98%) was identified by all

three systems. These relations likely represent clear, unam-

biguous relations, as 255 (92.05%) were sentence-scoped.

Strikingly, 265 (24.86%) of the gold standard relations

could not be predicted by any of the systems.

To again focus specifically on the relation extraction

task, we also performed the comparison analysis using an

NER error filter that focused on relations involving con-

cepts which were perfectly annotated by all three methods.

Figure 7. Comparison of CID predictions by crowdsourcing and two machine learning systems against the gold standard. (a) The predictions of the

crowd, BeFree, and UTexas systems using full workflows compared with the gold standard. Overlaps represent relations common to both sets. (b)

Overlap of predicted relations after applying the NER error filter.
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This filter ensures a fair comparison between methods.

Post-filtering, the original set of 1066 gold standard rela-

tions from 500 abstracts was reduced to 356 relations

from 224 abstracts, representing 33.39% of the original

dataset. The proportion of gold relations not predicted by

any system drops to 39 relations (10.95%), indicating that

most of the relations unpredicted in the full workflow were

affected by NER problems (Figure 7b). The core set of pre-

dicted relations common to all three methods increased to

155 (43.53%), indicating that relation consensus is higher

when the methods all agreed upon the annotations and

identifier mappings.

We manually reviewed three sets of relations from the

NER-error filtered predictions: relations that the crowd

correctly predicted but machines did not (36), relations

that machines correctly predicted but the crowd did not

(16) and relations all three methods predicted but did not

match the gold (25). In the set of 36 relations which the

machines were not able to predict, 61.1% were abstract-

scoped, suggesting that it is more difficult for the machines

to infer relations spanning multiple sentences. In addition,

most of these relations used conjugated chemical or disease

terms (concepts joined together with ‘and’ or linked by

parallelism), suggesting that it may be more difficult for

the algorithms to correctly determine which concepts are

relevant when there are many joined together.

For the 16 relations which the crowd missed but both

machine learning algorithms predicted, we found that the

crowd made judgment errors in 9 (56.25%) relations.

However, 3 (18.75%) of the missed relations were due to

sentence tasks taking the original text out of context, and 4

(25%) of the relations were judged to be errors with the

gold standard (Supplementary Materials). After accounting

for NER errors, very few relations predicted by both algo-

rithms were missed by the crowd due to errors in

judgment.

Finally, in the set of 25 false positives that all three

methods predicted, 17 relations were judged to be errors

with the gold standard (Supplementary Materials). Most

of the disagreements with the gold standard arose as a re-

sult of unclear guidelines, which did not clarify specifics

like whether relations provided as background information

should be included. Another main source of error arose

due to disagreements as to what the most specific disease

in an article was. The guidelines said to use the most spe-

cific disease when possible, but did not discuss how this

was to be determined.

Discussion

The goal of this research is to increase the scalability of

processes for extracting semantic relations from text using

crowdsourcing, thereby improving the efficiency of expert

human curation. If such a workflow can be achieved it

could be used to rapidly create large ground truth corpora

for training supervised machine learning systems and could

also be applied directly to biocuration tasks. In comparison

to the gold standard data provided in the BioCreative chal-

lenge, the crowdsourcing workflow presented here

achieved an F-score of 0.505 (0.475 precision, 0.540 re-

call), which we would not classify as expert-level perform-

ance. However, the system was fast (processing �75

abstracts/hour), inexpensive ($2.58/abstract), and rela-

tively accurate in comparison to most fully automated

approaches. Different judgment aggregation schemes may

result in higher performance (36). Although it did not

exactly reproduce the gold standard dataset, the system did

generate data of sufficient quality to train a machine learn-

ing system that yielded equivalent accuracy to the same

system trained on expert-generated data (34). Looking for-

ward, analysis of the errors made on the gold standard test

data revealed many areas where it could be improved.

NER impact

Overall, the biggest observed impact on performance with

our current workflow was the NER step. Almost a quarter

of all gold standard relations used MeSH IDs which could

not be correctly determined by tmChem and DNorm, and

were counted as false negatives without any crowd judg-

ment. After NER error filtering, performance improved

substantially to 0.645 F-score, suggesting that actual

worker judgment may be better when concepts are cor-

rectly highlighted. We also saw that incomplete concept

highlighting could influence worker performance, despite

being judged as correct annotations according to the gold.

This suggests that NER systems may need to be tuned for

downstream use cases in order to provide optimal results.

NER performance for diseases was significantly worse

than for chemicals, and represents the area where the big-

gest improvements can be made.

Workflow limitations

The workflow showed workers single sentences in order to

simplify the relation verification tasks. Sentence-level tasks

were completed at a faster rate than abstract-level tasks

and attracted workers who performed more tasks.

Although this worked well, there were instances where

workers were presented with insufficient information to

make a correct judgment regarding the relation. In a subse-

quent preliminary experiment with tasks that always

showed the full abstract, we found that the performance

was not significantly different, and that workers rated the
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task as being more difficult (data not shown). Cost per ab-

stract also increased, since a greater fraction of workers

fell below the minimum acceptable accuracy limit, and had

their judgments invalidated. Rejected workers were how-

ever still paid for their judgments.

Although proper context is necessary to correctly judge

some relations, more context alone is likely insufficient to

improve worker accuracy due to the corresponding in-

crease in task complexity. Because workers were more

likely to make errors on abstract-level tasks, any gains

from judging relations in context were likely offset by

losses resulting from more mistakes. Although further ex-

periments examining the tradeoff between task complexity

and performance accuracy are required, we concluded that

for this dataset the increase in task simplicity gained by

using single-sentence tasks was worth sacrificing accuracy

on the small fraction of relations which were judged out of

context.

Lack of detailed task guidelines

Many of the disagreements between the crowd’s predic-

tions and the gold standard may be attributed to a lack of

detailed information in the task guidelines provided by the

BioCreative challenge organizers to task participants (27).

Although six pages were dedicated to describing which

concepts should be annotated, only three remarks were

made regarding the relations:

i. The annotated relationship includes primarily mechan-

istic relationships between a chemical and disease.

Occasional biomarker relations are also included (e.g.

relation between D006719 (Homovanillic Acid) and

D006816 (Huntington Disease) in PMID:6453208).

ii. The relation should be explicitly mentioned in the

abstract.

iii. Use the most specific disease in a relationship pair.

The BioCreative task guidelines state that more details

can be found in (37) and (38), but the official curation

manual is ‘proprietary’, and the ‘specialized pharma-edi-

tion of CTD’s Curation Manual’ specially produced for

this dataset was also publically unavailable. Although we

tried our best to create comprehensive instructions for

workers, we found many edge cases which were not cov-

ered in the BioCreative task guidelines. These edge cases

resulted in many false positive predictions because we did

not tell the crowd how to categorize these cases. Since

other established work has shown that crowd workers can

perform with high accuracy when the original curation

guidelines are available, we believe that the high false posi-

tive rate is mainly the product of a lack of detailed relation

curation guidelines (24).

Related work

Our crowdsourcing workflow uses a similar combination

of automated NER and crowd relation verification as pre-

viously published methods. This machine-assisted crowd-

sourcing approach was also used by Burger et al. (23) and

Khare et al. (24) to extract gene-mutation and drug-disease

relations respectively. Both of these methods pre-populated

entity annotations with automated NER tools and gener-

ated all possible relation pairs for workers to verify. All

tasks asked workers to verify one relation in the full ori-

ginal context. However, neither method attempted to

divide tasks into different workflows based on sentence-

cooccurrence. For aggregation, while Burger et al. saw a

substantial improvement in accuracy by using a Bayesian

aggregation method, Khare et al. saw no performance gain

when they used an expectation maximization algorithm to

aggregate worker judgments. In their case, simple majority

voting actually performed better.

Conclusion

We applied a crowdsourcing workflow to extract CID rela-

tions from PubMed abstracts as part of the BioCreative V

challenge, and ranked fifth out of 18 participating teams

(26). We were the only crowdsourcing entry to the

BioCreative V CDR task, and to the best of our knowledge,

this is the first application of a crowdsourcing component

in a workflow submitted to a biomedical community chal-

lenge. The largest source of errors for the crowdsourcing

workflow was actually the automated NER that initiated

the process, which accounted for nearly 25% of all errors.

Although we did not have the highest performance in terms

of F-score, our crowd-based method was capable of detect-

ing mistakes in the gold standard and worked well on

some abstract–bound relations. Our error analysis revealed

that some of the assumptions used to simplify the task did

not always hold, and that limitations in the task design

were responsible for some incorrect predictions. Like ma-

chine learning methods, our current crowdsourcing

method will benefit from additional iterative rounds of re-

finement. However, our current design already performs

better than the majority of automated methods, which

gives us confidence that aggregate crowd workers can be

complementary to trained biocurators.

Supplementary data

Supplementary data are available at Database Online.
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