
RESEARCH ARTICLE

Most Undirected Random Graphs Are
Amplifiers of Selection for Birth-Death
Dynamics, but Suppressors of Selection for
Death-Birth Dynamics
Laura Hindersin, Arne Traulsen*

Department of Evolutionary Theory, Max Planck Institute for Evolutionary Biology, Plön, Germany

* traulsen@evolbio.mpg.de

Abstract
We analyze evolutionary dynamics on graphs, where the nodes represent individuals of a

population. The links of a node describe which other individuals can be displaced by the off-

spring of the individual on that node. Amplifiers of selection are graphs for which the fixation

probability is increased for advantageous mutants and decreased for disadvantageous

mutants. A few examples of such amplifiers have been developed, but so far it is unclear

how many such structures exist and how to construct them. Here, we show that almost any

undirected random graph is an amplifier of selection for Birth-death updating, where an indi-

vidual is selected to reproduce with probability proportional to its fitness and one of its neigh-

bors is replaced by that offspring at random. If we instead focus on death-Birth updating, in

which a random individual is removed and its neighbors compete for the empty spot, then

the same ensemble of graphs consists of almost only suppressors of selection for which the

fixation probability is decreased for advantageous mutants and increased for disadvanta-

geous mutants. Thus, the impact of population structure on evolutionary dynamics is a sub-

tle issue that will depend on seemingly minor details of the underlying evolutionary process.

Author Summary

Evolutionary dynamics describes the spread of individuals with different features within a
population. This spreading process can be strongly influenced by the population structure
—if a highly successful individual can only displace a few neighbors, it may take more time
to spread than an individual that can displace all other individuals from the population. In
particular, a population structure can also amplify the evolutionary success of a type. We
show that almost all random population structures lead to such an amplification. How-
ever, if we change a presumably minor detail of the evolutionary model, almost all random
population structures have the opposite effect and suppress the evolutionary success of a
type. Thus, it is crucial to consider the underlying assumptions of such models when dis-
cussing their possible implications for real biological systems.
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Introduction
In the past years, it has been shown that evolution can be strongly affected by population struc-
ture, extending the classical result that “certain quantities are independent of the geographical
structure of a population” [1]. An approach that became popular in the past decade is to con-
sider population structures described in terms of graphs, where the nodes are individuals
which reproduce (or interact) through the links of the graph [2–6]. It has been shown that all
regular graphs do not change the probability that a mutant will either take over or go extinct
compared to well-mixed populations, which can be described by a fully connected graph [1–3].
This result has been obtained for a microscopic evolutionary process, called Birth-death (Bd)
update, in which first an individual is sampled from the whole population at random, but pro-
portional to fitness, and then its identical offspring replaces a neighboring individual. However,
such results depend on the details of the microscopic evolutionary process [6, 7], which makes
it challenging to disentangle structure from dynamics. Also the temporal dynamics of this pro-
cess has interesting aspects, as amplifiers of selection may slow down the process of fixation
itself [8–10].

Of particular interest are two specific classes of graphs, namely amplifiers and suppressors
of selection. A graph is called an amplifier of selection, if, compared to a well-mixed population,
(i) advantageous mutants have a higher fixation probability on this graph and (ii) disadvanta-
geous mutants have a lower fixation probability on this graph. Effectively, selection is amplified
as mutants on this graph only require a lower fitness difference compared to the wild-type to
obtain the same fixation probability as in the well-mixed population and consequently, drift is
suppressed. Some examples for amplifiers of selection are given in [2], e.g. the star, the super-
star or the funnel.

Conversely, a graph is called a suppressor of selection, if, compared to a well-mixed popula-
tion, (i) advantageous mutants have a lower fixation probability on this graph and (ii) disad-
vantageous mutants have a higher fixation probability on this graph. In [2], examples for
suppressors of selection are mostly source and sink populations, such as one-rooted graphs or
hierarchical tissues [11, 12].

The present study has been triggered by two observations: First, the star graph, which is a
popular and simple amplifier of selection under Bd updating [2, 4, 9], becomes a suppressor of
selection under dB updating, where a random individual is removed and its neighbors compete
for the empty spot proportional to their fitness [13]. Second, for small populations under Bd
updating, all possible undirected graphs are amplifiers of selection, unless they are regular and
thus identical to the well-mixed population in terms of the fixation probability [10].

The complexity of the amplifiers of selection and the simplicity of the suppressors of selec-
tion given in [2] has suggested that it could be easier to construct suppressors of selection than
amplifiers of selection. In fact, it seems typically trivial to construct suppressors of selection (as
one usually focuses on directed graphs to achieve this), whereas to construct amplifiers of selec-
tion seems a much more challenging task (as indicated by the sophistication of structures as
the super-star or the meta-funnel). Does this imply that most population structures do sup-
press selection?

Here, we show that this strongly depends on the update mechanism. For Birth-death update
with a mutant at a random initial position, it turns out that almost all small random graphs are
actually amplifiers of selection. For death-Birth updating, almost all small random graphs turn
out to be suppressors of selection. This shows that it is basically trivial to construct either
amplifiers or suppressors of selection, if the microscopic evolutionary process is not fixed.
However, as most graphs have fixation probabilities close to the well-mixed case [14], these
effects may not be particularly strong and it may be much more challenging to construct strong
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amplifiers of selection. Another interesting observation is that the vast majority of connected
random graphs are either amplifiers or suppressors. It seems to be more challenging to con-
struct a graph that decreases the fixation probability for both advantageous and disadvanta-
geous mutants, but we show that also for this case, a very simple example exists.

Methods
We study the discrete-time Moran process on graphs, as discussed in [2]. Each node of the
graph represents an individual. The outgoing links of a node describe where the offspring of
the focal individual can be placed. The incoming links of a node describe which other individu-
als can place their offspring into the focal node. We restrict ourselves to two types of individu-
als, wild-type individuals with fitness 1 and mutant individuals with fitness r. For 0< r< 1,
mutants are disadvantageous, for r> 1 they are advantageous. We start from a population of
wild-types with a single mutant individual located on a random node of the graph. At each
time step, there is one birth and one death event. We compare two widely used update mecha-
nisms. In the Birth-death update (Bd), an individual is chosen from the whole population with
a probability proportional to its fitness. It reproduces and places its offspring randomly in one
of its neighboring nodes. Thus, selection is global. In the death-Birth update (dB), a random
individual is chosen to die. One of its neighbors is selected with a probability proportional to
its fitness to reproduce into the vacant node. Thus, selection is local.

We do not analyze the case of selection at death (bD, Db) or selection at birth and death
(BD, DB) [7, 15–17]. We first focus on undirected graphs, where all links are bi-directional.
For Bd, the outgoing link weights are given by 1/ki where ki is the number of neighbors of node
i. For dB, this normalization is implemented over the incoming links, such that their sum is 1.
This ensures that replacement is equally probable among the neighbors.

Fixation probabilities in well-mixed populations
In the case of a well-mixed population, which corresponds to a complete graph, we can analyti-
cally calculate the fixation probability, i.e. the chance that a single mutant takes over the entire
population. This function, which should always increase with the mutant fitness r, is given for
any Markov process with a tri-diagonal transition matrix and two absorbing states at 0 and N
by [3, 18, 19]

�M ¼ 1

1þPN�1

k¼1

Qk
j¼1

Tj�
Tjþ

; ð1Þ

where Tj± is the probability to change the number of mutants from j to j±1.
In the case of the Bd update, we have

Tjþ
Bd ¼

jr
jr þ N � j

N � j
N � 1

and Tj�
Bd ¼

N � j
jr þ N � j

j
N � 1

; ð2Þ

where the N−1 implies that we have excluded the possibility that an offspring replaces its par-
ent instead of a neighbor. For the fixation probability of a single mutant in the Bd process, we
find

�M
Bd ¼

1� 1
r

1� 1
rN

: ð3Þ

If we allowed for self-replacement, we would need to replace the N−1 in Eq. (2) by N, but we

would recover the same result, as the ratio Tj�
Bd=T

jþ
Bd ¼ 1=r remains the same. Thus, in
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well-mixed populations the difference is immaterial. In graph-structured populations, where
self-replacement would imply the inclusion of self-loops at all nodes, this issue can be more
intricate. For Bd without self-replacement, it has been shown that for several random graph
models the fixation probability of the random graphs converges to Eq. (3) with increasing
graph size [14].

In the case of the dB update, we find instead

Tjþ
dB ¼ N � j

N
jr

jr þ N � j� 1
and Tj�

dB ¼ j
N

N � j
ðj� 1Þr þ N � j

; ð4Þ

where we have again excluded the possibility of self-replacement. The fixation probability is
now [7]

�M
dB ¼

1

1þPN�1

k¼1

Qk
j¼1

1
r

jrþN�j�1

ðj�1ÞrþN�j

¼ N � 1

N

1� 1
r

1� 1
rN�1

: ð5Þ

In the case of the dB update, the fixation probability is different if we allow for self-replace-
ment. However, for dB it would imply that the removed individual is competing with its neigh-
bors for its own slot. Therefore, the dB rule with self-replacement seems illogical when we
think of the death of individuals. It has however been used in a game-theoretical context as the
so-called imitation updating [20], where a random individual is chosen to imitate the strategy
of one of its neighbors or stick to its own strategy with a probability proportional to fitness.
This update mechanism is obtained from the dB update by adding self-loops to every node of
the graph.

In the following, we exclude self-replacement and analyze how the update mechanisms
change the fixation probability in graph-structured populations. However, when we move to
graphs, we should choose the corresponding well-mixed case as a reference. The difference
between Eqs. (3) and (5), which becomes very small for large N, implies that the reference is
not the same for the two update mechanisms, see Fig 1. For analytical approaches, which are
based on the approximation of large N, this difference is not particularly important. However,
for us this difference can be crucial, as we are focusing on small graphs.

Numerical procedure
We numerically generate a large number of Erdős-Rényi graphs [21] and calculate the fixation
probability for a single mutant introduced at a random node on that graph. The G(N,p)-algo-
rithm [22] generates a random graph with N nodes where each link is independently present
with probability p. We first analyze if the graph is connected, i.e. there are no isolated nodes. If
it is disconnected, the fixation probability is formally zero and the graph is no longer of interest
to our analysis. In a next step, we check for isothermality [2], i.e. whether every node has the
same probability of being replaced. If the graph is isothermal, the fixation probability in the Bd
case is given by that of the complete graph [2]. After creating the random graphs, we calculate
the fixation probability for a single mutant in that respective graph, using the numerical
approach described in [10, 23]. While it is tempting to use the symmetries of the graph to
reduce the number of states, for our computational analysis it is sufficient to be able to number
all states, i.e. if T is the transition matrix of this absorbing Markov chain, we reorder the states
such that the t transient states appear first and the two absorbing states, where all individuals
are either mutants or wild-type, are last. Now the transition matrix is in the so-called canonical
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form,

Tðtþ2Þ�ðtþ2Þ ¼ Q R

0 I

 !
; ð6Þ

whereQt×t contains the transition probabilities between transient states and Rt×2 describes the
transitions from the transient into the two absorbing states. Since the process can never move
out of absorbing states, the lower left block of size 2×t is zero and the lower right block is the

Fig 1. Comparison of Bd and dB update in the well-mixed population. Even in a well-mixed population, Birth-death and death-Birth processes do not
lead to the same fixation probability, cf. Eqs. (3) and (5). This implies that we have to choose a different reference case in order to infer whether graph-
structured populations are suppressors or amplifiers of selection. All fixation probabilities are expected to pass through the shaded region. For Bd updating,
the fixation probability of amplifiers passes through region 1, whereas for dB updating, it passes through 1 or 3. The fixation probability of suppressors for dB
passes through 2, whereas for Bd it passes through 2 or 3. Interestingly, when we directly compare the two well-mixed update processes, dB is a suppressor
of selection compared to Bd—and Bd is an amplifier of selection compared to dB.

doi:10.1371/journal.pcbi.1004437.g001
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identity matrix of size 2×2. Given a starting distribution x1×(t+2), the product x T
m yields the

distribution after exactlym time steps. Form!1, we recover the fixation probabilities.
Summing over the transient part Q, we obtain the so-called fundamental matrix of the Mar-

kov chain F ¼P1
n¼0 Q

n ¼ ðI�QÞ�1. The (i,j)-th entry of F,

Fi;j ¼ ððI�QÞ�1Þi;j ð7Þ

is the expected sojourn time in the transient state j, given that the process started in the tran-
sient state i. Multiplying F with the transition probabilities to the absorbing states provides the
fixation probabilities that are of interest to us here. The fixation probability in state j after start-
ing in state i, ϕi,j, is the (i,j)-th entry of F = F � R,

�i;j ¼ ððI�QÞ�1
RÞi;j: ð8Þ

Our main quantity of interest is the probability of a single mutant, introduced at a random
node, taking over a population of wild-type individuals.

This fixation probability, which we denote by ϕG on a graph G, is a function of the fitness r.
We do not solve the linear system analytically for general r, as this would lead to rational func-
tions of high degrees which are difficult to interpret. Instead, we focus on the five numerical
values r = 0.75, 1, 1.25, 1.5, 1.75. This is enough to classify most graphs as either an amplifier or
a suppressor of selection. Our classification is as follows:

• If ϕG< ϕM for r = 0.75 and ϕG> ϕM for r = 1.25, 1.5, 1.75) Amplifier

• If ϕG> ϕM for r = 0.75 and ϕG< ϕM for r = 1.25, 1.5, 1.75) Suppressor

If neither of these two conditions is true, we call the graph “unclassified”. This can either hap-
pen due to small numerical errors in our implementation in Python or because the graph is
truly neither an amplifier nor a suppressor of selection (see Eq. (14) for an example).

This numerical approach is limited due to the system size of up to 2N states and accordingly
a transition matrix of size up to 2N × 2N. Taking symmetries into account could substantially
decrease this number, but this would need to be done on a case by case basis—an approach
that is not suitable if we focus on a large number of random graphs. Alternatively, we could
perform stochastic simulations of the fixation process and obtain the fixation probabilities
from averaging over many realizations. However, as the fixation probabilities on graphs are
typically close to neutral [14], the precision necessary to classify our graphs requires a very
large number of realizations for each r. In contrast, our numerical approach described above
has to be performed only once for each value of r and does not suffer from any noise which
would arise from averaging over a stochastic process.

Results

Birth-death
In [10], we have shown that all four undirected, degree-heterogeneous graphs of size 4 are
amplifiers of selection. The remaining two graphs, the cycle and the complete graph, are
degree-homogeneous and thus have the same fixation probability as the well-mixed popula-
tion. How does this change when we move to larger graphs? The number of possible graphs is
2N(N−1)/2, i.e. it increases rapidly with N. This combinatorial explosion prevents us from analyz-
ing all graphs systematically. Instead, we apply the procedure described above and focus on
random graphs, using the case of N = 4 to cross-check.
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Let PN be the probability that a graph with N nodes is connected. This probability is given
recursively by [22]

PN ¼ 1�
XN�1

K¼1

N � 1

K � 1

� �
PKð1� pÞKðN�KÞ

; ð9Þ

where P1 = 1. For example, the probability that a graph with N = 4 nodes is connected is P4 =
−6p6 + 24p5 − 33p4 + 16p3.

The probability that a graph is complete is pN(N−1)/2. The probability that a graph of size
N = 4 is a cycle is 3p4(1−p)2. Thus, the probability that a graph of size N = 4 is isothermal is p6

+ 3p4(1−p)2, see Fig 2.
In general, most graphs are disconnected for small p. For p approaching 1, most graphs are

just the complete graph. Fig 2. shows that for Bd updating, the vast majority of graphs are
amplifiers of selection. For larger graphs, there are some graphs that are suppressors of selec-
tion and some that remain unclassified.

Only for p very close to 1 there are isothermal graphs, because e.g. for size 10 it is already
very unlikely that a k-regular graph of degree k< N−1 like the cycle is constructed by chance.
Thus, the proportion of isothermal graphs approaches pN(N−1)/2 when N becomes large.

death-Birth
The star, a popular amplifier of selection under Bd updating, is actually a suppressor of selec-
tion for dB updating [13]. It turns out that a very large proportion of graphs are suppressors of
selection, see Fig 2. Up to size 14, we have not found a single amplifier with our procedure, sug-
gesting that they are extremely rare or do not exist at all.

For N = 4, we find one graph that is neither an amplifier of selection nor a suppressor of
selection. It turns out that this is the cycle, which occurs with probability 3p4(1−p)2. It has been
shown recently [7] that the isothermal theorem does not hold for dB updating. For the cycle of
size N = 4, we can calculate the fixation probability of a randomly placed mutant analytically.
For the transition probabilities, we have

T1þ ¼ 1

2

r
r þ 1

T1� ¼ 1

4
ð10Þ

T2þ ¼ 1

2

r
r þ 1

T2� ¼ 1

2

1

r þ 1
ð11Þ

T3þ ¼ 1

4
T3� ¼ 1

2

1

r þ 1
: ð12Þ

With Eq (1), this leads to

�
�
dB ¼

2r2

3r2 þ 2r þ 3
: ð13Þ

Comparing this to the corresponding well-mixed case �M
dB from Eq. (5), we have

�
�
dB � �M

dB ¼ 2r2

3r2 þ 2r þ 3
� 3r2

4ðr2 þ r þ 1Þ

¼ � r2ðr � 1Þ2
4ðr2 þ r þ 1Þð3r2 þ 2r þ 3Þ :

ð14Þ

Amplifiers and Suppressors of Selection

PLOS Computational Biology | DOI:10.1371/journal.pcbi.1004437 November 6, 2015 7 / 14



Fig 2. Bd and dB update on undirected random graphs. Fixation probability for the Moran process on undirected random graphs for varying probability of
link connection p in Erdős-Rényi graphs. The black line depicts the proportion of connected graphs, given by Eq. (9). In the left panels, the blue line yields the
proportion of isothermal graphs. Since the isothermal theorem does not hold for dB [7], in the right panels the blue line depicts only the complete graphs,
whereas the white line gives the proportion of cycles for N = 4. Left: For Birth-death updating, most non-trivial graphs are amplifiers of selection and only a tiny
fraction are either suppressors of selection or remain unclassified. Right: If the population size is sufficiently large for death-Birth updating, we only find
suppressors of selection. The only “unclassified” graph of sizeN = 4 is the cycle, which is neither an amplifier nor a suppressor of selection for dB, see Eq. (14).

doi:10.1371/journal.pcbi.1004437.g002
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Obviously, we have �ο
dB < �M

dB for any r> 0, r 6¼ 1, which implies that the fixation probability
on the cycle with dB updating is smaller than the corresponding well-mixed population both
for disadvantageous and advantageous mutations. Thus, the cycle with dB updating is neither
an amplifier nor a suppressor of selection (see Fig 3). In the S1 Text, we show that this holds

Fig 3. Comparison of the cycle and the well-mixed population. Top: The cycle for smallN is neither an amplifier nor a suppressor of selection. It
decreases the fixation probability compared to the well-mixed population for both advantageous and disadvantageous mutants. Bottom: The difference
between the fixation probability in the well-mixed population and the cycle increases withN for advantageous mutants. For disadvantageous mutants, all
fixation probabilities tend to zero as the graph size increases.

doi:10.1371/journal.pcbi.1004437.g003
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for general N, i.e.

�M
dB > �

�
dB for r > 0 ð15Þ

and �M
dB ¼ �ο

dB for r = 1. In other words, the cycle with dB updating is a suppressor of fixation
compared to the corresponding well mixed case.

Directed graphs
The examples of suppressors of selection for Bd updating given in [2, 3] are directed graphs,
e.g. the directed line with a fixation probability of 1/N, meaning that selection is completely
eliminated. Another example are so-called source and sink graphs, where fixation in the
upstream population is sufficient for a fixation in the whole graph, which suppresses selection.
To explore the abundance of amplifiers and suppressors of selection on directed graphs, we use
the numerical procedure explained in the Methods section. In addition, we need to check
whether a graph is rooted. If a graph of size N is one-rooted, meaning that there is exactly one
node with in-degree zero and positive out-degree, then the fixation probability is 1/N because
the newly introduced mutant can only reach fixation if it is placed on that root node. On a
multi-rooted graph, the mutant can never fixate, therefore the fixation probability is zero.

In a directed Erdős-Rényi random graph constructed by the G(n,p)-algorithm, each link is
independently present with probability p. Thus, the probability that a node has in-degree zero
is (1−p)N−1, as we exclude self-loops. Therefore the probability that there is at least one node
with in-degree zero is given by

1� ð1� ð1� pÞN�1ÞN : ð16Þ
Fig 4. displays 500 directed random graphs for Bd and dB updating. For dB there are no ampli-
fiers, but almost only suppressors, exactly as in the undirected case. For Bd, we still find some
amplifiers, but also many suppressors of selection, in contrast to the undirected case.

Discussion
We have shown that small random graphs are mostly either amplifiers or suppressors of selec-
tion, depending on the microscopic evolutionary process at stake. It is interesting that very few
structures fall outside this classification, with the cycle under dB updating as a simple example.
Naively, one would expect many more possibilities beyond amplifiers or suppressors of selec-
tion. However, our numerical approach has the potential shortcoming that we cannot entirely
exclude that such cases are misclassified, as we focus on a relatively small number of values for
r to classify the graphs. For example, the fixation probability could in principle have different
asymptotics for large r and it could intersect with the well-mixed case [24]. However, the same
shortcoming would exist if we instead perform stochastic simulations.

Both computational approaches to address the problem have very different characteristics.
The numerical approach is based on the analysis of very large transition matrices (in our case
of N = 14, we consider a matrix of� 2.7 � 108 entries). So increasing N requires substantial
memory and is additionally limited by the chosen numerical precision. On the other hand, it
only needs a single computation for each value of r. The simulation based approach requires
only a minimum of memory and can easily be parallelized on a computer cluster. But as the fix-
ation probabilities are typically very close to the neutral case, a huge number of averages is nec-
essary to reliably distinguish weak amplifiers or suppressors of selection from the
corresponding reference case. An analytical procedure would clearly be desirable, but previous
authors had to focus on certain approximations or rely on strong assumptions such as highly
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symmetrical graphs [7, 14, 25, 26, 27, 28]. Thus, a numerical exploration of this issue, as pre-
sented here, may be helpful to assess the relative proportion of the different graph classes first
and to find illustrative examples that go beyond the classes of amplifiers and suppressors.

The issue of update mechanisms has been analyzed in great depth in the context of evolu-
tionary game theory, where the individuals not only reproduce via the links but also interact
through them, leading to a fitness that depends on the local neighborhood [29–37]. In this
case, it is particularly interesting that the Bd update cannot promote cooperation, whereas the
dB update can [20, 38–40]. Intuitively, the reason for this is that the initial growth of a disad-
vantageous mutant is much more likely for dB than for Bd. A careful comparison based on per-
forming each of these updates with a certain probability shows that the case of only Bd
updating is special, with the result resembling the pure dB updating as soon as a minimum of

Fig 4. Bd and dB update on directed random graphs. 500 directed random graphs are classified into amplifiers or suppressors of selection according to
their fixation probability for one randomly placed mutant. The red line represents the proportion of graphs having at least one node with no incoming links, see
Eq. (16), which is equivalent to the sum of the disconnected, multi-rooted and one-rooted graphs. Technically, one-rooted graphs are also suppressors of
selection, because a randomly placed mutant has a fixation probability of 1/N in such a graph. We visualize them in orange to distinguish them from the other
suppressors. Multi-rooted graphs, given in grey, have a fixation probability of zero. The seven “unclassified” graphs we found for dB updating of sizeN = 4 are
the same as the undirected cycle, in this case given by eight directed links instead of four undirected links. As shown above, the cycle is neither an amplifier
nor a suppressor of selection.

doi:10.1371/journal.pcbi.1004437.g004
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dB updating is used [41]. Here, we have focused entirely on the pure cases to illustrate that
even in the case of constant mutant fitness, which lacks the complexities of game theoretic
interactions, substantial differences in the microscopic evolutionary processes change the way
an ensemble of random graphs affects the fixation of mutants.

An issue that we have not discussed here is where mutants would predominantly arise [31,
41–43]. For example, on a star graph it may be much more likely that a mutant that occurs dur-
ing reproduction is placed in the central node, simply because most reproducing individuals
have only this node as a neighbor. This leads to additional complications, as the classification
of suppressors and amplifiers of selection immediately depends on the microscopic evolution-
ary process and the mode of mutation. Instead of addressing this issue, [42, 44], we have con-
centrated on the fate of a single mutant that is located on a random initial node chosen with
uniform probability.

We have focused entirely on relatively small graphs, whereas most previous studies looked
at much larger population sizes. Concentrating on these small graphs allows to establish clear
classifications and a detailed understanding of particular cases such as the cycle. We expect
that our results can be extended to much larger graphs and to different classes of graphs, but
this will require substantial numerical efforts and possible novel simulation approaches.

To sum up, we have shown that it is trivial to construct weak amplifiers of selection: Almost
all small undirected graphs fulfill these requirements under Birth-death updating. Interestingly,
the same ensemble of random graphs consists entirely of suppressors of selection if we switch
to death-Birth updating. The effect of population structure on evolution, which has by now
been firmly established, remains a subtle issue.

Supporting Information
S1 Text. Proof for Eq. (15).
(PDF)
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