
miRNA Expression Profiling Uncovers
a Role of miR-139-5p in Regulating the
Calcification of Human Aortic Valve
Interstitial Cells
Fan Zhang1, Naixuan Cheng1,2, Yingchun Han1,2, Congcong Zhang1,2* and Haibo Zhang1*

1Department of Cardiac Surgery, Beijing Anzhen Hospital, Capital Medical University, Beijing, China, 2Key Laboratory of
Remodeling-Related Cardiovascular Diseases, Ministry of Education, Beijing Institute of Heart, Lung and Vascular Diseases,
Beijing, China

Calcific aortic valve disease (CAVD) is the most common structural heart disease, and the
morbidity is increased with elderly population. Several microRNAs (miRNAs) have been
identified to play crucial roles in CAVD, and numerous miRNAs are still waiting to be
explored. In this study, the miRNA expression signature in CAVD was analyzed unbiasedly
by miRNA-sequencing, and we found that, compared with the normal control valves, 152
miRNAs were upregulated and 186 miRNAs were downregulated in calcified aortic valves.
The functions of these differentially expressed miRNAs were associated with cell
differentiation, apoptosis, adhesion and immune response processes. Among
downregulated miRNAs, the expression level of miR-139-5p was negatively correlated
with the osteogenic gene RUNX2, and miR-139-5p was also downregulated during the
osteogenic differentiation of primary human aortic valve interstitial cells (VICs). Subsequent
functional studies revealed that miR-139-5p overexpression inhibited the osteogenic
differentiation of VICs by negatively modulating the expression of pro-osteogenic gene
FZD4 and CTNNB1. In conclusion, these results suggest that miR-139-5p plays an
important role in osteogenic differentiation of VICs via the Wnt/β-Catenin pathway, which
may further provide a new therapeutic target for CAVD.
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INTRODUCTION

Calcific aortic valve disease (CAVD), which results in aortic valve stenosis, affects 25% of the
population >65 years of age (Coffey et al., 2014; Lindman et al., 2016). In developing countries,
CAVD represents a major cause for surgical valve replacement. CAVD confers a high clinical and
economic burden, because no effective pharmacological therapy exists (Hutcheson et al., 2014). The
disease progression is rapid and, although initially indolent, it results in heart failure and premature
death if left untreated. Owing to its high morbidity and mortality, a strong incentive exists to identify
the key molecular drivers contributing to the development of this disease, which could provide a new
target for clinical treatment in its earlier stages before cardiac damage.

CAVD is marked by inflammatory infiltration, fibrotic extracellular matrix (ECM) synthesis by
activated valve interstitial cells (VICs), increased leaflet thickening and stiffness and calcific mineral
deposition (Peeters et al., 2018). The resultant pathological remodeling ultimately impairs valve
movement and obstructs blood flow across the narrowing valve orifice. In healthy valves, VICs
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comprise mostly quiescent fibroblasts that maintain valvular
homeostasis and physiological leaflet mechanical properties.
Under pathological stimuli, VICs undergo differentiation
toward osteoblastic phenotypes as a result of newly acquired
expression of cytoskeletal or osteogenic genes (RUNX2, ALPP,
BMP2, BGLAP, etc.) (Rutkovskiy et al., 2017). However, the
pathogenic mechanisms that trigger their maladaptive
differentiation in vivo are unclear.

MicroRNA (miRNA) is a type of small RNA that is generally
22–25 bases in length (Lagos-Quintana et al., 2001). miRNA
binds to the 3′-untranslated regions (UTR) of the target mRNA in
the cytoplasm by sequence complementarity, which inhibits the
translation of the target mRNA or causes the degradation of the
target mRNA (Miranda et al., 2006; Sun and Lai, 2013).
Compared with normal human aortic valves, the miRNA
expression profiles in calcified aortic valve tissues have
changed (Wang et al., 2017). Several miRNAs [miR-204-5p
(Yu et al., 2018; Song et al., 2019), miR-143 (Fiedler et al.,
2019), miR-125b (Ohukainen et al., 2015), miR-34a (Toshima
et al., 2020), etc.] have been reported to participate in the
osteogenic differentiation of VICs and valve calcification.

In this study, to identify the key miRNAs during aortic valve
calcification, we explored the miRNA expression signature in
CAVD by miRNA-sequencing and combined analyzed with a
published transcriptome data (https://cics.bwh.harvard.edu/
multiomics_databases) (Schlotter et al., 2018). Among the
differentially expressed miRNAs (DEMs), miR-139-5p was
downregulated miRNA in calcified aortic valves and primary
human aortic VICs. Subsequent functional studies revealed that
miR-139-5p overexpression results in inhibition of VICs
osteogenic differentiation by negatively modulating the
expression of pro-osteogenic gene FZD4 and CTNNB1.
Therefore, our study provided new insights into the function
of miR-139-5p in the pathogenesis of CAVD.

MATERIALS AND METHODS

Clinical Samples
A total of nine calcified aortic valves (CAVs) (exclusion criteria:
rheumatic aortic valvulopathy, infective endocarditis, congenital
valve disease, bicuspid aortic valve) from patients with CAVD

and 8 normal aortic valves (CONs) from patients with heart
transplantation were obtained at the Department of
Cardiovascular Surgery, Anzhen Hospital, affiliated to Capital
Medical University. The clinical characteristics of all samples are
listed in Table 1. All the studies involving human samples
complied with the Declaration of Helsinki and were approved
by the Ethics Committee of Anzhen Hospital, affiliated to Capital
Medical University.Written informed consent was obtained from
the patients before surgery.

RNA Extraction and miRNA-Sequencing
Total RNAs were extracted from aortic valves and cells using
TRIzol Reagent (Life technologies) as described previously (Han
et al., 2021). RNA from five calcified aortic valves and 3 normal
aortic valves were used for miRNA-sequencing. After using
Agilent 2100 Bio analyzer (Agilent RNA 6000 Nano Kit) to do
the total RNA sample quality control, cDNA library was
constructed and sequenced on DNBseq platform. DEMs were
identified by comparing the gene-level fragments kilobase of exon
model per million mapped reads (FKPM) between two groups
and selected by using the criteria with at least a twofold change of
FPKM and false discovery rate (FDR) value <0.001. The target
genes of DEMs were predicted with RNAhybrid, miRanda and
TargetScan database and further function analysis by gene
ontology (GO) biological process (BP) term and Kyoto
Encyclopedia of Genes and Genomes (KEGG) pathway
enrichment analysis was performed using DAVID
Bioinformatics Resources 6.8 (https://david.ncifcrf.gov/). All
the raw data can be accessed in the GEO database (GSE171208).

Real-Time PCR
For miRNAs, the isolated total RNAs were reverse transcribed
into complementary cDNAs and qRT-PCR analysis using Bulge-
Loop miRNA qRT-PCR kit (Ribobio, C10211-2 Guangzhou,
China) and the Bulge-Loop primer of hsa-miR-374c-3p
(Ribobio, miRA1000644), hsa-miR-181a-2-3p (Ribobio,
miRA1000331), hsa-miR-490-5p (Ribobio, miRA1000817),
hsa-miR-204-5p (Ribobio, miRA0000265), hsa-miR-1180-3p
(Ribobio, miRA1000016), hsa-miR-149-5p (Ribobio,
miRA1000346), hsa-miR-139-5p (Ribobio, miRA1000053), and
U6 (Ribobio, miRAN0002-1-100). U6 was used as an internal
control.

TABLE 1 | Clinical characteristics in patients with normal valves and CAV.

Normal
control (n = 8)

CAV (n = 9) p-value

Male, n (%) 7 (87.5) 6 (66.7) 0.577
Age, years 50.3 ± 7.9 58.4 ± 11.6 0.104
BMI, kg/m2 25.8 ± 3.9 27.9 ± 3.7 0.235
Coronary artery disease, % 2 (25) 2 (22.2) 1.000
Dyslipidemia/hypercholesterolemia, % 3 (37.5) 2 (22.2) 0.620
Hypertension, % 5 (62.5) 7 (77.8) 0.620
Smoking history, n (%) 2 (25) 5 (55.6) 0.3348
Aortic valve area, cm2 NA 0.77 ± 0.16 —

Mean gradient, mmHg NA 41.2 ± 15.6 —

Aortic valve peak flow velocity (m/s) NA 4.7 ± 0.6 —

Continuous variables are expressed as means ± SD. Dichotomous variables are expressed as percentage.
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For mRNAs, the isolated total RNAs were reversely
transcribed into complementary cDNAs using
GoScript™ Reverse Transcriptase Kit (Promega, A5001)
and then real-time PCR analysis was performed using
SYBR Green PCR Master Mix Reagent Kit (TaKaRa),
with GAPDH used as an internal control. Data were
presented as values calculated by the 2ΔΔt method. The
sequences of primers are as follows:

ALPP: 5′-GTGAACCGCAACTGGTACTC-3′, 5′-GAGCTG
CGTAGCGATGTCC-3′; RUNX2: 5′-TGGTTACTGTCATGG
CGGGTA-3′, 5′-TCTCAGATCGTTGAACCTTGCTA-3′; BMP3:
5′-TGACATCGCTAACCAAGTCTGA-3′, 5′-TGAGGGTCCATG
CAGAAAGAT-3′; BGLAP: 5′-CACTCCTCGCCCTATTGGC-3′,
5′-CCCTCCTGCTTGGACACAAAG-3′; CTNNB1: 5′-AGCTTC
CAGACACGCTATCAT-3′, 5′-CGGTACAACGAGCTGTTT
CTAC-3’; FZD4: 5′-GTGTCACTCTGTGGGAACCAA-3′, 5′-
GGCTGTATAAGCCAGCATCAT-3’; GAPDH: 5′-GGAGCG
AGATCCCTCCAAAAT-3′, 5′-GGCTGTTGTCATACTTCTCAT
GG-3′.

VECs and VICs Isolation, Culture, and
Osteogenic Differentiation
Primary valve endothelial cells (VECs) and VICs were
isolated from normal aortic valve leaflets according to a
previously reported protocol (Li et al., 2017a). After
enzymatic digestion of the aortic valve leaflets with 1 mg/
ml collagenase (Type I) at 37°C for 30 min, the endothelial
cells were removed from valve leaflets by cell scraper and
collected in 1 × PBS buffer. After centrifugation for 5 min,
VECs were resuspended in ECM with 10% heat-inactivated
FBS and 1% penicillin/streptomycin and cultured in 37°C
humidified atmospheres at 5% CO2. Then, the remaining left
leaflets were minced and further digested with collagenase
(Type I) at 37°C for 1–2 h. After enzymatic digestion, the cell
suspension was filtered with a 70 μm cell strainer and VICs
were cultured in standard DMEM with 10% heat-inactivated
FBS and 1% penicillin/streptomycin in a 37°C humidified
atmosphere at 5% CO2.

VECs and VICs were identified by immunofluorescence
staining. After fixation with 4% paraformaldehyde and
blocking with 5% bovine serum albumin, primary antibody
[rabbit polyclonal antibody to CD31 (Abcam, ab28364, 1:100
diluted) or rabbit polyclonal antibody to Periostin (Santa Cruz,
sc-67233, 1:50 diluted)] was incubated at 4°C overnight and then
a second antibody [Alexa Fluor 555 donkey anti-rabbit (Life
Technologies, A31572, 1:500 diluted) or Alexa Fluor 488 donkey
anti-rabbit (Life Technologies, A21206, 1:500 diluted)] was
incubated for 1 h at room temperature. The nuclei were
stained with 4′,6-diamidino-2-phenylindole (DAPI) (Abcam).

Calcification of VICs was induced by osteogenic medium
[OM, 50 μM ascorbic acid phosphate (Sigma), 100 nM
dexamethasone (Sigma) and 10 μM β-glycerophosphate
(Sigma)]. VICs were cultured in OM for 14 days with a
replacement every 2–3 days. Alizarin red staining was used to
access the matrix calcium deposition after fixation with 10%
formalin.

Transfection of VICs With miRNA Mimics
VICs were transfected at a confluency of 70–80% in a 12-well
plate after seeding. micrONTM hsa-miR-139-5p mimic (50 nM)
or negative controls (micrONTM miRNA mimic NC #22,
Ribobio) were transfected using Lipofectamine 3000 according
to the manufacturer’s protocol (Invitrogen). The transfection
efficiency was examined by real-time PCR after 48 h of
transfection. During the osteogenic differentiation induction of
VICs, miRNA mimics were added at the same time of OM
replacement.

Statistical Analysis
Data processing was performed using SPSS21.0 software. The
measurement data were expressed as mean ± standard deviation
and the unpaired t-test was used for comparison between two
groups and one-way ANOVA was used for comparison in three
groups. Spearman’s correlation test was used for correlation
analysis. p < 0.05 was considered to have a statistically
significant different between groups.

RESULTS

miRNA Expression Profile was Altered
During Aortic Valve Calcification
To explore the DEMs, total RNAs from three control aortic valves
and five calcified aortic valves were analyzed by genome-wide
miRNA expression profiling using DNBseq sequencing platform
(Figure 1A). The average alignment ratio of the sample comparison
genome (Homo_sapiens_9606.NCBI.GCF_000001405.38_GRCh38.
p12. v1904) was 93.48%. A total of 1,572miRNAswere detected. The
boxplots in Figure 1B showed comparable read count distribution
across all eight samples. Based on the analysis of Pearson correlation
coefficient of overall miRNA expression levels between every two
samples, the eight samples could be divided into two groups, which is
consistent with the original groups (Figure 1C). Then, significant
DEMs were identified as those with a change fold >2.0 and FDR
<0.001. Compared with the control group, 152 miRNAs were
upregulated and 186 miRNAs were downregulated in calcified
aortic valves (Figure 1D, Supplementary Excel S1). The
expression patterns of the DEMs were shown in the hierarchical
clustering heatmap (Figure 1E).

Pathway Analysis of the Predict Target
Genes of Differentially Expressed miRNAs
Identification the function enrichment of predicted targets may
help to understand the biological role of these DEMs. We used
RNAhybrid, miRanda and TargetScan database to predict the
target mRNAs for these DEMs. Through GO BP enrichment
analysis, we found that the target genes of DEMs were
associated with cell differentiation, apoptosis process, cell
adhesion, oxidation–reduction process and immune response
(Figure 2A). Through the KEGG pathway enrichment analysis,
we found that the target genes of DEMs were significantly enriched
in a few signaling pathways, especially the phosphatidylinositol 3ʹ-
kinase (PI3K)–protein kinase B (AKT) signaling pathway,
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mitogen-activated protein kinase (MAPK) signaling pathway, and
cytokine–cytokine receptor interaction pathway (Figure 2B).

Dysregulated Signaling Pathway in
Calcified Aortic Valves
Then, we further analyzed the altered signaling pathway in a
previous published data (https://cics.bwh.harvard.edu/

multiomics_databases) (Schlotter et al., 2018), which compared
the transcriptome of three non-calcified aortic valves and three
calcified aortic valves. Differentially expressed genes (DEGs) were
identified as those with a change fold >2.0. Compared with the
non-calcified group, 1,235 genes were upregulated and 544 genes
were downregulated in calcified aortic valves and the hierarchical
clustering heatmap is shown in Supplementary Figure S1A.
Through GO BP enrichment analysis, we found that the

FIGURE 1 | miRNA expression profile was altered during aortic valve calcification. (A) Schematic description of the workflow illustrating the two-stage-approach
involving independent samples for discovery and validation. (B) Overall count distribution of miRNAs in each sample in the RNA-sequencing experiment. (C) Pearson
correlation coefficient of overall miRNA expression levels between every two samples. (D) Volcano plot revealing miRNA-sequencing results comparing CON (n � 3
biologically independent samples) versus CAV (n � 5 biologically independent samples). Individual miRNAs are displayed by the p-value and the corresponding fold
change. (E) Heatmap of the 338 differentially expressed miRNAs. Red color indicated higher expression level; blue color indicated lower expression level. CON, control;
CAV, calcified aortic valves.

FIGURE 2 | Pathway analysis of the predict target genes of differential expressed miRNAs. (A) The GO biological process (BP) function of the predict target genes
of differential expressed miRNAs was analyzed and the top 10 terms were listed. (B) KEGG pathway of the predict target genes of differential expressed miRNAs was
analyzed and the top 10 pathways were listed.
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upregulated genes were associated with immune response,
chemokine-mediated signaling pathway, T-cell activation,
positive regulation of extracellular signal-regulated kinase
(ERK)1/2 cascade and extracellular matrix disassembly
(Supplementary Figure S1B). The downregulated genes were
associated with negative regulation of canonical Wnt signaling
pathway, muscle contraction, negative regulation of cell
proliferation and ossification (Supplementary Figure S1C).
Through the KEGG pathway enrichment analysis, the
upregulated DEGs were significantly enriched in
cytokine–cytokine receptor interaction, osteoclast
differentiation, cell adhesion molecules and PI3K–AKT
signaling pathway (Supplementary Figure S1D). The
downregulated DEGs were significantly enriched in protein
digestion and absorption, Wnt signaling pathway, TGF-beta
signaling pathway and Hippo signaling pathway
(Supplementary Figure S1E). These results have shown that
the function enrichment of DEMs in our miRNA-seq had some
similarities with the function enrichment of DEGs in RNA-seq.

The Verification of Downregulated
Candidate miRNAs in Calcified Aortic
Valves
We selected candidate miRNAs from the downregulated miRNAs
for validation by real-time PCR. Among the top 30 miRNAs

(ranked by change fold), there were 7 miRNAs (hsa-miR-374c-
3p, hsa-miR-181a-2-3p, hsa-miR-490-5p, hsa-miR-204-5p, hsa-
miR-1180-3p, hsa-miR-149-5p and hsa-miR-139-5p) highly
expressed in normal valves (FKPM > 500) (Table 2). Then, we
validated the expression of these miRNAs in another five normal
valves and four calcific valves. The expression levels of osteogenic
genes ALPP, RUNX2, BMP3, BGLAP, FZD4 and CTNNB1 were
higher in calcific valves than normal valves (Figure 3A and
Supplementary Figure S2). Compared to the normal valves, six
miRNAs (hsa-miR-374c-3p, hsa-miR-181a-2-3p, hsa-miR-490-5p,
hsa-miR-204-5p, hsa-miR-149-5p, and hsa-miR-139-5p) were
significantly downregulated in calcified aortic valves, while the
expression levels of hsa-miR-1180-3p were not different between
two groups (Figures 3B,C). Because the expression level of hsa-
miR-374c-3p in valves was lower than the other five miRNAs, we
removed it from the candidate miRNAs. Among the five candidate
miRNAs, it was previously reported that the expression of miR-
204-5p was decreased in calcified aortic valves and inhibited the
osteogenic differentiation of VICs and aortic valve calcification (Yu
et al., 2018; Song et al., 2019). Then, we calculated the correlation of
five candidate miRNAs with the osteogenic genes RUNX2. miR-
204-5p, miR-149-5p, and miR-139-5p exhibited significant
negative correlations with osteogenic genes RUNX2
(Figure 3D). These data indicated that, besides miR-204-5p,
miR-149-5p and miR-139-5p may also be the key miRNAs in
the development of CAVD.

TABLE 2 | Top 30 downregulated miRNA in valves from CAVD.

Gene ID Mean CON expression Mean CAV expression log2

change fold (CAV/CON)
Q value (CON vs.

CAV)

hsa-miR-3184-3p 498.333 1.4 −8.47554 0
hsa-miR-374c-3p 12,591 112.2 −6.81018 0
hsa-miR-1224-5p 14.333 0.2 −6.1632 1.05E-11
hsa-miR-3622b-3p 70.667 2 −5.14296 6.47E-52
hsa-miR-488-3p 62.667 3 −4.38467 3.36E-41
hsa-miR-181a-2-3p 607.667 29.8 −4.3499 0
hsa-miR-208a-3p 12 0.8 −3.90689 3.34E-08
hsa-miR-490-3p 10.667 0.8 −3.73701 6.92E-07
hsa-miR-202-5p 103.333 8.2 −3.65553 1.02E-56
hsa-miR-429 248.333 20.4 −3.60563 1.47E-132
hsa-miR-1298-5p 16.333 1.4 −3.54429 1.74E-09
hsa-miR-509-3p 69 6.2 −3.47626 8.01E-36
hsa-miR-490-5p 2611.667 241.4 −3.43547 0
hsa-miR-1468-5p 277 27.4 −3.33764 8.17E-136
hsa-miR-4796-5p 18 1.8 −3.32193 1.25E-09
hsa-miR-4775 19.333 2 −3.27299 1.40E-10
hsa-miR-3622a-5p 30.667 3.2 −3.26054 4.75E-16
hsa-miR-219b-5p 18 2 −3.16993 7.69E-10
hsa-miR-1299 99.667 11.4 −3.12808 4.79E-45
hsa-miR-134-3p 17.333 2 −3.11545 1.25E-08
hsa-miR-204-5p 19,798.33 2309.6 −3.09966 0
hsa-miR-1180-3p 3436.667 414.4 −3.05191 0
hsa-miR-4662a-5p 173 21 −3.04231 2.17E-75
hsa-miR-149-5p 1550.333 190.2 −3.02699 0
hsa-miR-139-5p 4220.667 528.2 −2.99831 0
hsa-miR-3065-3p 13.667 1.8 −2.92463 1.71E-06
hsa-miR-935 28.667 3.8 −2.91532 3.98E-13
hsa-miR-200b-3p 20.667 3 −2.78429 1.08E-08
hsa-miR-1247-5p 419.667 61.8 −2.76357 2.46E-156
hsa-miR-548ah5p 14 2.2 −2.66985 7.01E-06

Ranked by log2 change fold; Bold: FKPM > 500 in normal valves (CON).
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Both miR-149-5p and miR-139-5p Were
Downregulated in Osteogenically
Differentiated VICs
To confirm the cell location of miR-149-5p and miR-139-5p, we
cultured the primary VICs and VECs and compared the expression
levels ofmiR-149-5p andmiR-139-5p inVICs andVECs (Figure 4A
and Supplementary Figure S3). Both the expression levels of miR-
149-5p and miR-139-5p were higher in VICs than that in VECs
(Figure 4B). Then, we induced the osteogenic differentiation of
VICs by condition medium (Figure 4C) and compared the
expression levels of miR-149-5p and miR-139-5p in primary
VICs and osteogenically differentiated VICs. We found that miR-
149-5p and miR-139-5p decreased 4.66-fold and 2.79-fold,
respectively, in osteogenically differentiated VICs (Figure 4D).

miR-139-5p Overexpression Could Inhibit
the Osteogenic Differentiation of VICs
It was reported that miR-139-5p could repress the osteogenesis of
mesenchymal stem cells via targeting Wnt/β-Catenin signaling
pathway (Long et al., 2017). For the importance of Wnt/
β-Catenin signaling pathway to osteogenesis of VICs and aortic
valve calcification (Khan et al., 2020; Albanese et al., 2017), we
focused on the effects of miR-139-5p on osteogenesis the VICs in

further study. miR-139-5p mimics were transfected to VICs during
osteogenic differentiation, the NC mimics as negative control. The
expression of miR-139-5p in VICs transfected with miR-139-5p
mimics was higher than that in NC mimics transfected VICs at
15 days after osteogenic induction, indicating that the miR-139-5p
mimics were successfully transfected intoVICs (Figure 5A). Alizarin
Red staining showed that calcium deposition in VICs with the miR-
139-5p mimics was less than that in VICs with NC mimics
(Figure 5B). At the same time, the expression levels of
osteogenic genes BGLAP, ALPP and RUNX2 in VICs were also
decreased by miR-139-5p overexpression (Figures 5C–E). FZD4
and CTNNB1, the key genes of Wnt/β-Catenin pathway, were the
reported target genes of miR-139-5p (Long et al., 2017). We found
that the expression levels of FZD4 and CTNNB1 were increased in
osteogenically differentiated VICs, while they were repressed by
miR-139-5p overexpression (Figures 5F,G). Therefore, these data
demonstrated that miR-139-5p could inhibit the osteogenic
differentiation of VICs by targeting the Wnt/β-Catenin pathway.

DISCUSSION

miRNAs participate in the pathology of various cardiovascular
diseases. By miRNA-seq, we found that the miRNA profile was
altered in calcified aortic valves. Among the downregulated

FIGURE 3 | The verification of downregulated candidate miRNAs in calcified aortic valves. (A) The expression levels of osteogenic genes ALPP, RUNX2 and BMP3
in valves from CON patients (n � 5 biologically independent samples) and CAV patients (n � 4 biologically independent samples) were accessed by qRT-PCR and
normalized with GAPDH. (B,C) The expression levels of hsa-miR-181a-2-3p (miR-181a), hsa-miR-490-5p (miR-490), hsa-miR-204-5p (miR-204), hsa-miR-1180-3p
(miR-1180), hsa-miR-149-5p (miR-149), hsa-miR-139-5p (miR-139) (B) and hsa-miR-374c-3p (C) in valves from CON patients (n � 5 biologically independent
samples) and CAV patients (n � 4 biologically independent samples) were accessed by qRT-PCR and normalized with U6. (D) Spearman’s correlation test was used to
analyze the correlation of the expression of hsa-miR-204-5p, hsa-miR-149-5p, hsa-miR-139-5p, hsa-miR-181a-2-3p and hsa-miR-490-5p with the expression levels of
RUNX2 in aortic valves. Unpaired Student’s t-test, *p < 0.05, **p < 0.01. CON, control; CAV, calcified aortic valves.
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miRNAs, miR-139-5p could inhibit the osteogenic differentiation
of VICs by target Wnt/β-Catenin pathway associated genes FZD4
and CTNNB1.

Several studies have investigated the miRNA profile
alternation in CAVD by quantitative RT-PCR based screening
or microarray in the past decades. However, the detection
throughput and sensitivity of those methods are relatively low
and only hundreds of miRNAs can be detected. In one study, only
92 miRNAs were identified as DEMs with a change fold >2.0.
Among the 92 DEMs, 53 miRNAs were downregulated and 39
were upregulated in aortic tissue from CAVD patients (Wang
et al., 2017). In another study, 373 human miRNAs were
examined by a quantitative RT-PCR based screening and
found only 41 DEMs (Fiedler et al., 2019). In our study,
miRNA-sequencing was used to the detect the DEMs in
calcific aortic valves. Compared to microarray and RT-PCR-
based screening, this method has the characteristics of high
throughput and high sensitivity, which allows us to detect
more miRNAs with higher accuracy. As a result, a total of
1,572 miRNAs were detected and there were 338 DEMs with a
change fold >2.0 and FDR <0.001. Among the DEMs, 152
miRNAs were upregulated and 186 miRNAs were
downregulated in calcified aortic valves, which indicated that
more DEMs were found in this study. The significantly
downregulated miRNAs found in the previous study, such as
miR-125b (Ohukainen et al., 2015), miRNA-126 and Let-7 family
(let-7a, let-7c, let-7d, let-7e and let-7f) (Wang et al., 2017), were
also downregulated in our study. Other reported upregulated
miRNAs, such as miR-34a (Toshima et al., 2020), miR-133a,

miR-143 and miR-21 (Fiedler et al., 2019), were also upregulated
in our study. Therefore, the method used in this study could
contribute to fully understand miRNA profile alteration and the
discovery of new functional targets in aortic valve calcification.

The pathology of calcific valve disease is an active and
multifaceted condition involving lipoprotein deposition,
inflammatory cell (including macrophages, T lymphocytes and
mast cells) infiltration and cytokine secretion, osteogenic
differentiation and apoptosis of VICs and ECM remodeling
(Rutkovskiy et al., 2017; Peeters et al., 2018). In this study, by
the functional and pathway enrichment analysis of the target
genes of DEMs and DEGs, we found that both the DEMs and
DEGs were associated with cell differentiation, apoptosis,
adhesion and immune response and the associated pathways
included the Wnt signaling pathway, ERK1/2 pathway,
PI3K–AKT pathway, MAPK pathway and cytokine–cytokine
receptor interaction pathway. Activation of the Wnt,
PI3K–AKT and MAPK pathway promoted the osteogenic
differentiation of VICs (Fang et al., 2014; Poggio et al., 2014;
Xie et al., 2020). These results demonstrated that the DEMs in the
miRNA-seq were indeed involved in the process of aortic valve
calcification.

Since miRNA always acted as a negative regulator of
transcription and there were more downregulated miRNAs
than upregulated miRNAs and more upregulated mRNAs than
downregulated mRNAs in calcified valves, we choose seven
miRNAs from the downregulated miRNAs as candidates,
which were abundant in normal valves. After validation in
calcific valves and VICs and calculating the correlation with

FIGURE 4 | Both miR-149-5p and miR-139-5p were downregulated in osteogenic differentiated VICs significantly. (A) Primary cultured VICs and VECs were
immunofluorescence stained with Periostin (green) and CD31 (red), respectively and the nucleus was stained with DAPI (blue) (the scale bar � 50 μm). (B) The expression
levels of hsa-miR-149-5p (miR-149) and hsa-miR-139-5p (miR-139) in VECs and VICs were accessed by qRT-PCR and normalized with U6 (n � 4 samples from
independent wells in each group). (C) Alizarin red staining was used to access the matrix calcium deposition in VICs at 15 days after OM induction. (D) The
expression levels of hsa-miR-149-5p and hsa-miR-139-5p in control and osteogenic differentiated VICs were accessed by qRT-PCR and normalized with U6 (n � 4
samples from independent wells in each group). Unpaired Student’s t-test, *p < 0.05, **p < 0.01.
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the osteogenic genes, we finally selected hsa-miR-139-5p from
seven candidate miRNAs to verify its effect on VICs. The
calcium deposition and the expression levels of BGLAP,
ALPP and RUNX2 were repressed by miR-139-5p
overexpression, but these genes were not in the predicted
target genes list. So, the effect of miR-139-5p on the
osteogenic differentiation of VICs was mediated indirectly.
The role of miR-139-5p in cell differentiation has been
frequently reported. Mouse 3T3-L1 preadipocyte
differentiation can be suppressed by miR-139-5p (Mi et al.,
2015a). As a negative regulator in myogenesis, miR-139-5p has a
great influence in myoblast differentiation by blocking the
Wnt1-mediated Wnt/β-catenin signaling pathway (Mi et al.,
2015b). In another study, miR-139-5p was able to repress the
osteogenesis of mesenchymal stem cells via targeting Wnt/
β-Catenin signaling pathway during the repair of bone (Long
et al., 2017). FZD4 (encodes Frizzled receptor isoforms 4) and
CTNNB1 (encodes β-Catenin), the reported target genes of miR-
139-5p, are key molecular drivers in the Wnt/β-Catenin
signaling pathway. Frizzled receptor 4, which is the receptor
of Wnt family ligands, mediates the intracellular signaling
activation with the lipoprotein-related peptide 5/6 (LRP5/6)
co-receptors (Ahn et al., 2011). The typical Wnt/β-catenin
signaling pathway activates the transcriptional activity of
osteogenic genes (RUNX2, ALPP, etc.) by nuclear
translocation of β-catenin (Calvisi et al., 2005; Park et al.,

2011). LRP5 deficiency could prevent the calcification in the
aortic valve under hypercholesterolemia condition (Rajamannan,
2011). In this study, we found that FZD4 and CTNNB1 were
increased in osteogenic VICs and miR-139-5p could inhibit the
expression the FZD4 and CTNNB1. These data demonstrated that
miR-139-5p could inhibit the osteogenic differentiation of VICs
by targeting the Wnt/β-Catenin pathway.

In this study, we also found that miR-149-5p was
downregulated in calcified valves and osteogenically
differentiated VICs. In the previous study, interleukin-6 (IL-6)
was reported as the target gene of miR-149-5p (Kong et al., 2018).
The expression level of IL-6 was increased in calcified human
aortic valves (Li et al., 2017b). Recombinant IL-6 can increase the
expression of RUNX2 and osteopontin to promote the osteogenic
differentiation of VICs; when IL-6 was inhibited by siRNA, the
osteogenic differentiation of VICs was blocked in vitro (El
Husseini et al., 2014; Grim et al., 2020). However, there is still
no evidence for the function of miR-149-5p in osteogenic
differentiation of VICs and CAVD and it could be explored in
a future study.

In summary, our study fully described the changes in miRNA
expression profile and its related pathological processes during
aortic valve calcification by miRNA-seq. At the same time, we
discovered that miR-139-5p plays an inhibiting role in the process
of osteogenic differentiation, which may provide a new
therapeutic target for aortic valve calcification.

FIGURE 5 | miR-139-5p overexpression could inhibit the osteogenic differentiation of VICs. (A) The expression levels of miR-139-5p in negative control (NC)
mimics and miR-139-5p mimics (miR-139 mimic) transfected VICs were accessed by qRT-PCR and normalized with U6 (n � 4 samples from independent wells in each
group). Unpaired Student’s t-test, **p < 0.01. (B) Alizarin red staining was used to access the matrix calcium deposition in NC mimics and miR-139-5p mimics
transfected VICs at 15 days after OM induction and the right graph was the percentage of Alizarin red positive area per field (n � 3 wells in each group and three to
four fields per well were counted, the scale bar � 200 μm). Unpaired Student’s t-test, **p < 0.01. (C–E) The expression levels of BGLAP (C), ALPP (D) and RUNX2 (E) in
NC mimics and miR-139-5p mimics transfected VICs were accessed by qRT-PCR and normalized with GAPDH (n � 4 samples from independent wells in each group).
(F,G) The expression levels of FZD4 (F) and CTNNB1 (G) in NC mimics and miR-139-5p mimics transfected VICs were accessed by qRT-PCR and normalized with
GAPDH (n � 4 samples from independent wells in each group). One-way ANOVA, *p < 0.05, **p < 0.01.
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