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Abstract: Waste management plants are one of the most important sources of odorants that may
cause odor nuisance. The monitoring of processes involved in the waste treatment and disposal as
well as the assessment of odor impact in the vicinity of this type of facilities require two different
but complementary approaches: analytical and sensory. The purpose of this work is to present these
two approaches. Among sensory techniques dynamic and field olfactometry are considered, whereas
analytical methodologies are represented by gas chromatography–mass spectrometry (GC-MS), single
gas sensors and electronic noses (EN). The latter are the core of this paper and are discussed in details.
Since the design of multi-sensor arrays and the development of machine learning algorithms are the
most challenging parts of the EN construction a special attention is given to the recent advancements
in the sensitive layers development and current challenges in data processing. The review takes also
into account relatively new EN systems based on mass spectrometry and flash gas chromatography
technologies. Numerous examples of applications of the EN devices to the sensory and analytical
measurements in the waste management plants are given in order to summarize efforts of scientists
on development of these instruments for constant monitoring of chosen waste treatment processes
(composting, anaerobic digestion, biofiltration) and assessment of odor nuisance associated with
these facilities.

Keywords: electronic nose; machine learning; gas sensors; monitoring networks; olfactometry;
GC-MS; odor impact assessment; waste management plants

1. Introduction

Waste management plants are well known for their significant impact on environment
and human lives [1]. Processes related to management, treatment and disposal of wastes
are potential sources of harmful compounds emissions into the water, soil and air [1–3].
Concerning emissions into the air following substances may be considered as a threat:
CO, CO2, CH4, NH3, NOx, H2S, HCl, HF, dioxins, furans, PAHs and VOCs [3,4]. Many
of these compounds are odorants and literature shows that their emission is one of the
most significant problems associated with waste management plants. Indeed, prolonged
exposure of inhabitants living in the neighborhood of this type of facilities can deteriorate
their living quality by causing odor nuisance [5–8]. Moreover, increase in the amount of
generated wastes, resulting from the development of societies, will cause growth in number
of waste management plants and thus, intensification of waste treatment and disposal
processes [2,5,6,9]. As a result, more people will be exposed in the future to excessive
emission of odorants caused by waste management.
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As shown on Figure 1, the waste management system is based on several steps and
each one of them can be a potential source of odorants, i.e., collection, transport, treat-
ment and disposal of wastes (mechanical-biological treatment facilities, composting plants,
landfills, waste incinerators) [10–13]. The first step in the waste management chain is the
collection of wastes by residents at households and residential areas and their transport by
specialized vehicles to the adequate facilities for treatment and disposal. Collected wastes
can be transported directly to their final destination or temporary stored at a waste transfer
station. Among the disposal and treatments methods the most advanced technologically is
the mechanical-biological treatment (MBT) of wastes. The main purpose of the MBT is to
recover useful materials (e.g., biogas, compost) and reduce the amount of wastes directed
for landfilling. The MBT facilities are probably the most important odor sources along
the waste treatment chain, mainly due to the employment of biological methods of waste
decomposition, i.e., composting (aerobic treatment) or/and fermentation (anaerobic treat-
ment). The latter process is crucial for emission of odorous substances [2,7,9]. Moreover,
chemical composition of those volatile mixtures can vary depending on the type of waste
being processed, the stage of waste decomposition, the selected treatment method and its
operating conditions, i.e., temperature, humidity or aeration [4,10,14]. The way that every
step in waste management system is carried out can vary on national, regional and local
scales [13].

Figure 1. Simplified scheme of waste management system, based on [10–13].

Literature provides information on the chemical composition of odorous mixtures
emitted from different stages of waste management (Table 1). Those odorants can be
divided into several chemical groups, i.e., sulfur compounds, nitrogen compounds, hy-
drocarbons (unsaturated and saturated), aromatics, terpenes, halogenated compounds,
volatile fatty acids, carbonyls, and alcohols. The variety of these substances as well as the
complexity of waste management processes constitute a serious challenge in the moni-
toring of emitted odorants and odors, which requires two different but complementary
approaches: analytical (e.g., GC-MS, gas sensors) and sensory (e.g., dynamic olfactometry),
respectively [15].

In dynamic olfactometry the determination of odor concentration, expressed in ou/m3,
is achieved by presenting a sample to a panel of trained persons according to specific proce-
dures (e.g., PN-EN 13725) [16]. However, information about its chemical composition can
not be delivered from these measurements. On the contrary, GC-MS method gives concen-
trations of individual odorants, expressed in ppb or ppm, but this tells us very little about
the perceived odor or interactions between odorants in the investigated mixture [17–19].
An interesting approach is to combine GC-MS with a sniffing port (GC-O-MS) so each
chemical component of the analyzed odor is led to a human nose for evaluation. However,
still, information about the total odor concentration or odorants complicated interactions
can not be achieved with this method [20,21].
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Table 1. Chemical composition of odorous mixtures from different stages of waste management.

Stage of the Waste Management List of Detected Substances References

Collection and transport

ethanol, dimethyl sulfide, methyl mercaptan, dimethyl
disulfide, propylene, ethyl acetate, NH3, methacrolein,
benzene, toluene, ethylbenzene, methyl chloride and
m-,p-xylene

[7,22–24]

Waste transfer stations
ethanol, methyl mercaptan, dimethyl disulfide, H2S,
propanal, m,p-xylene, methacrolein, acrolein, NH3, ben-
zene, toluene, acetaldehyde, acetic acid, and butyric acid.

[23,25–27]

MBT facilities acetic acid, butyric acid, valeric acid, isovaleric acid, and
dimethyl sulfide [28]

Landfills

H2S, methanethiol, dimethyl disulfide, carbon disulfide,
diethyl disulfide, benzene, NH3, ethyl acetate, ethyl-
benzene, p-ethyltoluene, n-hexane, 1,2-dichlorobenzene,
trichloroethylene, styrene, m-xylene, toluene, p-xylene,
acetone, methanol, n-butanone, acetic acid, and 2-
octanone

[29–31]

Single gas sensors are relatively cheap and simple to use [32]. For the waste man-
agement plants specific analyses of H2S and NH3 are of high interest. However, odorous
samples are usually composed of hundreds of different molecules and since, it is difficult
to fabricate selective sensors for each one of them, this method may not take into account
all prevailing substances. Multi-sensor arrays can cover wide spectrum of substances due
to the unspecific sensors. After training with the GC-MS technique they have the potential
to continuously provide information on the chemical composition of odorous samples.
Moreover, training with olfactometry measurements is also possible. The measured odor
concentrations are in this case expressed in ou/m3 [33]. Both, single gas sensors and
multi-sensor arrays can be applied on site for the constant monitoring of air quality [34].
Construction of an EN is a challenging task and can be affected by many factors, mainly
associated with the selection of sensors, development of models and quality of data used
for their training.

Table 2 summarizes the sensory and analytical measurement methods. It is hard to
compare these techniques since each one of them provide different type of informations.
Therefore, choice of the appropriate method has to be made on a case by case basis de-
pending on the specific needs. An advanced way to analyze odorous substances is to
combine olfactometry, GC-MS and EN as complementary approaches to a given task and
thus, obtain maximum informations on the analyzed samples [35].

Table 2. Odor measurement methods and their limitations regarding sensory and chemical detection.

Measurement Method Chemical Sensory Continuous

Olfactometry no yes no
GC-MS yes no no
GC-O-MS yes partially no
Single sensors yes no yes
E-nose (training with GC-MS) yes no yes
E-nose (training with olfactometry) no partially yes

The next sections provide description of different methods discussed briefly above.
Olfactometry, GC-MS, GC-O-MS and single gas sensors are presented in Sections 2 and 3.
Examples of applications of these techniques to the waste treatment plants are given.

Electronic noses are the core of this review and are described in details in Section 4.
A special attention is given to the gas sensors used for EN systems construction. Indeed,
different types of detectors are discussed and current trends in sensitive layers development
are described. Additionally, relatively new EN based on flash GC technology are consid-
ered as recent studies showed that they are suitable for monitoring of odorous samples
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from landfills [36]. Data pre-processing and classification methods are addressed as well.
Algorithmic solutions to common problems associated with EN (e.g., signal drift, ambient
temperature changes) are given and current challenges in data processing are discussed.
At the end of this section examples of commercially available EN are listed with special
attention to devices dedicated to the odorous samples investigations. Although several
reviews on EN has been published recently [37–39], they focus usually on devices made
of gas sensors. We took into account EN based on other technologies and compared them
with classical approach.

Examples of applications of EN for analytical and sensory measurements in the waste
management plants are given in Sections 5 and 6. A few review papers summarize efforts of
scientists on development of EN for odor impact assessment [39–41]. Although, examples
of applications of these devices to the waste treatment plants appeared in these papers,
they represented just a small part of the discussion. The present survey focus solely on
EN used for the odor impact assessment in the vicinity of these facilities and thus, fully
exhaust the topic.

Some authors tried also to review the problem of different processes monitoring using,
among many others, EN, e.g., anaerobic digestion [42] or composting [43]. Once again EN
represented just a small part of a bigger picture and thus, only few examples of application
of these devices were listed in mentioned papers. Our review focuses on EN development
for the monitoring of the mechanical-biological treatment of waste and presents numerous
examples of applications of these devices for the investigation of composting, anaerobic
digestion or bio-filtration processes.

In summary, this review describes efforts of scientists on development of EN and
their applications for odor impact assessment in the vicinity of waste management plants
and monitoring of odorants emitted during mechanical–biological treatment of waste.
Therefore, the paper presents two approaches to the problem of the odorous mixtures
investigation with electronic noses: a sensory and analytical one.

2. Sensory Measurements
2.1. Dynamic Olfactometry

Sensory measurements employ a panel of human noses in conjunction with the ol-
factometer–an instrument which dilutes analyzed sample with odor-free air, in order to
determine odor concentration. Two standardized methods of sample presentation to the
panel are applied: forced choice and yes/no method. In the first one two sniffing ports are
used but the odor sample is presented only at one of them. The examiner has to choose the
port from which she/he perceives the odor. In the second method examiner sniffs from a
single port and communicates if an odor is detected or not [16,44,45].

Odor mixtures at different dilutions are presented to examiners for sniffing usually in
an ascending order. The process continues until each person positively detects an odor in
the diluted mixture which means that the panel has reached the detection threshold for that
odor [16]. The threshold is calculated as the geometric mean between the dilution of the
last negative answer and the dilution of the first positive answer. The odor concentration
(C) is expressed as the dilution required for achieving the panel detection threshold and
can be described with the equation:

C =
Vod + Vf

Vod
(1)

where Vod is the volume of odorous sample and Vf is the volume of air required to reach
the threshold. By analogy, for a dynamic olfactometer the concentration is given by:

C =
Qod + Q f

Qod
(2)
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where Qod is the flow of odorous sample and Qf is the flow of odor-free air required to
reach the threshold. The concentration is usually expressed in ou/m3 [16].

Since the sensitivity to odors is variable among people, the examiners could measure
different odor concentrations for the same sample. This effect is minimized by a care-
ful selection of assessors with average olfactive sensitivity according to a standardized
procedure [16]. The selection of examiners is performed using a reference odorant, usually
n-butanol. Only persons with average n-butanol odor threshold in the range of 20–80 ppb
and the antilog standard deviation for individual responses less than 2.3 are selected. Ex-
aminers must be continuously tested, trained and obey a simple behavior code (e.g., no
smoking before measurements, exclusion from measurements during illness caused by
cold, etc.) [16].

The panel referability to the standard odorant and the coherence of panel responses
determine the quality of olfactometric measurements. In order to guarantee the referability,
the laboratory performances are evaluated by accuracy and precision measures. The
coherence of panel results is assured by a validation procedure that indicates panel member
who gives invalid responses. If the threshold value given by an examiner does not meet
certain criterion, then all measures provided by this person must be eliminated [16].

Except for the odor concentration other parameters can be measured with olfactometry
as well, namely odor intensity and hedonic tone. Perceived odor intensity is the relative
strength of the odor above its detection threshold. The intensity is usually represented
by some kind of a category scale (i.e., weak, strong), by subjective magnitude estimates
(i.e., odor X is twice as strong as odor Y) or by reference to a specific odorant, whose
concentration is adjusted until both, the reference and analyzed sample have the same
perceived intensity [46]. Usually, the panelists must assess the odor intensity of the sample
according to a specified category scale. The most commonly applied scale counts seven
categories from “no odor” to “extremely strong odor” [47].

Odor concentration and intensity are related. The perceived intensity increases with
increasing odor concentration. Two models have been proposed to explain relation between
those two parameters. The Weber–Fechner one produces a linear plot of intensity against
log concentration:

I = a · log C + b (3)

Steven’s law turns-out a linear plot of log intensity against log concentration:

I = k · Cn (4)

where I is the intensity, C the odorant concentration and a, b, k, n are the constants. The
choice of the model depends on the representation of odor intensity. When category scale
is used, the Weber–Fechner law shall be applied. When magnitude or reference scales are
used, Steven’s law gives better results [46].

Hedonic tone defines the pleasantness and unpleasantness of an odor and is evaluated
according to a category scale ranging from −4 (extremely unpleasant) through zero (neither
pleasant nor unpleasant) to +4 (extremely pleasant) [47]. The hedonic tone and intensity
can be used as parameters for odor impact and odor annoyance assessment by residents
living in the neighborhood of industrial activities [48].

Dynamic olfactometry is used to characterize odor emission sources and requires
collection and transportation of the samples to the laboratory. For this reasons this technique
is not sufficient to asses the odor impact on citizens living in the vicinity of an odor
source. Therefore, the application of dynamic olfactometry requires combination with
dispersion modelling [49,50]. These mathematical models merge olfactometry results with
meteorological and geographical data and calculate how the emitted odor is transported
through the air to the people living in the neighborhood of a particular odor source [51,52].
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2.2. Field Olfactometry

The field olfactometer is a portable device that allows to evaluate odors concentra-
tions on site which is the main advantage of this technique as compare to the dynamic
olfactometry [53]. A field olfactometer creates a series of dilutions by mixing the odorous
ambient air with odor-free (carbon-filtered) air. Number of dilutions needed to make
the odorous ambient air non detectable is defined as the Dilution-to-Threshold ratio [54].
Therefore, field olfactometry does not provide directly a measure of the odor concentration
in ou/m3. Disadvantages of this technique include: odor fatigue (it is difficult not to expose
the examiner to the odorous environment before the olfactometer is actually used), lack
of dilution options and inability to test examiners with a reference odorant. Besides, it is
difficult to remain objective when seeing sources of odor emissions.

2.3. Examples of Application of Sensory Measurements to the Waste Management Plants

Olfactometry is widely used for odor impact assessment in the vicinity of waste
management plants. For example, a facility characterized by nine point and one area
(landfill) odor sources was investigated recently [52]. Odor concentrations were measured
by dynamic olfactometry and dispersion modelling was performed for two scenarios.
In the first one both, the area and point emission sources are taken into consideration.
Second scenario was conducted only for the point sources. It was concluded that the
landfill is mainly responsible for odor nuisance caused by the plant and that closing this
particular odor source will significantly improve air quality nearby. Indeed, dynamic
olfactometry in combination with dispersion models is a useful tool for the optimization
of odor mitigation strategies [55], but a great care must be taken when developing these
models as recent studies suggest that modeling choices may lead to a variance in the
resulting odor concentrations at receptors differing by up to a factor 3 [56].

Field olfactometry measurements can also be used as input variables in odor distribu-
tion modeling. The application of this method was demonstrated recently on a case study
of a municipal landfill [53]. Moreover, local planning strategies based on odor dispersion
modelling were proposed in order to improve air quality in the vicinity of the facility.

Gutiérrez et al. [57] showed that dynamic olfactometry may be used not only to
feed dispersion models, but also to monitor composting process. Authors measured odor
concentrations emitted during the composting of organic fraction of municipal solid wastes.
Good correlation between odor concentration and traditional (i.e., physical-chemical and
respirometric) variables was achieved. Moreover, olfactometric detection limit and the
compost respirometric stability were reached simultaneously, suggesting that olfactometry
is a sufficient and simple method to assess compost stability.

Dynamic olfactometry may also be used as a tool for evaluation of the efficiency
of purifying odorous gases by bio-filtration [58,59]. Measurement of concentrations of
individual pollutants by means of GC-MC does not always allow to assess the degree of
olfactory pollution. Therefore, dynamic olfactometry is a very useful tool for this purpose
since it allows to determine the degree of total deodorization efficiency. Efficiency of two
filters, i.e., mineral and organic one was compared recently. Odor reduction of respectively
60.8% and 97.2% was achieved. An important aspect of this research was the evaluation of
hedonic quality of analyzed samples since organic filters themselves are characterized by
an intense natural odor [58].

Wiśniewska et al. [60] investigated odor nuisance in the close vicinity of a biogas plant
by means of field olfactometry. Obtained results were compared with H2S and (CH3)2S
analytical concentrations measured by portable GC-PID detector. Odor concentration
values were in line with odorants content in the investigated samples and strongly related
to the concentration of H2S. Authors noted also a strong relationship between odor nuisance,
technological process used in the plant and the type of treated waste. These results suggest
that field olfactometry is an appropriate method of process control carried out in biogas
plants. Presented above applications are summarized in Table 3.
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Table 3. Examples of recent applications of sensory measurement in the waste treatment plants.

Application Methodology Main Outcome of the Work Ref.

Odor impact
assessment

Dynamic olfactometry, “Op-
erat Fb” dispersion model

Landfill was mainly responsible for odor nuisance
caused by the waste management plants [52]

Odor impact
assessment

Dynamic olfactometry,
CALPUFF dispersion model

Dispersion models are efficient tools for odor miti-
gation strategies investigation [55]

Odor impact
assessment

Dynamic olfactometry,
CALPUFF dispersion model

Modeling choices may lead to a variance in the
resulting odor concentrations [56]

Odor impact
assessment

Field olfactometry, CALPUFF
dispersion model

Exposure to odor nuisance is an important factor
in urban areas management and planning [53]

Composting
process
monitoring

Dynamic olfactometry (sup-
ported by physical-chemical
and respirometry measure-
ments)

Dynamic olfactometry is a sufficient and simple
method to assess compost stability [57]

Monitoring
of anaerobic
digestion
process

Field olfactometry (supported
by GC-PID)

Field olfactometry can be used for both, odor im-
pact assessment and monitoring of anaerobic di-
gestion processes

[60]

(Bio)filtration
efficiency
assessment

Dynamic olfactometry Organic filter presents higher deodorization effi-
ciency than mineral one [58]

3. Analytical Measurements
3.1. GC-MS

Identification of individual odorants is difficult without using a separation technique.
Therefore, gas chromatography is frequently applied for this task, and is often coupled
with mass spectrometry (GC-MS). The latter allows identification and quantification of the
species present in the analyzed sample. Since level of some odorants can be as low as ppb
or even ppt, the pre-concentration techniques are commonly used before the actual analysis
(e.g., adsorption of the odorants on active carbons followed by thermal desorption) [61].
The GC-MS technique gives informations that are fundamental to evaluate the impact of
emitted compounds on the environment and human health. In the same time, GC-MS
measurements are expensive, time-consuming and not suitable for on site applications.

It is also very difficult to relate the chemical composition of an odorous mixture to its
odor concentration. One approach is to calculate the odor activity value (OAV) defined as
the sum of the ratio between the chemical concentration of each compound in the mixture
and its odor threshold concentration [41]:

OAV =
n

∑
i=1

Ci
OTi

(5)

where OAV is the odor activity value (ou/m3), Ci is the concentration of the compound i
(mg/m3) and OTi is the odor threshold of the compound i (mg/ou).

Indeed, this method allows to estimate the odor concentration in the case of samples
containing few odorants but real samples are usually very complex and odor concentrations
calculated through OAV can be highly imprecise [62,63]. One source of misleading results
is the difficulty of obtaining reliable odor threshold values. Sometimes literature screening
gives OT values for a given odorant that differ by several orders of magnitude [64]. More-
over, different types of interactions between compounds may occur (synergic or masking
effects), resulting in odors that can be hardly related to the chemical composition [65].

3.2. GC-O-MS

GC-O-MS combines two techniques: olfactometry and gas chromatography coupled
with mass spectrometry. After separation the eluted flux is divided between the MS detector
and the olfactory port for the chemical and sensory evaluation, respectively [66,67]. This
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technique provides detailed information on individual odorants presented in the analyzed
mixture and allows to estimate their relative influence on the total odor of the sample. In the
same time, the olfactory properties of the sample as a whole can not be obtained. Therefore,
it is not possible to determine the odor concentration or provide information about the
odor impact using this method. Similarly to the GC-MS, the GC-O-MS measurements are
expensive, time-consuming and not suitable for on site applications [41].

3.3. Single Gas Sensors

Selective detection of certain odorants can be achieved through gas sensors. Devices
based on electrochemical principle of detection are well suited for this task [68]. A typical
electrochemical sensor set–up consists of three electrodes: the working, the reference and
the counter electrode. The operating principle of an electrochemical sensor is based on the
measuring current flow changes generated by reduction or oxidation of target molecules
at the working electrode surface. The changes in the current flow are proportional to the
measured gas concentration [69]. This type of sensors are usually highly selective and quite
sensitive. However, there is a limited number of molecules that can be measured using this
technique (e.g., SO2, NO2, NH3, H2S, HCHO, glutaraldehyde) [32].

A very important type of gas sensors are nondispersive infrared detectors (NDIR).
The sensor set–up consists of a source of infrared radiation in alignment with a detector.
When an analyzed gas enters the measurement chamber, it absorbs radiation of a particular
wavelength causing decrease in light intensity reaching the detector. This reduction of in-
frared radiation is proportional to concentration of target molecules. An important element
of the sensor is an optical filter, which passes absorbed light of defined wavelength, thus
providing selectivity of particular sensor [70]. Similarly to the electrochemical sensors, the
NDIR detectors are highly selective and can be used for CH4, CO and CO2 measurements.
Although, non of these molecules can be considered as an odorant, the monitoring of
methane content is of high interest when investigating, for example, the stability of the
composting pile [71].

Specific gas sensors mentioned above are often applied together with electronic
noses or even integrated to the construction of the device in order to increase its selectiv-
ity and provide complementary informations on the analyzed samples (e.g., Olfosense
from Airsense).

The photoionization detector (PID) is another type of sensors that is often applied
during the investigation of odorous samples. PID detects molecules that are ionized under
the influence of radiation emitted by the UV lamp (their ionization energy is lower than the
energy of the emitted photons). The presence of the ionization products is recorded by an
electrometer [32]. Contrary to the electrochemical and NDIR detectors, PID ones are not
selective. However, these sensors provide informations about the total amount of VOCs
present in the analyzed samples and thus, can be a valuable addition to the multi-sensor
arrays (e.g., Olfosense from Airsense).

3.4. Examples of Applications of Analytical Measurement to the Waste Management
Processes Monitoring

GC-MS is a very powerful technique for the monitoring of odorants emitted during
different stages of the waste management chain. Liu et al. [7] investigated recently VOCs
released during initial decomposition of municipal solid waste, that occurs during waste
collection, transportation and early pre-treatment. Ethanol was the dominant compound in
these samples and identified as one of the main odorants (together with methyl sulfide,
dimethyl disulfide and ethyl acetate). Moreover, authors calculated the odor activity
value (OAV) following Equation (5) mentioned above. The easily biodegradable waste
(EBW) proportion in waste is the dominate source of VOCs generation. Indeed, when the
proportion of EBW was reduced from 60% to 15%, the OAV decreased from 244.51 to 61.46.
However, validation of obtained results with dynamic olfactometry was not performed.
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Composting can also be a source of odorous molecules and the waste origin plays
a crucial role on the chemical composition of those substances. Sulfides, followed by
acid/esters, ketones, alcohols, and terpenes are produced during composting of food
wastes whereas terpenes, followed by aromatic hydrocarbons, ketones and alkanes are
emitted from yard wastes. Addition of paper to the yard or food wastes results in formation
of aromatic hydrocarbons and alkanes at the beginning of the composting process [72].
Similar VOCs were detected by Agapios et al. [73] during household composting of food
wastes. Moreover, Principal Component Analysis (PCA) was also applied to explore the
entire data set, including VOCs and physicochemical parameters for monitoring of the
composting process in terms of compost maturity and biological activity. Indeed, emission
of terpenes during the composting was related to the immature phase of the process,
whereas high content of sulfides was associated with intense biological activity.

Single gas sensors are also widely used for the monitoring of odorants emitted during
different waste treatment processes. Electrochemical ammonia sensor was used for the
evaluation of the efficiency of NH3 removal from composting gases by bio-filtration [74].
Municipal solid wastes, digested wastewater sludge and animal by-products were com-
posted in a pilot-scale reactor and the exhaust gas was treated in a biofilter. The NH3
removal efficiency of 95.9% was obtained in the described experiment for the first two
waste sources but declined significantly in the case of animal by-products.

Wiśniewska et al. [75] used a portable multi-gas analyzer, MultiRae Pro, equipped with
one PID detector and three electrochemical sensors to measure H2S, NH3 and
methanethiol for the monitoring of odorants emitted from biogas plants. The highest
concentrations of odorants were associated with oxygen stabilization of digestate (VOCs,
NH3) and with technological wastewater generated at biogas plants (mainly NH3). Authors
suggested that, the detector can be used to control technological processes by measuring
the odorant concentrations and calculating the odour activity value (OAV). Based on the
results, it should be possible to plan the activities aimed at minimizing the odour nuisance
related to the presence of specific compounds in the process gases. However, validation of
proposed method with dynamic olfactometry was not performed.

Mabrouki et al. [76], proposed a system to monitor the biogas generated from a landfill
placed near the Morocco City and update the database remotely. The Internet of Things
system consisted of Arduino Uno R3 Card, Wi-Fi module and Bluetooth module and set of
gas sensors (CH4, CO2, CO, O2, NO2 and H2S) was used for this purpose. Biogas emitted
form the landfill was rich in methane and carbon dioxide, but the exact content of the
analyzed samples depended strongly on the season (water content) and the waste deposit
age. Presented above applications are summarized in Table 4.

Table 4. Examples of recent applications of analytical techniques for the waste treatment pro-
cesses monitoring.

Application Methodology Main Outcome of the Work Ref.

Monitoring of VOCs released
during initial stages of waste
treatment

GC-MS, calculation of OAV The EBW proportion in waste is the
dominate source of VOCs [7]

Monitoring of VOCs released
during composting of food,
yard and paper wastes

GC-MS Waste origin plays a crucial role on
the chemical composition of VOCs [72]

Monitoring of VOCs released
during household compost-
ing of food wastes

GC-MS, physicochemical
measurements, PCA

PCA applied to VOCs and physico-
chemical parameters is a sufficient
tool for the monitoring of the com-
posting process

[73]

Biofiltration efficiency assess-
ment

Ammonia electrochemical
sensor

Waste origin plays a crucial role on
the biofiltration efficiency [74]
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Table 4. Cont.

Application Methodology Main Outcome of the Work Ref.

Monitoring emissions of odor-
ants released from waste bio-
gas plants

Multi-gas detector (PID and
H2S, NH3, CH3SH electro-
chemical sensors), calcula-
tion of OAV

Odorant concentrations and odor ac-
tivity value can be useful tools for the
control of technological processes

[75]

Monitoring of biogas gener-
ated from landfills

Internet of Things system
equipped with gas sensors

Biogas content emitted from landfills
may present dangers and sanitary
risks

[76]

4. Electronic Noses
4.1. General Principle

The term “electronic nose” comes from some similarities between the analysis of
volatile compounds in air using a set of gas sensors and the human olfactory system. Upon
being sniffed through the nose, inhaled air reach the olfactory epithelium located in the
upper nasal cavity [77]. Interactions of odorous molecules with the olfactory receptors
produce electrical stimuli which are transmitted to the brain. There, a pattern recognition
process assisted by the memory takes place in order to identify, classify and perform
an hedonic analysis of the particular smell [78]. A single olfactory receptor responds
usually to several odorants and each odorous molecule can interact with multiple olfactory
receptors [79]. Similarly, working principle of the EN is based on the cross-reactivity
and semi-selectivity of the gas sensors used to design the sensors array. The interactions
of volatile compounds with these sensors give rise to analytical signals which are then
processed by the computer via a pattern recognition program. Just like humans, EN can
learn new patterns and associate them with new odors via training and data storage. The
working principle of human and EN is presented on Figure 2.

Figure 2. Structures of biological olfactory system and electronic nose.

Operationally, an EN is composed of three parts: a sampling system, an array of
chemical gas sensors producing signals when confronted with volatile compounds and
an appropriate pattern-classification system [80]. At present, most of the EN are based on
semiconducting metal oxides or conductive polymers gas sensors. However, other types
of sensors including electrochemical, piezoelectric and optical sensors are also used [81].
Although not precisely being gas sensors, mass spectrometry and gas chromatography
based EN provide an interesting alternative to the classical EN and will be presented
briefly later.

The sampling system includes a chamber that hosts a sensor array mounted on a PCB
card and a sample flow control unit (miniature membrane pump, flow meters and valves).
Analytical signals received from sensors arrays are processed in three steps: data pre-
treatment, feature extraction and dimension reduction, and pattern recognition algorithms.
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EN found applications in many fields: food freshness and quality control (e.g., wine
authenticity) [82–85], agriculture [86,87], disease detection (e.g., cancer, tuberculosis) [88],
drugs detection (e.g., cannabis) [89], and security (e.g., fire warning, detection of
explosives) [90–92]. EN are also increasingly used to monitor the indoor and outdoor
air quality [34,39,93–95].

4.2. Electronic Noses Based on Gas Sensors
4.2.1. Transducers for Multi-Arrays

Gas sensors are transducers that transform chemical interactions between a sensitive
layer and volatile molecules into an electrical signal. Many methodologies can be used for
chemical sensing of gaseous compounds including chemiresistive, electrochemical, optical
and piezoelectric sensors (Figure 3).

Electrochemical principle of detection is presented in Section 3.3 (and on Figure 3a).
Chemiresistive gas sensors (Figure 3b) have a relatively simple configuration. The sensitive
layer is deposited between two electrodes or on top of an interdigitated electrode. The
interaction between the sensitive layer and the target gas molecules leads to resistance
change of the sensor, mostly through the exchange of charge carriers [95].

Piezoelectric (QCM-Quartz Crystal Microbalance or SAW-Surface Acoustic Wave)
sensors makes use of the piezoelectric property of the quartz crystal, which oscillates under
an applied voltage across two gold electrodes, one of which is covered with the sensitive
layer (Figure 3c). Its resonant frequency changes upon mass loading induced by the gas
adsorption on the modified electrode surface [96]. SAW operate at 50-1000 MHz while
QCM at 5-30 MHz. SAW devices are more sensitive but also more unstable and require a
high-tech control set-up.

Figure 3. Principles of detection used for chosen gas sensors applied in e–noses: (a) electrochemical,
(b) chemiresistive, (c) piezoelectric, (d) optical

An optical sensor consists of a light source, a sensing platform, light waveguides and
a light detector (Figure 3d). The sensing mechanism rely on the interactions of light and
the sensing layer before and after exposing them to the target gas molecules. Alteration
of the light intensity or shift in the wavelength of the light are the basic changes that can
occur in the presence of the analytes of interest [97].
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4.2.2. Recent Advancement in Gas Sensing Materials

The sensitive layer can be made from various materials including semiconducting
metal oxides, carbon nanomaterials, conductive polymers, molecularly imprinted polymers,
biomolecules. Thanks to theirs electrical properties the first three of the listed above
materials are usually applied for the development of gas sensors based on chemiresistive
principle of detection.

Semiconducting metal oxides (e.g., SnO3, ZnO, WO3, CuO) have been more widely
used to prepare gas sensors than any other class of materials [95]. Metal oxides can be
fabricated in form of mico- or nanograins and deposited on a sensing platform as thick- or
thin-films. The effect of grain size and film thickness on gas sensing has been investigated
by many researchers and it may be concluded that the optimal performances are usually
achieved with a thick film of lightly sintered nanocrystalline, porous materials [98]. Gas
sensing properties of the metal oxide sensitive layers can be further tuned by using a com-
bination of different metal oxides, addition of metal catalysts or application of hierarchical
micro- and nanostructures [99–101].

Conducting polymers (e.g., polypyrrole, polyaniline, polythiophene, etc.) are easy
to synthesize by various chemical and electrochemical approaches and their molecular
chain structure can be modified conveniently by copolymerization or structural derivations
leading to materials with new gas sensing properties [102,103]. Similarly to metal oxides,
conducing polymers can also be prepared in form of nanoparticles, nanofibers, nanotubes,
etc. However, so far, no spectacular improvements of sensing responses have been noticed
with these nanostructures as compared to the thin film based sensors [104]. Another
approach to improve sensing performances of devices based on conducting polymers is to
combine them with other materials (metal, metal oxides, carbon nanostructures or even
other polymers) [105,106].

Carbon nanostructures (e.g., carbon nanotubes, graphene) have been intensively
studied for gas sensing applications recently. Theirs unique electrical properties can be
further enhanced by decorating carbon nanotubes or graphene sheets with nanoparticles
made of noble metals (e.g., Pt, Pd, Ag) [107] or metal oxides (e.g., SnO2) [108]. However,
nanocarbon-based commercial gas sensors are yet to come as there is still a place for
the improvement of gas sensing properties and reduction of production costs of these
nanostructures [109,110].

Molecularly imprinted polymers (MIPs) are materials with custom-made binding sites
complementary to the target molecules in shape, size and functional groups. Therefore,
these materials are tailored at the synthetic level so that the selectivity of the designed
sensor is oriented toward desired chemicals. However, it is hard to control the thickness
of the MIPs films and thus, gas sensors based on these materials use usually QCM as
transducer. The QCM appears a straightforward approach since it measures directly the
“mass” adsorbed onto the microbalance [111].

Biomolecules, e.g., peptides and DNA also offers a promising option for the devel-
opment of gas sensitive materials. The use of peptides is in a more advanced status since
they represent the “natural” extension of the olfactory receptors. However, more studies
are necessary to assess the long-term stability of devices based on these materials in real
conditions [112]. Biomolecules are mostly used for the development of optical or QCM
type gas sensors.

4.2.3. Advantages and Disadvantages of Different Type of Gas Sensors

Due to theirs mature production technology, suitability to wide range of gases and
low price, the main type of sensors applied in e-noses are chemiresistive metal oxide
sensors (MOS). Today, several companies, such as Figaro, Sensirion or SGX Sensortech
offer this type of devices. The MOS sensors operate at high temperatures (up to 500 °C)
and thus, they consume relatively high amounts of power: 100 mW per an ordinary
sensor. However, with the advancement in electronic devices miniaturization, the size
of MOS sensors become smaller through the years: from pin-type to MEMS patch-type
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ones and thus, energy requirements decreased to tens of mW. Application of multi-walled
carbon nanotubes allowed further decrease in power consumption to only 1.05 mW [113].
The MOS sensors are sensitive to humidity changes and can be easily poisoned by high
concentrations of volatile fatty acids or sulfur compounds [114]. The detection limit of most
of the commercially available MOS sensors are at ppm levels and thus, they cannot be used
for applications where analyzed molecules are at lower levels. Two ways to improve the
sensitivity of these devices is investigated: development of sensors with lower detection
limits by designing new sensitive layers as mentioned above and/or equipping the e-nose
with an enrichment technology.

The production process of chemiresistive conductive polymers sensors (CPs) is not
as mature as MOS ones, but this kind of devices can detect a wide range of gases without
heating of the sensitive layer. This endows these sensors with low energy consumption and
simple device configuration. They are also resistant to sensor poisoning but, in the same
time, are sensitive to humidity and temperature changes. Other disadvantages, namely
lack of selectivity, reversibility and stability of these sensing layers has been noted as well.
One of the potential interesting approaches to improve CPs sensors is to prepare a hybrid
material made of both: conducting polymers and metal oxides. The hybrid material is
able to overcome the limitations of their single counterparts such as poor selectivity of
conducting polymer and high working temperature of metal oxide, and hence, promotes
an effective gas detection [105,106]. Although few commercial e-noses contain arrays based
on conducting polymers (e.g., Cyranose from Sensigent), individual CPs are not available
on the market.

Chemiresistive carbon nanomaterials sensors (CNs) usually operate at room tem-
perature and thus, consume little amounts of power. Other advantages of CNs sensors
include small size, long working life, ultra-high sensitivity, fast response and recovery
times. Current studies focus on further improvement of CNs sensitivity, as well as their
selectivity and stability. With the development of microelectronics technology, the cost
of device manufacturing will drop and thus, the commercialization of sensors based on
carbon nanomaterials will be more profitable [115].

The electrochemial sensors operate at room temperature, have low power consump-
tion, long lifetime and are very robust. Moreover, they are not humidity sensitive and
are suitable for toxic gases detection (e.g., H2S, NH3, CO, NOx). Electrochemical sensors
are usually highly selective and thus, less compatible with the operation principles of the
EN [116]. Nevertheless, electrochemical sensors are commonly used for construction of
electronic tongues dedicated for the analysis of liquid samples [117,118].

Piezoelectric (SAWs, QCMs) are able to detect various gases at ppb levels in less than
10 s [119]. Besides, diverse sensing materials can be deposited on gold electrodes which
increases the range of measured gases and thus, applications of these sensors. The SAWs
and QCMs can be prepared with the MEMS technology which decreases their size. This
allows to shorten the response and recovery times but, from the other hand, increases their
instability, caused by the increased surface-to-volume ratio [120]. There are only a few
commercially available devices based on this detection technique (e.g., Biolin Scientific,
Quartz Pro) and usually sensitive materials are deposited on electrode on demand which
makes these sensors relatively expensive.

Optical sensors can measure the concentration of a specific gas in gas mixtures with
high sensitivity and selectivity. However, they are relatively expensive, difficult to minia-
turize and exhibit low portability due to delicate optical and electrical components [121].

The advantages and disadvantages of gas sensors used in EN are summarized
in Table 5.
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Table 5. Advantages and disadvantages of different sensor types used in e-noses based on [85,87,122].

Sensor Type Advantages Disadvantages

Classical gas sensors

Chemiresistive
metal oxide sensors

Suitable to wide range of gases
Good sensitivity (ppm and sub–ppm)
Long lifetime
Short response time
Mature technology production
Low cost, Small size, Easy to use

Operates in high temperatures
Vulnerable to poisoning
Humidity sensitive
Baseline drift

Chemiresistive con-
ducting polymers
sensing

Suitable to wide range of gases
Operates at room temperatures
Resistant to sensor poisoning
Good sensitivity (ppm)
Short response time
Low cost, Small size, Easy to use

Temperature and humidity sensitive
Limited sensor lifetime
Poor selectivity, reversibility and stability
Baseline drift

Chemiresistive car-
bon nanotubes and
graphene sensors

Ultra-high sensitivity (ppb)
Usually operates at room temperature
Fast response and recovery time

Temperature and humidity sensitive
Difficult to fabricate, expensive
Poor reproducibility

Electrochemical

Power efficient and robust
High selectivity
Ambient temperature operation
Suitable for toxic gas detection

Large size
Not suitable to wide range of gases

Piezoelectric
Very high sensitivity (ppb)
Diverse sensing materials
Fast response and recovery times

Temperature and humidity sensitive
Poor signal–to–noise ratio
Complex fabrication process

Optical
High sensitivity, selectivity and stability
Fast response and recovery times
Insensitive to environment change

Difficulty in miniaturization
High cost and high power consumption
Low portability

MS and GC based e-noses

MS

Insensitive to environment change
High sensitivity, stability, reproducibility
Resistant to sensor poisoning and base-
line drift
Well known technology

Expensive
Consume high amounts of power
Difficulty in miniaturization
Complicated construction

GC

Insensitive to environment change
Resistant to sensor poisoning and base-
line drift
High sensitivity, stability, reproducibility

Large and heavy
Complicated construction
Very expensive
Require carrier gas
Not foreseen for on site applications

4.3. Electronic Noses Based on Mass Spectrometry and Gas Chromatography

Mass spectrometers can be used together with chemometric programs to obtain a
fingerprint of a particular odor and to proceed to classifications. After injection of volatile
mixture an MS pattern is created. Each mass to charge ratio (m/z) acts as a sensor that
detects any molecule or fragment with that particular ratio. In this way, an MS-based
EN has potentially hundreds of sensors [123]. A big advantage of this system over gas
sensors is that it uses a very well-known technology. The stability, reproducibility and
sensitivity of mass spectrometers are well established. This offers a solution to some
problems associated with classical gas sensors such as sensor poisoning or baseline drift.
The MS-based sensors are also not sensitive to environmental changes (i.e., temperature
and relative humidity) [85]. However, due to their large size MS electronic noses are less
suitable for on site applications than EN based on classical gas sensors. Besides, they are
expensive, consume high amounts of power and their construction is complicated [124].

The MS-based EN can be coupled with traditional gas chromatography. However,
it is possible to skip this step and inject the sample directly to the mass spectrometer’s
ionization chamber [125]. Interestingly, multi arrays made of classical gas sensors can be
combined with gas chromatography as well (e.g., zNose from Electronic Sensor Technology)
which increases applications of this type of devices.
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EN based solely on flash/fast chromatography present yet another approach for
the sensing of odorous mixtures. The Hercales e-nose from Alpha M.O.S is made of
two columns with different polarities (and two FID detectors). Therefore, two different
chromatographs are obtained during a single analyze. Although most of the available
papers present applications of this device for food quality investigations [126–128], some
studies suggest that it can be used for the monitoring of air quality in vicinity of municipal
landfills or evaluation of air quality in the neighborhood of the petroleum plants [129–131].
Similarly to MS e-noses, the GC-based solutions are expensive, consume high amounts
of power and their construction is complicated. Additionally, they require gas carrier gas
and the analysis time is relatively long. For these reasons, GC based EN are not foreseen
for on site applications. The advantages and disadvantages of GC and MS-based EN are
summarized in Table 5 together with classical gas sensors.

4.4. Data Processing
4.4.1. Data Pre-Processing

Data processing methods are summarized on Figure 4. The dimensionality reduction,
signal feature extraction, and data re-scaling methods are generally applied during EN
data exploration and pre-processing.

The data collected by the EN may consist of several, several dozen or even several
hundred variables that may be correlated to a greater or lesser extent [132]. Mutual
correlation arises in the case of sensitive layers giving similar responses to the tested VOCs
or results from the influence of environmental factors. This effect is usually considered
as undesirable because too many dimensions make the data mining process difficult, can
significantly extend the time of calculations and cause difficulties in achieving the target
success rate when classifying signals. For this reason, dimensionality reduction methods
such as Independent Component Correction (ICC) [133], Orthogonal Signal Correction
(OSC) [134] or Principal Component Analysis (PCA) are used as first data preparation step.
In the PCA method, which seems to be the most widely used method nowadays according
to [85], the original data space is transformed in order to produce a new set of uncorrelated
variables ordered by reducing variability. This allows to select only those sensors or those
signal features that will effectively and significantly affect the classification results. PCA or
OSC can be also used for detection of outliers [135], detection of sub-classes in groups of
objects [136], classification or as EN drift correction method [137,138].

Figure 4. Summary of data processing methods.
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The aim of a feature extraction methods [139] is to simplify data analysis by extract-
ing robust information from the sensor response. Extracting signal features may also be
necessary in some rare cases. Zhang et al. [140] gives an example of an e-nose for the
detection of flammable liquids where the measurements were limited to 10 s and the re-
sponse stabilization was not possible. Feature extraction methods can be divided into three
groups: methods that allow to describe a signal using simple scalar values, methods based
on curve fitting, and methods based on signal analysis in the frequency or time domain.
The first group of methods focuses on extraction of piecemeal signal features from sensor
response such as: min/max, difference, fractional difference, primary derivative, secondary
derivative, adsorption slope coefficient or area under the response curve [141]. Methods
based on curve fitting fit a specific e.g., expotential or polynomial models to the response
curves and extract a set of fitting parameters as the signal features [141–143]. The frequency
or time domain analysis methods are based on signal transforms such as Fast Fourier
Transform [144,145] or the Discrete Wavelet Transform [146–148] and are mainly applied to
signals recorded over a long period of time or signals containing cyclical variation. Using
features instead of raw signal measurements can help eliminate some additive errors [141]
and compensate for the temperature influence on the sensors [149]. Additionally, some of
the above mentioned features can be interpreted as physical parameters related to the reac-
tion kinetics. For example, the signal slope coefficient (primary derivative) may represent
the rate of the reaction of sensors responding to analytes and secondary derivative may
represent the acceleration of the reaction, etc. [140,141].

The normalization and the standardization are the two primary scaling methods used
in machine learning. Normalization typically re-scales the values into a range of [0,1].
Standardization typically re-scales data to have a mean of 0 and a standard deviation of 1
(unit variance). Both transformations allow to keep signal responses from various sensors
of an e-nose at the same magnitude level. This step is particularly advised for pattern
recognition or classification methods based on Artificial Neural Networks (ANN) as they
tend to learn from signals differences [150]. In a case of large differences in raw signal
magnitudes, ANN will tend to favor the sensor or sensors with the highest numerical values.
It is proven that normalization improves precise identification of the odor concentration
and helps to reduce the calculation error of stoichiometric recognition [141].

4.4.2. Classification Methods

The modern approach to the signal classification is dominated by data mining methods,
which are divided into supervised and unsupervised methods. The main advantage of
unsupervised methods is lack of a learning stage and no need to describe the dataset, which
in the case of large number of data would be an expensive, laborious, and time consuming
operation [151,152]. PCA and cluster analysis methods such as DBSCAN [153], Mean-
shift [154] or k-means clustering [155] are categorized as unsupervised methods. A cluster
is a subset of the initial dataset whose data points have one or more features in common
which results from sensors reacting to the same volatile substance under similar conditions
of temperature and humidity. From computational point of view these features may be:
location in the same dense areas of the data space, small distances between cluster members
or membership of the same statistical distributions. Two issues limit the applicability
of unsupervised methods as automatic classification algorithms. Firstly, clusters are not
usually known beforehand, and are calculated by the algorithm starting from random
initial locations. This forces the expected number of clusters to be specified as an integer
value, before computation begins. In some cases, the optimal number of clusters can be
computed or is defined a priori. The second problem is the lack of an unambiguous method
or metric allowing to determine the accuracy of the clustering without using the descriptive
information provided by an human operator. For this reason, unsupervised methods are
mostly used as pre-processing methods [85].

In order to automate e-nose data classification supervised methods such as: Linear
Discriminant Analysis (LDA), Linear Least Squares regression (LLS) and nonlinear Support
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Vector Machines (SVM) classifiers, Random Forest (RF), k-NN classifiers, and artificial
neural networks (ANN) are used [85]. Supervised methods tend to produce better results
and provide the opportunity to generate a metric such as confusion matrix [156] that can
be used to compare or to optimize the results. Of all the various ANN architectures the
most used is the Multi-Layer Perceptron (MLP) trained using a cost minimisation function
known as the backpropagation algorithm [157]. The MLP (Figure 5a) consist of one input
layer for e-noses signals or signals features, one or more “hidden” layers of coefficients
(weights and biais) which are interconnected to the hidden layer inputs and outputs and
one output layer which holds the classification results. During a finite number of iteration
the MLP coefficients are modified (trained) until the error between input labels and target
classes is minimized.

The SVM working principle is different. The SVM creates a line or a plane which splits
data points into classes with the greatest possible margin between the plane and any point
within the training set, giving a greater chance of new data being classified correctly. Data
points are progressively mapped into higher and higher dimensions (Figure 5b) in a process
known as kernelling [158], until a hyperplane can be formed to segregate them. Both
ANN and SVM methods are widely used in research [38,143,159,160]. According to some
authors, the SVM seems to outperform ANN [161], however, it should be remembered that
the results of such comparative studies strongly depend on the data, the configuration,
parameter tuning and the choice of ANN architecture. For this reason, when choosing
an appropriate method, we should rely on the results of experiments rather than on
bibliographic premises.

Figure 5. Simplified visualisation of: (a) multi layer perceptron, (b) support vector machine kerneling.

4.4.3. Challenges in Data Processing

From computational point of view the biggest challenge is to achieve the best accuracy
and the lowest level of false positive and false negative detections. For EN operating in a
controlled environment e.g., in a lab bench, a 100% success rate in samples classification
is often achieved [162,163]. Indeed, in laboratory conditions it is possible to calibrate
e-nose with a wide range of gas concentrations and thus, increase the performance of the
system [164]. The interferences from non-target odors present in real samples is also limited.
In real live experiments such high accuracy is never reached [165–167]. An obvious solution
to this problem is to increase the number of samples covering wide areas, under different
meteorological conditions [166] or increasing the number of sensors [132], which makes
the data analysis more difficult. Although some authors were able to constitute a large
(18,000 samples) data set of gas sensor arrays responses in laboratory conditions [168], the
size of a typical data set intended for e-nose training reported in publications is rather
limited to 100–500 samples approximately [139,167,169–171]. The number of samples
collected in outdoor experiments is sometimes critically low (~50) [172]. Therefore, the
success rate of 100% in outdoor conditions published by some authors [173] may be due to
a very low number of samples collected.
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Another challenge is related to machine learning, which in most publications is pre-
sented in a simplified manner. A critical step in ANN classificator setup is the determination
of right activation function and the optimal number and size of hidden layers. The only
guideline in this matter is the knowledge that three-layered networks have sufficient com-
putational degrees of freedom to solve any classification problem [143]. In the case of SVM
classification, the most critical step is choosing a suitable kernel of SVMs for a particu-
lar application. Various applications need different kernels to get reliable classification
results [174,175]. At the moment, there is no framework that automates the selection of
the best architecture or kerneling function. So the success of this crucial stage depends
heavily on the authors perseverance and programming skills. Only in a few publications
we can find examples of a detailed description of machine learning process with: train and
validation loss curves [169], information about sampling strategy adopted [166] or training,
validation, and test sets for unbiased evaluation of models [139]. In other cases, it is usually
impossible to extrapolate published results to new problems.

4.5. Commercially Available E-Noses

A summary of some of the most widely used electronic noses with manufacturers,
models, technological basis and data processing methods are listed in Table 6.

Commercially available EN based on semiconducting metal oxide can be purchased
(among many others) from Airsense Analytics GmbH (www.airsense.com, accessed on
8 February 2022). The company proposes the PEN series of e-noses (iPEN, PEN2, PEN3)
which contain an array made of 10 metal-oxide semiconductor (MOS) gas sensors. The mea-
suring cell can be linked with an adsorbent trapping unit or a headspace auto sampler for
laboratory analyses. The company offers also other devices: Olfosense and GDA (GDA-FR,
GDA-X). The first one combines MOS technology with PID detectors and electrochemical
sensors. The GDA units contain 2 MOS sensor, a PID detector, an electrochemical cell and
ion mobility spectrometer (IMS). The PEN and GDA series are portable devices that found
applications in environment investigations and security, respectively. The Olfosense aims
to set up a Network for Air Quality Monitoring where multiple devices are interconnected,
and users keep their eyes in real time on environmental parameters, i.e., odor concentration
(ou/m3),VOCs, H2S and NH3 concentrations (from ppb to ppm).The device is provided
with a dispersion modelling. Similar approach is proposed by Odotech (www.odotech.com,
accessed on 8 February 2022), SACMI (www.sacmi.com, accessed on 8 February 2022) or
RubiX (www.rubixsi.com, accessed on 8 February 2022) company.

Through the years, Alpha M.O.S (Toulouse, France) developed few EN based on
metal oxide semiconducting sensors. Some of them like FOX 2000, 3000, 4000 were based
solely on MOS sensors and others (RG BOX, Prometeus) were equipped additionally with
electrochemical and PID sensors or mass spectrometry detector. These devices are no longer
on the market. Indeed, few years ago the company changed completely direction and
released an EN (Heracles Neo) based on ultra fast gas chromatography (www.aplha-mos.
com, accessed on 8 February 2022). This e-nose has been described above.

The conducting polymer technology is used in Cyranose 320 provided by Sensigent
(www.sensigent.com, accessed on 8 February 2022). The device contains a total of 32 in-
dividual conducting polymer–carbon black sensors. The piezoelectric effect is used for
example in the SAGAS e-nose from Forschungszentrum Karlsruhe (www.kit-technology.de,
accessed on 8 February 2022) or ZNose series (ZNose 4200, 4300, 7100) from Electronic
Sensor Technology (www.estcal.com, accessed on 8 February 2022). The last one is coupled
with ultra-fast chromatography.

www.airsense.com
www.odotech.com
www.sacmi.com
www.rubixsi.com
www.aplha-mos.com
www.aplha-mos.com
www.sensigent.com
www.kit-technology.de
www.estcal.com
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Table 6. Examples of commercial e-noses.

E-Nose Technology Data Processing Applications
References

Accessed on
8 February 2022

AirSense Analytics-PEN MOS DFA, PCA, LDA, PLS and
more

Environment, security and
quality control (including: odor

concentration)
www.airsense.com

AirSense
Analytics-Olfosense MOS, PID, EC, OPC PCA, PLSR

Environment (including: odor
concentration with dispersion

modeling)
www.airsense.com

AirSense
Analytics-GDA2 MOS, EC, IMS, PID non defined Hazardous gases, chemical

warfare detection www.airsense.com

Alpha M.O.S-Heracles
Neo Flash GC PCA, DFA, PLS and more Food control quality, new aroma

development www.alpha-mos.com

Applied Sensor-Air
Quality Modules MOS PCA, PCR, LDA, ANN

and more

Indoor air quality monitoring,
diverse industries (food,

chemical, textile)
www.applied-sensor.com

Aryballe-NeOse Pro Optical biosensors PCA Diverse industries (automotive,
food, beverage) www.aryballe.com

Electronic Sensor
Technology-zNose SAW with flash GC non defined

Healthcare, medical research
investigations, security, outdoor
air quality and environmental

odor monitoring, diverse
industries (food, beverage,

chemicals)

www.estcal.com

KIT Karlsruher-SAGAS SAW ANN, PLS, LDA, Cluster,
PCA

Indoor air quality, chemical
industry www.kit-technology.de

Odotech-OdoWatch MOS ANN, Cluster

Environment (continuous
monitoring of odors and other

gaseous contaminants with
dispersion modeling)

www.odotech.com

RoboScientific
Ltd.-Model 307 CPs non defined Plants and animals disease

detection (including COVID-19) www.robo-scientific.com

RubiX - WT1 MOS with optionally:
EC,PID, OPC, NDIR... PCA, LDA, PLS

Outdoor and indoor air quality,
environmental odor monitoring
(including: odor concentration

withdispersion modeling)

www.rubixsi.com

Sensigent-Cyranose 320 CPs/carbon black PCA, k-NN, k-means,
SVM and more

Medical research investigations,
outdoor air quality and

environmental odor monitoring,
diverse industries (food,

beverage, chemicals)

www.sensigent.com

The eNose
Company-Aeonose MOS non defined Healthcare (cancer detection) www.enose-company.

com

SACMI-EOS Ambiente MOS PCA, DFA, LDA, ANN,
PLS, SVM and more

Environment (including: odor
concentration with dispersion

modeling)
www.sacmi.com

CPs–conducting polymer sensors, EC–eclectrochemical sensor, GC–gas chromatography, IMS–ion mobil-
ity spectrometer, MOS–metal oxide gas sensors, MS–mass spectrometer, OPC–optical particle counter,
PID–photoionization detector, SAW–surface acoustic wave

5. Application of the Electronic Noses for Monitoring of Mechanical–Biological
Treatment of Waste: Analytical Measurements
5.1. Composting

Composting is an aerobic process that is used to convert organic waste into agricul-
turally useful products. Composting can be divided in two phases: high-rate composting
phase and a curing phase [176]. An intense microbial activity occurs during the first phase
leading to the decomposition of the most biodegradable material. The rest of the material
is slowly transformed into humic substances during the second phase. The first phase con-
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www.airsense.com
www.alpha-mos.com
www.applied-sensor.com
www.aryballe.com
www.estcal.com
www.kit-technology.de
www.odotech.com
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www.rubixsi.com
www.sensigent.com
www.enose-company.com
www.enose-company.com
www.sacmi.com
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sumes large amounts of oxygen which may lead to anaerobic conditions and thus, a correct
air management (air supplier) is necessary to achieve optimal composting conditions.

EN are promising tools that allow a constant monitoring of the composting process,
assessment of the compost quality, maturity and its biological stability. Romain et al. [177]
used an emission chamber equipped with a home-made EN device composed of 7 metal
oxide sensors for monitoring of the composting process of household wastes during 60 days.
The humidity, temperature and air flow in the chamber were recorded as well. The EN
was not set to determine individual chemicals, but whole chemical families (sulphur
compounds, alcohols, nitrogen compounds, aldehydes, ketones, esters, acids, furans,
dioxins, ethers, terpenes, chlorinated compounds and hydrocarbons). The alcohol family
prevails during the whole composting time except in the earlier stages when aromatic
and aliphatic hydrocarbons are the most abundant. A peak of nitrogen compounds and
carboxylic acids appears at day 17th and a high increase of the ketones and furans occurs the
last days of composting. The peak at day 17th is due to the absence of proper aeration: there
was no turning of the pile since 5 days. Ketones and furans are released due to chemical
processes which indicates the end of the high-rate composting phase and beginning of
the curing phase. Therefore, the presence of these species at the end of the experiment is
not surprising.

Lopez et al. [71] used commercially available PEN3 e-nose based on metal oxide
sensors for the in-situ assessment of compost stability and maturity. A total of 7 different
composting piles from a commercial facility located in Spain were investigated. Develop-
ment of anaerobic conditions was confirmed in some of the experiments as oxygen levels
dropped to c.a. 10% leading to changes in volatile organic compounds emissions as it was
noticed with the EN measurements. In support of this argument combustible gases were
also detected in all these samples with NDIR sensor. Therefore, the EN device is suitable
for the classification between aerobic-anaerobic conditions of the composting pile and thus,
indication of its stability and quality. Moreover, changes in the chemical composition of
gaseous samples with the composting time were recorded and appropriately trained e-nose
was used later on to estimate the compost maturity.

The PEN3 e-nose was also used for the assessment of the biofiltration efficiency of
the composting gases [178]. The pile was fed with kitchen wastes or shredded pruning
waste. The air from the pile was extracted by an exhaust fan and distributed upstream
to a set of 12 pilot-scale open-top biofilters. The compost gases from the biofilters inlet
and outlet ports were monitored for 20 days by the EN and the total VOCs were analyzed
by a photoionization detector (PID). The biofiltering process of the emitted gases reached
total VOCs removal efficiency greater than 90% as identified by PID. The EN could identify
qualitative differences among the biofilter output gases related to its nature and particle
size. Sensors detecting sulphur containing-compounds were especially discriminating. The
EN could also be used to quantify total VOCs content in air samples during the composting
and biofiltering trial.

Gutierrez et al. [35] compared 3 complementary approaches to monitor odorants
and odors (dynamic olfactometry, GC-MS and EN). The odor source was a green waste
compost at different maturity stages located in the south of Belgium. The EN made of
6 Figaro MOS sensors was capable of identifying some chemical families emissions and
some activities such as turning steps, whereas the GC-MS detected each individual chemical.
Odor concentrations (ou/m3) in relationship with these emissions were determined by
dynamic olfactometry. The olfactometry indicated an increase of the odor concentration
during the first days of the composting process. The GC-MS measurements shown that
odorants responsible for the perceived odor belonged to the following chemical families:
terpenes, organic acids, ketones, aldehydes and alcohols like D-limonene, butanoic acid,
thujone, hexanal and 2-butanol, respectively. E-nose data were linked to the chemical
composition and to the odor concentration.

Although most of the EN systems dedicated for the compositing processes monitoring
are based on the MOS sensors, other types of sensing devices have been used as well.
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Lieberzeit et al. [179] designed e-nose based on 6 QCM sensors coated with molecularly
imprinted polymers (MIP). They enable quantitative monitoring of the most relevant
volatile organic compounds, i.e., esters, alcohols and terpenes emitted form the compost
process of grass and pine. During the composting authors observed concentrations of up to
250 ppm of esters, 700 ppm of alcohols, 250 ppm of terpenes directly on-line and validated
the data off-line by GC-MS. The EN gave also direct insight into the differences between
the two composting batch types. During grass composting larger amounts of alcohols are
emitted whereas relative content of terpenes is twice as high for pine composting.

5.2. Anaerobic Digestion–Biogas Formation

Anaerobic digestion is a biological process in which the organic matter is converted by
specific microorganisms into biogas (mainly CH4 and CO2) that can be used for electricity
generation. At the beginning of the process the matter is decomposed to mono- and
oligomers (amino acids, long-chain fatty acids and saccharides), then the fermentation
of the volatile fatty acids appears (mainly acetic acid), followed by gases (H2, CO2) and
finally CH4 production. The parameters affecting the status of anaerobic digestion are
mainly associated with changes in plant feeding and environmental fluctuations, i.e.,
temperature [180]. The demand for online monitoring and control of biogas process is
increasing, since it can improve process plants stability and economy.

The concentration of some compounds in the gas phase changes when the organic
overload (ORL) appears in the reactor. The ORL leads to process disturbance and thus,
influences the effectiveness of methane production. Adam et al. [181] developed an EN
composed of six commercial MOS gas sensors for early detection of organic overload in the
reactor. The e-nose was set to detect CH4, H2S, H2, alcohols, alkanes, alkenes and ketones.
Hotelling’s T2 value and an upper control limit using stable digesters as a reference set were
used as indirect state variable for early detection of process disturbance caused by organic
overload. The EN could detect organic load variations and it was also able to monitor
process disturbances and recovery periods. Moreover, in some cases the e-nose technology
appeared to be more efficient than the monitoring of methane content in the biogas or pH
measurements of the liquid phase. Furthermore, Adam et al. [182] investigated the use of
the above mentioned EN for online anaerobic reactor state monitoring at the pilot-scale and
then at the full scale level. At the pilot-scale level, the e-nose observations present a good
agreement with the reactor state. At the full-scale level, the device provided warnings of
the major disturbances in the reactor but two slight disturbances were not detected and
it gave one major false alarm. This work showed that gas phase relation with anaerobic
process should be deeper investigated, as an EN could indicate the reactor state, focusing
on the gas phase. Similar conclusions can be drown from Costa et al. [183]

Orzi et al. [184] investigate the correlation between microbial activity (i.e., biological
stability measured by aerobic OD20 test and ABP anaerobic tests) and odor emissions from
municipal solid waste during anaerobic digestion in a full-scale treatment plant consid-
ering the three stages of the process (input, digested and post-digested waste). Authors
used complementary approaches for the measurement of odor impact (olfactometry) and
characterization of the different groups of VOCs responsible for that odor (GC-MS and
PEN2 e-nose from Airsense). As expected the odor reduction due to the acquirement of
biological stability was accompanied by a change in the organic molecules composing the
gaseous phase in the studied wastes. Moreover, principal component and partial least
squares analyses applied to the EN and GC-MS data sets gave good regression for the OD20
vs. the EN and OD20 vs. the GC-MS data. Therefore, OD20 reduction could be used as an
odour depletion indicator. Presented above applications are summarized in Table 7.
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Table 7. Examples of analytical e-noses applications in the waste management plants.

Application E-Nose
Technology

Additional
Measurements Ref.

Qualitative detection of VOCs during
composting process
Monitoring of the compost stability

Home made
(7 MOS) GC - MS [177]

Compost maturity assessment
Monitoring of the compost stability PEN3 AirSense Analytics NDIR, PID, GC-MS [71]

Bio-filtration efficiency of the compost-
ing gases PEN3 AirSense Analytics PID [178]

Correlation between odor concentra-
tion and chemical composition of VOCs
emitted during composting process

Home made
(6 MOS) Olfactometry, GC-MS [35]

Qualitative and quantitative detection
of VOCs during composting process

Home-made
(6 QCM) Validation with GC-MS [179]

Early detection of organic overload in
the anaerobic reactor

Home-made
(6 MOS) NDIR, EC, sludge pH [181,182]

Investigation of the correlation be-
tween microbial activity, odor concen-
tration and VOCs emission during
anaerobic digestion of wastes

PEN2 AirSense Analytics Olfactometry, GC-MS [184]

6. Application of the Electronic Noses for Odor Impact Assessment–
Sensory Measurements

Electronic noses can be trained to determine odor concentrations (ou/m3) or discrim-
inate odor sources. Romain et al. [185] used a home-made EN made of 7 Figaro MOS
sensors for the monitoring of odor concentration inside a compost hall. Measurements
were validated with dynamic olfactometry. Authors suggested that measurements with EN
at odor source can be applied together with dispersion models in order to asses the odor
impact in the vicinity of the facility. The same authors [186] studied also the influence of
sensor drift in time on the odor source discrimination capability of an e-nose composed
of 12 Figaro MOS sensors. Authors reported that classification accuracy decreased from
98% at the beginning of the tests to only 20% after three years. Authors suggested to
solve this problem by additional training sessions during the monitoring period. Another
approach proposed by Capelli et al. [187] requires an internal calibration system that allows
to estimate the sensor drift daily and to compensate it with suitable algorithms.

Discrimination of odor sources was also performed by Sironi et al. [188] who applied
two EN developed earlier in their laboratory [189]. First one was installed at the composting
plant territory and second one inside a house situated 300 m from the facility. During
a 4 days trial the e-nose placed inside the house detected the presence of odors coming
from the composting plant for about 7.8% of the total monitoring duration. The results
were compared with odor complaints from inhabitants, obtaining a correspondence of 72%.
Moreover, 86% of detected odorous events corresponded to the open air storage of the
waste screening overflows heaps, which was therefore identified as the major odor source
of the investigated composting plant. Later on, the same authors investigated again the site
but the monitoring time was increased from few days to few weeks [190]. The purpose of
this work was to evaluate which features had to be extracted from the sensor responses
curves in order to optimize the correlation between odor classification performed by an EN
and odor reports from inhabitants. During this study, the variability of humidity content
in analyzed air turned out to be a critical factor in the use of EN for environmental air
monitoring. The problem was solved later one [189]. Indeed, electronic nose was equipped
with a specific humidity regulator that allows the instrument to be used in the field under
variable meteorological conditions. Improved e-noses were installed at several locations
(waste treatment plants, oil mill and in the surrounding urban area) and demonstrated
odor sources classification accuracy of 88%. In the same time, older version of the e-nose
correctly classified 82% of measurements during a 10 days trial. Authors described also
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an experimental procedure for the definition of minimum performance requirements for
environmental odor monitoring, which is a first step towards standardization of the specific
case of electronic nose application for environmental odor monitoring [191].

Indeed, the use of EN in the field is very challenging, especially in variable weather
conditions. Nicolas et al. [33] placed a network of 5 e-noses comprising each 6 metal oxide
sensors (Figaro) in the close surroundings of a compost facility in Belgium. The EN was
trained to estimate odor concentration (ou/m3) and classify odor sources into five possible
categories odor-free atmosphere, engine exhaust gases, green compost, bio-drying or fresh
waste emissions. Moreover, according to the wind direction, the responses of e-noses placed
in the right wind sector were used to assess the maximum downwind distance of odor per-
ception. A simple validation test was carried on by comparing the detection of odor events
by the network and the subjective feeling of field observers placed near the electronic noses.
About each event detected by the network was validated by field observer. Then residents
in the neighboring villages were appealed to regularly provide their estimation of the odor
annoyance, according to a procedure described by Nicolas et al. [192]. In 17 cases out of 21,
the network detected an odor event when residents identified an odor coming from the
waste treatment plant. For 10 cases among these 17, the resident concerned was included in
the perception zone predicted by the e-nose network. The 7 remaining cases corresponded
to unstable atmospheric conditions. Authors concluded that a network comprised of a
higher number of e-noses could compensate for the variable weather conditions.

An interesting work was described by Giungato et al. [165] who tested two commer-
cially available sensors (PEN3 and Cyranose320) for odor source discrimination capabilities.
Three types of odors were investigated: biogas, a by-product of mechanical treatment of
municipal solid wastes, and a sludge pressed and dehydrated from treatment of urban
wastewater. The MOS based e-nose was able to discriminate successfully 86.7% of samples,
whereas the CPs only 53.3%. Surprisingly, the best results were achieved by choosing
4 MOS and 2 CPs sensors (93.3%). This work highlights how important is the selection of
the adequate type and number of sensors used for a given application. Taking into account
that described above investigations were performed using mainly MOS sensors (usually
from Figaro), it is safe to say that at least in the field of odorous mixtures investigation
in the vicinity of waste management plants there is still a lot of possibilities in terms of
appropriate sensors selections.

The discriminatory possibilities of two types of EN in the distinction and classification of
odorous samples collected around a municipal landfill was studied by Gębicki et al. [36,130].
One of the tested e-noses was the Heracles Neo from Alpha M.O.S based on ultra-fast
gas chromatography technology. The second device was a home-made e-nose composed
of MOS, PID and electrochemical sensors. Additionally, field olfactometry investigations
were performed at places where samples were collected for analyses using both types
of electronic noses. A correctness of classification of 94.8% and 84.4% was achieved for
Heracles Neo and home made e-nose, respectively. These results corresponded to samples
collected during spring period and thus, characterized by high odor nuisance. For lower
odor concentrations observed in winter, the correctness of classification dropped to 87.5%
and 71.9%, respectively. Authors concluded that comparing the price of both e-noses the
home-made one exhibits a satisfactory level of correct results as compared to much more
expensive Heracles Neo. As suggested by the same authors [193] the performance of e-nose
based on gas sensors can be improved by implementation of more and more sensitive
sensing arrays. Presented above applications are summarized in Table 8.
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Table 8. Examples of sensorial e-noses applications in the waste management plants.

Application E-Nose
Technology

Additional
Measurements Ref.

Monitoring of odor concentration in-
side a composting hall Home-made (7 MOS)

GC-MS, dynamic olfac-
tometry, field inspec-
tions, dispersion mod-
eling

[185]

Discrimination of odor sources in the
vicinity of a composting plant Home made (6 MOS) Olfactometry, citizens

involvement [188,190]

Monitoring of odor concentration and
discrimination of odor sources in the
close neighborhood of a composting fa-
cility

Network of 5 e-noses made
of 6 MOS

Dynamic olfactometry,
citizens involvement,
dispersion modeling

[33]

Discrimination of odor sources Network of 5 e-noses made
of MOS Dynamic olfactometry [189]

Comparison of odor sources discrim-
ination capability of two commercial
e-noses

PEN3 and Cyranose 320
commercial e-noses None [165]

Comparison of odor sources discrimi-
nation capability of two e-noses

Heracles Neo and home-
made e-nose based on MOS,
PID and EC sensors

Field olfactometry [36,130]

Odor concentration measurements in
the vicinity of several odor sources (in-
cluding landfills)

Home-made e-nose based
on MOS Field olfactometry [193]

7. Conclusions and Perspectives

Electronic noses are promising tools for the control of waste treatment process and
odor impact assessment in the waste management plants. Multiple examples presented
in this review have shown that once adequately trained, EN can be used successfully for
quantitative and qualitative measurement of odorants in the analyzed samples as well as
for odor concentration measurements and odor sources discrimination. Comparing to other
methods, analysis with electronic noses allows the measurements to be run continuously.
However, EN should not be treated as competitive method for the well established sensory
and analytical techniques. Indeed, current trends clearly stands that maximum information
on the odorous samples investigations is achieved when olfactometry, GC-MS and e-noses
are used as complementary approaches to a given problem.

Bibliography presented in this review discusses also some critical aspects connected
with the development of the EN devices. Concerning the sensors, several studies have
highlighted the problem of stability towards temperature and humidity variations, as well
as sensor response drift over time. Possible solutions to these problems using appropri-
ate data processing methods were presented in this paper showing that the EN devices
require time-consuming calibrations and re-calibrations and/or sophisticated and complex
technology in order to produce accurate and reliable results. Despite these problems a
few commercial e-noses dedicated for the environmental monitoring exists. However,
mainly due to the problems associated with sensors stability the warranty provided by
their manufacturers is usually very short (i.e., 12 months) and given the price of these
devices–not satisfactory. The malfunctioning sensor in most cases can not be replaced by a
new one due to the poor reproducibility of the gas sensors’ manufacturing.

Actually, there are several trends in order to improve sensing performances of existing
EN, including development of new gas sensors. Although nanotechnology can provide a so-
lution to the sensitivity issues, the long term stability of gas sensors based on nanoparticles
is still an issue.

Future trends regarding the use of EN in the environmental analyses shall not only
focus on the development of new sensors or data processing methods, but also concentrate
on better adjustment of these instruments for outdoor conditions, especially for long–term
monitoring applications and adaptations on mobile platforms and on portable devices.



Sensors 2022, 22, 1510 25 of 32

Indeed, the possibility of drone assisted measurements using EN are currently intensively
examined [194].

Another important issue limiting the use of EN for environmental applications is the
lack of specific regulation for their standardization. EN are relatively complex instruments,
and their development give rise to a number of degrees of freedom, regarding mainly
the choice of gas sensors, the training and data processing methodology. Therefore, the
standardization of the EN devices and procedures for their correct utilization is a necessary
step for their diffusion.
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