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Expanding the Arterivirus Host 
Spectrum: Olivier’s Shrew Virus 1, 
A Novel Arterivirus Discovered in 
African Giant Shrews
Bert Vanmechelen   1, Valentijn Vergote1, Lies Laenen1, Fara Raymond Koundouno2, 
Joseph Akoi Bore3, Jiro Wada4, Jens H. Kuhn4, Miles W. Carroll5 & Piet Maes1

The family Arteriviridae harbors a rapidly expanding group of viruses known to infect a divergent group 
of mammals, including horses, pigs, possums, primates, and rodents. Hosts infected with arteriviruses 
present with a wide variety of (sub) clinical symptoms, depending on the virus causing the infection and 
the host being infected. In this study, we determined the complete genome sequences of three variants 
of a previously unknown virus found in Olivier’s shrews (Crocidura olivieri guineensis) sampled in Guinea. 
On the nucleotide level, the three genomes of this new virus, named Olivier’s shrew virus 1 (OSV-1), 
are 88–89% similar. The genome organization of OSV-1 is characteristic of all known arteriviruses, 
yet phylogenetic analysis groups OSV-1 separately from all currently established arterivirus lineages. 
Therefore, we postulate that OSV-1 represents a member of a novel arterivirus genus. The virus 
described here represents the first discovery of an arterivirus in members of the order Eulipotyphla, 
thereby greatly expanding the known host spectrum of arteriviruses.

Arteriviruses are a group of viruses assigned to the family Arteriviridae, one of four accepted families within the 
order Nidovirales1. Arteriviruses have positive-sense, single-stranded linear RNA genomes and produce envel-
oped spherical particles2. As of 2017, arteriviruses are known to infect equids (genus Equartevirus), pigs (genus 
Porartevirus), possums (genus Dipartevirus), nonhuman primates (genus Simartevirus), and rodents (genera 
Porartevirus and Nesartevirus)1,3. Several known arteriviruses are capable of causing overt, severe disease2,3. The 
equartevirus equine arteritis virus (EAV) causes mild disease in equids but can also cause severe respiratory dis-
tress, typically in foals, or lead to abortion in pregnant mares4. A comparable clinical presentation, reproductive 
failure or respiratory distress, is seen in neonatal pigs infected with the porarteviruses porcine reproductive and 
respiratory syndrome virus 1 and 2 (PRRSV-1/2)5. The dipartevirus wobbly possum disease virus (WPDV) causes 
an often fatal neurological syndrome in possums6, whereas several simarteviruses (e.g., Pebjah virus [PBJV], sim-
ian hemorrhagic encephalitis virus [SHEV], and simian hemorrhagic fever virus [SHFV]) can cause highly lethal 
hemorrhagic fever in macaques7.

With the exception of simarteviruses, all arteriviruses share a similar genomic organization. The arterivirus 
genome typically is a single 12–16 kb polyadenylated RNA that can be divided into two major regions. The 5′ 
region contains open reading frames (ORFs) 1a and 1b, which, through a combination of ribosomal frameshift-
ing and subsequent proteolytic cleavage of the resulting polyprotein, give rise to the viral polymerase and other 
non-structural proteins2,8. The 3′ region encodes the structural components of the virion. Eight ORFs encode the 
envelope protein (E), five glycoproteins (GP2, GP3, GP4, GP5, and GP5a), the membrane protein (M), and the 
nucleocapsid protein (N). Aside from the function of the proteins they encode, the two regions also differ regard-
ing the mechanisms used for protein expression. Whereas the virus polyprotein is translated directly from the 
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Figure 1.  Organization of arterivirus genomes (updated from3). Arterivirus open reading frames (ORFs) 
are drawn to scale. ORFs 1a and 1b can be joined through a −1 programmed ribosomal frameshift to express 
polyprotein 1a,b. Nonstructural protein 2 transframe fusion product (nsp2TF) is produced through a −2 
programmed ribosomal frameshift by most, but not all, arteriviruses. The plot at the bottom of the figure shows 
the predicted organization of this TF as a transmembrane domain in the case of OSV-1. This plot was made 
using TMHMM server v2.0 (http://www.cbs.dtu.dk/services/TMHMM/). WPDV, wobbly possum disease 
virus (GenBank #JN116253); EAV, equine arteritis virus (NC_002532); APRAV-1, African pouched rat virus 1 
(NC_026439.1); LaDV-1/2, lactate dehydrogenase-elevating virus 1 and 2 (NC_001639 and L13298.1); PRRSV-
1/2, porcine reproductive and respiratory syndrome viruses 1 and 2 (M96262 and NC_001961); RatAV-1, 
rat arterivirus 1 (NC028963); DeBMV-1, DeBrazza’s monkey virus 1 (NC_026509); DMVV-1; Drakensberg 
Mountain vervet virus 1 (NC_029992); KKCBV-1, Kafue kinda-chacma baboon virus 1 (NC029053); 
KRCV-1/2, Kibale red colobus viruses 1 and 2 (HQ845737 and KC787631.1); KRTGV-1/2, Kibale red-tailed 

http://www.cbs.dtu.dk/services/TMHMM/
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genomic RNA, the 3′ region of the genome is used as a template for the generation of a nested set of subgenomic 
negative-sense RNAs, from which subgenomic (positive-sense) mRNAs encoding the different structural proteins 
are transcribed. Unlike other arteriviruses, simartevirus genomes contain a large insertion, located upstream of 
ORF2a, that encodes an additional three or four structural proteins3,9. Although the function of these additional 
proteins remains to be fully elucidated, they have been shown to play an important role in the production of infec-
tious virions10. Furthermore, recent research investigating the coding capacity of the SHFV genome has revealed 
the presence of numerous additional ORFs, showing that the transcriptional organization of arterivirus genomes 
may be more complex than hitherto assumed11.

Here we describe the complete genome sequences of three variants of a novel arterivirus, Olivier’s shrew virus 
1 (OSV-1), detected in the serum of Guinean Olivier’s shrews (Crocidura olivieri guineensis). Our analyses indi-
cate that this arterivirus, the first to be discovered in members of the order Eulipotyphla, represents a member of 
a new arterivirus genus.

Results
Discovery of a novel arterivirus.  In this study, we chose to screen four Olivier’s shrews (Shrews 1–4), 
caught and killed near Guéckédou, Guinea, for any potential viruses they might harbor. None of the animals dis-
played macroscopic signs of disease at the time of their capture (tissues were not examined for pathology due to 
field safety concerns). RNA, extracted from the serum of Shrew 1, was subjected to nanopore sequencing, reveal-
ing the presence of a previously undescribed arterivirus. Subsequently, Illumina sequencing was performed on 
the RNA extracted from Shrew 1 to further correct the arteriviral genome sequence obtained through nanopore 
sequencing. Illumina sequencing was also performed on serum RNA from Shrews 2–4 to test if these animals 
harbored the same virus.

Three out of four serum samples contained arterivirus sequences. For two of the samples (Shrews 1 and 2), 
Illumina sequencing yielded sufficient data to determine the coding-complete genome sequence of the present 
viruses. In the case of Shrew 1, the sequence similarity between the newly generated contig (Illumina sequenc-
ing only) and the corrected nanopore contig (Nanopore + Illumina sequencing) was 100%. In the case of Shrew 
3, insufficient viral data was obtained to assemble a single, full-length contig. Sanger sequencing was therefore 
used to complete the viral genome sequence. The serum from Shrew 4 did not contain any arteriviral sequences. 
In addition to serum, arterivirus RNA could also be detected in harvested shrew heart, kidney, liver, lung, and 
spleen samples of Shrews 1 and 3. In Shrew 2, the virus was only found in serum. Rapid Amplification of 5′ 
cDNA ends (5′ RACE) was used on sera from Shrews 1–3 to complete the arterivirus genome sequences. The 
completed genomes are 13,766 (Shrew 1: variant A, GenBank: MF324848), 13,760 (Shrew 2: variant B, GenBank: 
MF324849), and 13,763 nucleotides (Shrew 3: variant C GenBank: MG264317) long and share 88–89% similarity 
on the nucleotide level. This similarity indicates that the three viruses represent different variants of the same 
virus, here named Olivier’s shrew virus 1 (OSV-1).

Genome organization of Olivier’s shrew virus 1.  The three OSV-1 genomes contain the ten 
arterivirus-typical ORFs 1a/1b, 2a, 2b, 3, 4, 5, 5a, 6, and 7 that encode the arterivirus (poly)proteins pp1a/pp1ab, 
E, GP2, GP3, GP4, GP5, GP5a, M, and N, respectively (Fig. 1)2,3,8. In all previously described arteriviruses, pp1ab 
is expressed via a −1 programmed ribosomal frameshift that joins ORF 1a with the overlapping ORF 1b12. The 
frameshift site typically presents itself as a ‘slippery sequence’ of the form X_XXY_YYZ (with XXX being any 
trinucleotide sequence, YYY being AAA or UUU and Z being an A, T, or C), located a few nucleotides upstream 
of a stable RNA secondary structure8. This motif, starting with the putative −1 frameshift site, was also found in 
OSV-1 (U_UUA_AAC at positions 6,220–6,226, 6,214–6,220, and 6,217–6,223 for variants A–C, respectively).

In addition to the generation of the large polyprotein (pp)1ab, several arteriviruses also use −1 and −2 
programmed ribosomal frameshifting to produce, respectively, a truncated nonstructural protein 2 (nsp2), 
‘nsp2N’, and an nsp2-transframe fusion product (‘nsp2TF’)13. The arterivirus nsp2 gene is a multidomain gene 
that encodes a protein, which, amongst other functions, acts as a proteinase and is involved in the formation 
of replication complexes14. The −2-ribosomal frameshift within this gene results in the replacement of the two 
3′-terminal domains, a transmembrane domain and a cysteine-rich region, by a different transmembrane domain 
encoded in an alternative reading frame in the nsp2 region of ORF1a. Knockout of nsp2TF is known to result in 
reduced viral fitness, and recent work demonstrated that both nsp2TF and nsp2N are involved in suppressing host 
innate immune responses during PRRSV-1/2 infections15,16. In the case of PRRSV-1/2, this −1/−2 frameshifting 
occurs at a conserved G_GUU_UUU motif, followed by a CCCANCUCC motif a few nucleotides downstream15. 
Minor variants of these two motifs can be found in the genomes of all arteriviruses with the exception of equar-
teviruses (EAV)17. In the genomes of OSV-1 variants A–C, slightly altered versions of these two motifs are present 
(G_GUU_UUC, CCCCGGUCC) in the vicinity of a TF encoding a transmembrane domain (Fig. 1 bottom). This 
TF is located approximately at the same position as the TF found in other arteriviruses (overlapping the nsp2 
transmembrane domain). Whether or not it is functional remains to be experimentally established.

Besides the ORF 1a- and 1b-derived pp1a and pp1ab, the OSV-1 genome also encodes at least eight smaller, 
structural proteins, including the arterivirus-typical E, M and N proteins and glycoproteins GP2–GP5 and GP5a. 

guenon viruses 1 and 2 (JX473849 and JX473847); MYBV-1, Mikumi yellow baboon virus 1 (NC_025112.1); 
PBJV, Pebjah virus (KR139838); SHEV, simian hemorrhagic encephalitis virus (KM677927); SHFV, simian 
hemorrhagic fever virus (NC_003092); SWBV-1, Southwest baboon virus 1 (NC_025113.1); ZMbV-1, 
Zambian malbrouck virus 1 (KT166441); OSV-1, Olivier’s shrew virus 1 (MF324848). Four additional murid 
porarteviruses that have not yet been described are identified by GenBank accession numbers only.
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The additional set of ORFs characteristic of simartevirus genomes (ORFs 2a′, 2b′, 3′, and 4′) is not present in the 
OSV-1 genome.

Phylogenetic analysis of Olivier’s shrew virus 1.  Bayesian phylogenetic analysis of representative 
genome sequences of all known arteriviruses using the deduced ORF 1b amino acid sequences groups OSV-1 
variants A–C together in a distinct lineage within the family Arteriviridae (Fig. 2). Pairwise sequence comparison 
of the complete OSV-1 variants A–C genomes, using the US National Center for Biotechnology Information 
(NCBI) PAirwise Sequence Comparison (PASC) tool18, shows 87.89–89.39% pairwise identity between the three 
variants and identifies PRRSV-1 as the closest related virus. OSV-1 variant A is most closely related to PRRSV-1 
isolate CReSA70 (GenBank: KX249752), whereas variants B and C are most closely related to PRRSV-1 isolate 
CReSA46 (GenBank: KX249751). The pairwise identities are 34.01% (variant A), 33.49% (variant B), and 33.92% 
(variant C), respectively (Fig. 3). The latest accepted proposal of the International Committee on Taxonomy of 
Viruses (ICTV) for arterivirus classification mandates 39–41% and 71–77% pairwise identities to be the most 
appropriate genus and species demarcation cut-offs3,19. As both phylogenetic inference and pairwise sequence 

Figure 2.  Maximum clade credibility tree of arteriviruses representing all currently known species based 
on the sequence of ORF 1b. Phylogenetic inference using Bayesian phylogenetics shows that OSV-1 variants 
A–C (marked in red) cluster together but are separate from other arteriviruses. The numbers at the different 
nodes indicate the posterior probabilities of the accuracy of loci, given the used data and chosen model and 
parameters. The tree is drawn to scale, with branch lengths representing the number of substitutions per site. 
GenBank accession numbers of all used sequences are included in brackets. *Previous designation (C/P) of 
lactate dehydrogenase-elevating virus strains 2/1. †As of now, these viruses have not yet been described and are 
known only as ‘rat/rodent arterivirus(es)’.

Figure 3.  Pairwise sequence comparison analysis of arterivirus genomes, including the newly discovered 
three complete genome sequences of Olivier’s shrew virus 1 (OSV-1) variants A–C, using the NCBI PASC tool 
(https://www.ncbi.nlm.nih.gov/sutils/pasc)18. Pairwise similarity between the three sequences ranges from 
87.89–89.39% (marked in grey), indicating all three sequences belong to viruses that ought to be classified in the 
same species. Pairwise similarity with the closest related virus, porcine reproductive and respiratory syndrome 
virus 1 (PRRSV-1), ranges from 33.49–34.01% (marked in red), indicating the need for the establishment of a 
new arterivirus genus and species. Color coding was modified to accurately represent the current taxonomic 
organization of the family Arteriviridae, using 39–41% and 71–77% as genus and species cut-offs, respectively.

https://www.ncbi.nlm.nih.gov/sutils/pasc
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comparison indicate that OSV-1 clearly diverges from established arterivirus genera, we propose the creation of 
a new genus and species to which OSV-1 can be assigned.

Discussion
We tested four Olivier’s shrews caught and killed in Guinea for potential infection with previously unidentified 
viruses. Serum from three of these animals tested positive for a yet undescribed arterivirus. Using a combination 
of different sequencing methods, we determined the complete genome sequence of three variants of this virus, 
which was given the name Olivier’s shrew virus 1 (OSV-1). As illustrated by both PASC and phylogenetic infer-
ence, OSV-1 strongly diverges from other, previously known arteriviruses, warranting the establishment of a new 
genus within the family Arteriviridae.

The current nomenclature of arterivirus genera (Dipartevirus, Equartevirus, Nesartevirus, Porartevirus, 
Simartevirus) is based on the contraction of a short prefix referring to the viruses’ hosts (Diprodontia, 
Equidae, Nesomyidae, porcine and rodent, and simian, respectively), and the suffix -artevirus (a contraction of 
Arterivirus)3,19. Following this guidance, we propose that OSV-1 be assigned to a new genus, named Crocartevirus 
(Oliver’s shrews are members of the soricid subfamily Crocidurinae).

Prior to euthanasia, all shrews screened during this study appeared to be in good health and had no macro-
scopic signs of disease. In two shrews, OSV-1 was found in all tested organs (heart, liver, lung, kidney, and spleen) 
in addition to serum, indicating systemic subclinical infection. In the third shrew, OSV-1 was detected only in the 
serum. A potential explanation for this could be that infection was still in an early phase, and the virus had not 
yet disseminated to different organs. Whether infections of Olivier’s shrews with OSV-1 remain subclinical or can 
give rise to overt disease remains to be established.

Since we only tested four shrews, speculation on the general distribution of OSV-1 in shrew populations is 
difficult. The animals studied here were caught over the course of a week in three different locations within a 4-km 
radius. Because of the distance between the different trapping locations, albeit limited, animals were unlikely to 
infect each other. This assertion is also corroborated by the substantial sequence divergence between the different 
virus variants identified here (>10%). Furthermore, as three out of four shrews tested harbored the virus, a rea-
sonably high prevalence is conceivable. Determining the host range of OSV-1 is of interest, as it is possible that the 
virus can infect crocidurine shrews other than Olivier’s shrews. Alternatively, as OSV-1 represents the first eulipo-
typhlan arterivirus, a wide variety of distinct arteriviruses could exist in shrews and their relatives (e.g., desmans, 
hedgehogs, moles, moonrats, and shrew moles). In fact, the relatively recent discovery of WPDV in Australian 
brushtail possums (Trichosurus vulpecula) in New Zealand6 and this discovery of OSV-1 suggest the possibility 
that arteriviruses infect animals of all mammal branches globally. In addition, induction of overt disease may be 
the exception rather than the rule.

Materials and Methods
Ethics statement.  This study was approved and supervised by the KU Leuven Animal Welfare Body (KU 
Leuven LA1210186) in compliance with Guinean, Belgian and European statutes and regulations relating to ani-
mals and experiments involving animals.

Sample collection.  For routine pest control in a domestic setting, small animals were trapped and killed 
in February 2016 near Guéckédou (Nzérékoré Region, Guinea). Among the killed mammals were four animals 
thought to be African giant shrews (Eulipotyphla: Soricidae: Crocidurinae: Crocidura olivieri), based on a close 
examination of their external features. This initial assessment was confirmed by sequencing the cytochrome B 
gene of these animals and comparing the resulting sequences to known shrew cytochrome B genes using blastn 
(data not shown)20. Several organs (hearts, lungs, spleens, kidneys, and livers) and serum were collected from all 
four animals (Shrews 1–4) for further analysis.

Virus genome sequencing.  Collected organs and serum were subjected to viral RNA extraction using the 
RNeasy Mini kit (QIAGEN Benelux, Venlo, Netherlands) according to the manufacturer’s instructions. No infec-
tions or work with infectious viruses was performed. Consequently, all experiments after initial animal capture 
and processing in the field was performed at biosafety level 1. Serum RNA from Shrew 1 was selected for nanopore 
sequencing using the Oxford Nanopore MinION (Oxford Nanopore Technologies, Oxford, UK). The extracted 
RNA was amplified by whole-transcriptome amplification (WTA2; Sigma-Aldrich, St. Louis, MS, USA), and the 
resulting WTA product was used in combination with the SQK-LSK108 kit (Oxford Nanopore Technologies) to 
prepare the MinION sequencing library. A total of 244 ng of cDNA was prepared for sequencing according to 
the manufacturer’s ‘1D genomic DNA by ligation’ protocol with the omission of the initial DNA-shearing step. 
The resulting sequencing library was loaded onto a R9.4 flow cell supplied by the manufacturer and run for 7.5 h. 
Non-viral reads were filtered out with the use of tblastx20. The remaining reads were assembled using Canu21, 
resulting in a single 13-kb contig.

In addition, total RNA extracted from all sera (Shrews 1–4) was amplified by whole-transcriptome ampli-
fication (WTA2; Sigma-Aldrich). The resulting cDNAs were prepared for Illumina NextSeq 500 sequenc-
ing (Illumina, Hayward, CA, US) using the Nextera XT DNA library preparation kit (Illumina), according to 
the manufacturer’s instructions. De novo assemblies of the generated data were made using CLC Genomics 
Workbench (v10.0.1; QIAGEN). DIAMOND was used to identify the resulting contigs22. Illumina data for Shrew 
1 were used to further correct the Shrew 1 contig previously obtained by nanopore sequencing.

Due to the limited yield of arterivirus sequence reads in the case of Shrew 3 using the Illumina approach, we 
decided to use Sanger sequencing for genome sequence completion. We developed a set of degenerate primers 
based on the genomes of the arteriviruses found in Shrews 1 and 2. This primer set was used in combination with 
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the OneStep RT-PCR kit (QIAGEN) to amplify the complete viral genome in a series of amplicons. The resulting 
PCR products were purified with ExoSAP-IT (Affymetrix, High Wycombe, UK) and prepared for sequencing 
using the BigDye Terminator v3.1 Cycle Sequencing Kit (Applied Biosystems, Carlsbad, CA). All Sanger sequenc-
ing was performed on an ABI Prism 3130xl Genetic Analyzer (Thermo Fisher Scientific, Waltham, MA, US). 
Open-source Chromas (v2.6.2, Technelysium, South Brisbane, AU) was used to inspect the resulting chromato-
gram files. In a second sequencing round, the sequences obtained from these amplicons were used to generate 
new, complementary primer sets to replace the degenerate primer sets that failed to generate amplicons. Finally, 
Seqman (v7.0.0, Madison, WI) was used to join all amplicon sequences. All used primer set sequences and PCR 
conditions are available on request.

Determination of terminal virus genome sequences.  The 5′/3′ RACE kit 2nd generation (Roche, 
Mannheim, DE) was used to generate poly-A-tailed cDNAs of genomic 5′ ends. These poly-A-tailed cDNAs were 
further amplified using the OneStep RT-PCR kit (QIAGEN) and the following PCR conditions: 15 min at 95 °C, 
40 cycles of 30 s at 94 °C, 30 s at 56 °C, 1 min at 72 °C, and a final 10-min extension step at 72 °C. A second primer 
set was used to further amplify 2 µl of the resulting PCR product using the same reaction conditions (annealing 
temperature: 61 °C). Sanger sequencing of the obtained PCR products was performed as described above. After 
inspecting the chromatogram files using Chromas (v2.6.2), the resulting sequences were joined with the rest of 
their respective genome sequences using Seqman (v7.0.0).

Phylogenetic analysis.  Deduced ORF 1b amino acid sequences of all known arteriviruses were aligned 
using the Multiple Alignment Program for Amino Acid or Nucleotide Sequences (MAFFT, v7.123b)23. After trim-
ming with trimAL (1.2rev59)24, the resulting multiple sequence alignments were manually edited in MEGA725. 
Bayesian phylogenetic trees were inferred with Bayesian Evolutionary Analysis by Sampling Trees (BEAST) 2 
using a Whelan Goldman (WAG) model to describe the amino acid substitution process26. The Markov chain 
Monte Carlo analyses were run until adequate effective sample sizes (ESS > 200) were obtained. A maximum 
clade credibility tree was summarized from the posterior tree distribution with TreeAnnotator (v2.5.4) using a 
burn-in of 10%, and visualized with FigTree (v1.4.3)26. The NCBI PASC tool18 was used to assess the classification 
of the discovered arterivirus variants within the family Arteriviridae.

Data availability.  All data generated during this study are included in this published article or in the refer-
enced GenBank entries.
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