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Abstract: Following Smolin, we proceed to unification of general relativity and quantum theory
by operating solely with events, i.e., without appealing to physical systems and space-time. The
universe is modelled as a dendrogram (finite tree) expressing the hierarchic relations between events.
This is the observational (epistemic) model; the ontic model is based on p-adic numbers (infinite
trees). Hence, we use novel mathematics: not only space-time but even real numbers are not in
use. Here, the p-adic space (which is zero-dimensional) serves as the base for the holographic
image of the universe. In this way our theory is connected with p-adic physics; in particular, p-adic
string theory and complex disordered systems (p-adic representation of the Parisi matrix for spin
glasses). Our Dendrogramic-Holographic (DH) theory matches perfectly with the Mach’s principle
and Brans–Dicke theory. We found a surprising informational interrelation between the fundamental
constants, h, c, G, and their DH analogues, h(D), c(D), G(D). DH theory is part of Wheeler’s project
on the information restructuring of physics. It is also a step towards the Unified Field theory. The
universal potential V is nonlocal, but this is relational DH nonlocality. V can be coupled to the Bohm
quantum potential by moving to the real representation. This coupling enhances the role of the
Bohm potential.

Keywords: general relativity; quantum theory; p-adic theoretical physics; dendrogram; event-universe;
hierarchic structure; Mach’s principle

1. Introduction

This paper is the first step towards the unification of general relativity (GR) and quantum
theory (QT) on the basis of the Dendrogramic-Holographic (DH) theory [1,2]. The latter
is based on a representation of the universe composed of events by dendrograms and
at the ontic level by p-adic numbers [3]. Zero-dimensional p-adics serve as the basis of
the holographic image. The event basis of physical theories was also used in the works
of Wheeler [4], Smolin, and Barbour [5–7], and Rovelli [8]. (Systems are not present in
DH theory).

DH theory can be considered as a part of the Wheeler’s “it from bit” project [4]
on the information structuring of physics. However, our reconstruction is not as
straightforward as Wheeler’s. The bit encoding is used for hierarchic relations between
events in the universe described as dendrograms. Branches of dendrograms are strings
of information.

The paper is not about “quantization of GR”. Following Smolin’s event-physics [5,6],
we unify GR and QT on the basis of a new theory and mathematics, i.e., the p-adic number
system [3]. Both classical and quantum random systems are represented by ensembles
of dendrograms [1,2]. Quantumness is coupled to the simplicity of dendrograms. This
simplicity characterization of quantumness is also the basis for Smolin’s theory. In contrast,

Entropy 2022, 24, 181. https://doi.org/10.3390/e24020181 https://www.mdpi.com/journal/entropy

https://doi.org/10.3390/e24020181
https://doi.org/10.3390/e24020181
https://creativecommons.org/
https://creativecommons.org/licenses/by/4.0/
https://creativecommons.org/licenses/by/4.0/
https://www.mdpi.com/journal/entropy
https://www.mdpi.com
https://orcid.org/0000-0003-3097-4693
https://doi.org/10.3390/e24020181
https://www.mdpi.com/journal/entropy
https://www.mdpi.com/article/10.3390/e24020181?type=check_update&version=2


Entropy 2022, 24, 181 2 of 22

we do not aim to reconstruct the traditional quantum formalism, but rather we use the test
characterization of the quantum-like properties of dendrogram ensembles as via the CHSH
test [2].

DH theory is also a step towards the creation of Unified Field theory. The events’
dynamics on dendrogram D are determined by the universal potential V representing
hierarchical relations between events. By moving from the p-adic to real representation, V
can be realized as Bohm’s quantum potential [1]. Thus, the latter can be considered as the
universal (information) field. DH theory is nonlocal w.r.t. dendrogramic geometry, but this
is informational nonlocality and not nonlocality in real space-time.

Now we will say a few words about p-adic theoretical physics. In 1987, a hypoth-
esis of the possible p-adic structure of space-time was considered by Volovich [9]. This
hypothesis was formulated in the framework of string theory, and it was supported by
consideration of the p-adic analogue of the Veneziano amplitude and discussion on the
main properties of the p-adic string theory. Since that paper, p-adic theoretical physics
has been intensively developed [9–15] consistently with the development of the string
theory ([9,16–19]) and complex disordered systems (The methodology of DH theory is
like one used in ultrametric modeling of complex disordered systems: the aim is to find
relational order which is not visible in the straightforward representation of data. Parisi
and Sourlas [20] coupled this methodology to p-adic number theory and p-adic theoret-
ical physics (see also Section 9)) [20] (p-adic representation of the Parisi matrix for spin
glasses). One of the problems in this domain of science was the absence of coupling with
real experimental data. In string studies, the p-adic structure of space-time was coupled
to the Planck scale and the gap between this scale and the scale of the present physical
experiment was too big; one could not expect direct experimental verification (the “usual
string theory” over real has the same problem). We stress that one of the aims of p-adic the-
oretical physics was restructuring GR and cosmology [21]. This p-adic approach to GR was
thus promising.

1.1. Dendrogram Coupling of P-Adics with Experimental Data

The natural question arises: Can p-adic theoretical physics be somehow coupled to real
experimental data? (Additionally, without going to the deepest level of space-time, can it be
coupled to the Planck scale?) Furthermore, can such coupling contribute to the development
of gravitation theory? We answer these questions positively. The positive answer to the
first question was given in papers [1,2] in the framework of Dendrogramic-Holographic (DH)
theory. In this theory, experimental data, i.e., a time series, are represented (with some
clustering algorithm, see Appendix A) by dendrograms, i.e., finite trees. Dendrograms
represent hierarchically interrelated events: the event decomposition of the epistemic
universe created by an observer O.

By increasing data collection, O can construct larger dendrograms. The limit of such
dendrograms is the infinite tree. This is the set of p-adic integers Zp, and it represents
the ontic universe. Hence, in DH theory, p-adic theoretical physics provides the ontic
description of “reality as it is”. In principle, it can (but need not) be identified with the
Planck scale physics. Thus, within DH theory p-adics are coupled with experimental data
via dendrogram representation. We shall discuss DH theory in more detail in Section 2.

1.2. Dendrogram Representation of Geometry Corresponding to Metric Tensor

In GR, space-time geometry is determined by a metric tensor g = (g_{ij}). This geometry
can be extracted from its corresponding geodesic equation and its solutions the geodesics.
We can speak about the geodesic images of geometries: the geodesic universe. In this
framework, the simplest “universe” is just a single geodesic. In DH theory, we start with
such a geodesic universe. We then represent it by a dendrogram D = D(g) and get the
dendrogram universe. Our basic tool is the extraction of data from the numerical simulation
of photon trajectories on a space-time manifold. We consider DH images of batches of
geodesics with discretized time and the corresponding D universes. As an illustrative
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model, we selected the Schwarzschild metric and considered batches of geodesics in a
neighborhood of a black hole. In the D universe, we introduced analogues of the basic
structures of “ordinary physics” (based on the real analysis) especially the analogues of the
basic constants of nature.

The D universe is the hierarchic representation of the interrelation between events
generated by (discrete) dynamics along geodesics. This is the special information portrayal of
these events which is constructed by a clustering algorithm (generally, different algorithms
create different D portrayals. However, as was shown in [2], DH theory is a stable w.r.t.
selection of an algorithm).

For any DH universe, its treelike structure determines the universal potential V_i,
depending on event i and branch i of D. This is the fundamental potential determining the
hierarchic relations between events in D. (DH theory is about relations between events, not
interactions between systems, cf. Wheeler [4]). In this paper, we consider the D universes
constructed from batches of geodesics for the Schwarzschild metric (in a neighborhood of a
black hole). Each D universe generates the universal potential Vi = Vi(D).

1.3. Mach’s Postulate in the Dendrogram Representation

We now move to the DH theoretical approach to gravitation theory. We start with the
basic coupling of DH theory with Mach’s principle [22]:

“[The] investigator must feel the need of . . . knowledge of the immediate con-
nections, say, of the masses of the universe. There will hover before him as an
ideal insight into the principles of the whole matter from which accelerated and
inertial motions will result in the same way.”

In DH theory, this principle is not a postulate, but the fundamental property of the
model. Representation of the event structure of the universe by dendrograms expressing
the hierarchically ordered relations between events immediately leads to Mach’s principle.
In a dendrogram, each point or branch of a tree is indivisibly coupled to all other points.
This Machian constitution of DH theory is closely coupled to the non-mainstream pathway
in the development of gravitation theory going back to Einstein’s paper (1911) [23], then
Sciama (1953) [24], Dicke (1957) [25], and finalized in the Brans–Dicke theory of gravitation
(1961) [26].

1.4. Dendrogram Counterparts of the Light Velocity and the Gravitational Constant

In the DH framework, the light velocity c is not constant. This is in the spirit of Einstein’s
paper [23] in which c depends on the gravitational potential Φ (see also Sciama, Dicke, and
Brans [24–26]). The gravitational constant G is not a constant either. In DH theory, each
dendrogram-universe D is characterized by its own constants c and G, thus c = c(D) and
G = G(D). They are coupled to the universal potential V_i.

By analyzing the dendrograms obtained from the batches of geodesics for the
Schwarzschild metric (in a neighborhood of a black hole), we discovered the interrelation
between c(D) and G = G(D): the fraction of their logarithms is approximately constant w.r.t.
D corresponding to a variety of different batches of geodesics. The most striking is that
this log-fraction approximately coincides with the corresponding log- fraction for physical
constants c and G.

Some heuristics beyond this rate coincidence is that log2 n gives the number of digits in
the 2-adic expansion of a natural number n. This can be treated as an information measure.
Thus, we found the interrelation between the information encoded in c(D) and G(D). To
couple this interrelation to real physical constants, the latter should also be interpreted as
information quantities as completed by Wheeler [24].

We will summarize the above discussion. We constructed dendrograms for batches of
geodesics corresponding to the metric tensor. These geodesics and, hence, dendrograms,
carry information about the basic constants of nature. We invented D analogues of these
constants reflecting information encoded in real physical constants.
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1.5. Dendrogram Approach to Quantumness

One of the aims of the DH theory project is the creation of a theory of quantum
gravity through the unification of quantum and classical theories (So, we do not plan to
quantize classical gravitation theory nor to create gravitation theory with the mathematical
formalism of quantum field theory). Some steps towards this unification were taken in our
previous papers [1,2]. In DH theory, quantumness and classicality are not sharply separated.
Quantum events are represented by simpler dendrograms; complex dendrograms can be
treated classically (cf. Smolin [6]).

In the present article, we combine the new mathematical formalism with a new
scientific methodology. In contrast to the previous works, we do not try quantizing the
classical theory or reducing quantum to classical. These are as two faces of Janus: the
quantum face is visible in the rough representation of phenomena; collecting of more data
makes visible the second face, the classical one. As was already mentioned, the general
methodology, “simple systems are quantum and complex ones are classical” was presented
by Smolin [6]. In contrast to us, he still (as is traditional in physics) used the language
of systems, not events. In addition, our invention is the use of the new mathematical
representation based on the treelike geometry corresponding to the hierarchic structure of
relations between events composing phenomena. In the limit of infinite complexity this
approach leads to the p-adic model of the universe.

The mathematical background for this model was developed in the works on p-adic
mathematical physics [9–20]. However, in contrast to it, in DH theory p-adic points are not
points of a kind of space-time (say space-time at the Planck scale) [9–19], but all possible
events which would happen in the universe. This p-adic (ontic) universe is classical.
The latter does not match the ideology of the previous p-adic physical modelling which
considered “p-adic” as synonym to “quantum”.

In DH theory, classical and quantum physics are distinguished with the aid of
experimental tests (Popper-like ideology) (A similar approach is basic for the theory
of randomness (going back to the works of von Mises, Kolmogorov, Martin-Löf): ran-
domness of concrete data series is checked with the aid of a batch of tests (say the NIST
tests)). We completed the important step in this direction in our CHSH test paper [2],
namely, it was shown that for relatively simple dendrograms (which are treated as
representing quantum-like events) the Bell type inequality is violated. However, an
increase in the dendrogram’s complexity implies a decrease in the degree of violation
of the CHSH inequality. Of course, we demonstrated this transition from quantum-
ness to classicality only for one test distinguishing statistics of quantum and classi-
cal events. This is the preliminary step towards justification of our methodology for
quantum–classical unification.

The same DH methodology for quantum–classical unification can be applied to gen-
eral relativity. We consider geodesics corresponding to some concrete metric as repre-
senting the relational structure of events. The representing of geodesics by simple den-
drograms corresponds to the extraction of the quantum-like structure; representing them
by complex dendrograms is classical(-like). For the moment, we have not yet elabo-
rated a statistical test related to this situation. We can speculate about a kind of Bell test
(or probability interference test) for dendrograms representing geodesics. However, the
realization of the corresponding simulation is a complex task and we postpone it to a
future paper.

In quantum mechanics, the Planck constant quantifies the irreducible uncertainty
in the form of the Heisenberg relation. We also quantified the irreducible uncertainty of
the dendrogram representation by introducing an analogue of the Planck constant for a
dendrogram D, h = h(D). Surprisingly, we found the log-fraction interconnection between
the dendrogramic light velocity c = c(D) and the Planck constant h = h(D). It is approximately
constant for varying D (corresponding to batches of geodesics in the Schwarzschild metric).
Moreover, as in the case of c and G, the dendrogramic log-fraction coincides with the
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log-fraction for the physical constants c and h. In such a consideration it is natural to use
the information interpretation of the physical Planck constant h (see again Wheeler in [4]).

1.6. It from Bit: Dendrogram Realization of Wheeler’s Program

In his celebrated article [4], Wheeler presented the detailed program of the information
reinterpretation of physics and in particular GR (In [4], Einstein’s geometrodynamics is
mentioned a few times as the basic physical theory for the information reconstruction. In
particular, Wheeler supported the “it from bit” idea by pointing out that “the surface area
of the horizon of a black hole, rotating or not, measures the entropy of the blackhole”. In
this discussion he appealed to the information interpretation of a quantum of action h): “It
from bit. Otherwise put, every it—every particle, every field of force, even the spacetime
continuum itself—derives its function, its meaning, its very existence entirely—even if
in some contexts indirectly—from the apparatus-elicited answers to yes or no questions,
binary choices, bits”.

We highlight the information viewpoint [4] on the Planck constant h: “The quantum, h,
in whatever correct physics formula it appears, thus serves as a lamp. It lets us see horizon
area as information lost, understand wave numbers of light as photon momentum, and
think of field flux as bit-registered fringe shift. Giving us “its as bits”, the quantum presents
us with physics as information”.

Wheeler’s critique of the mathematical models based on real numbers supports our
move to dendrogamic and in the limit to p-adic physical models. See again [4]: “No
continuum. No continuum in mathematics and therefore no continuum in physics”.
The DH approach is based on a representation of physical reality (treated as reality of
events in the universe) by dendrograms. These are treelike ordered sequences of bits, i.e.,
information strings.

2. DH Theory: Dendrogram Representation of Events and Zero-Dimensional
P-Adic Holography

Here, we say more about DH theory (see [1] for the detailed presentation). Here,
instead of physical systems, an observer O forms events by splitting experimental data into
blocks and exposing these blocks to a hierarchic clustering algorithm (see Appendix A). For
example, O divides the given time series of data into blocks of a fixed size p. In this way, O
creates the epistemic picture of the event-structure in the part of the universe, which is encoded
in the data, O universe (Events and not physical systems, objects, are basic blocks of DH theory.
This viewpoint was strongly emphasized by Wheeler who cited the authors of [4]). If p > 1,
then this dendrogram picture reflects the hierarchic relations between events. If p = 1, then
this is the standard mapping of data on a real line. As was already mentioned, increasing
the size of dendrograms (via collection of new data) pushes the limit where O approaches
a p-adic model of ontic reality given by the infinite tree. This tree can be endowed with
the algebraic structure, i.e., its (infinite) branches can be added, subtracted, and multiplied;
this is the ring of p-adic integers denoted by the symbol Zp. (If p > 1 is a prime number,
then this ring can be extended to the field of the p-adic number Qp). We remark that points
of Zp (branches of the infinite tree) can be encoded by sequences of the form x = (x0, x1,
. . . , xn, . . . ), where xj = 0, 1, . . . , p − 1, or series x = Σ xj pˆj.

The tree Zp is a metric space w.r.t. the metric d(x,y) = 1/pˆn, where xj = yj, j = 0, . . . ,
n − 1, and xn 6= yn. This metric can also be defined geometrically: take two branches x
and y an find their common root, suppose it has the length n, then the distance between
branches is given by the above formula. This is the so called ultrametric, i.e., the strong
triangle inequality holds: in each triangle the third side is less than the maximum of the two
other sides,

d(x,y) ≤max [d(x,y), d(y,z)]
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This inequality implies that in the ultrametric space all triangles are isosceles. Each ball
in an ultrametric space is at the same time open and closed topogically (“clopen”), e.g., ball
B(a,r) = {x: d(x,a) < r} is not only open (as one can expect), but also closed. Each point of
a ball can be selected as its center. Two balls are either disjointed or one is contained in
another. In particular, Zp can be represented as the disjointed union of p balls of the radius
r = 1/p, each or the latter as the disjointed union of balls of the radius r = 1/pˆ2, and so
on. This process generates disjointed partitions of Zp into pˆn balls of decreasing radii,
r = 1/pˆn.

By starting from the Zp model of the universe (i.e., another way around), we create the
holographic representation of the epistemic universe. The Zp is a zero-dimensional space, and
it encodes the two-dimensional treelike geometry of dendrograms which in turn serve as
codes for three-dimensional structures in Euclidean or Minkovsky geometries (Geometry
of p-adic space exotic (comparing with Euclidean geometry). This is the totally disordered
and totally disconnected zero-dimensional topological space. As was pointed out by Volovich [9],
such geometry matches with heuristics on properties of geometry at the Planck scale.
In [1,2], we also discussed matching with Bohm’s vision of implicate order [27]).

Now we discuss the process of creation of the dendrogram universe in more detail. An
observer O “looks” at the universe (by using measurement devices of all kinds); O defines
all unique events that he can discriminate. We say that the observer has for each event
some epistemic level of discrimination. He constructs a finite dendrogram from the unique
events at this epistemic level of discrimination. We call it the “universal dendrogram” of
the observer. This is not the ontic dendrogram, which is infinite. Each event is represented
on the epistemic dendrogram and encodes infinitely many ontic events that are indiscrim-
inate in terms of the observer. Each branch of the dendrogram, a finite tree, encodes a
ball in Zp containing infinitely many p-adic points, i.e., elementary ontic events. The O
universe is described by relations between discernible events as the dendrogram shown in
Figure 1A. Each event in the O universe is uniquely described by its p-adic expansion as in
Figure 1B.

3. Universal Potential of Dendrogram

A dendrogram universe D is endowed with a potential and is denoted by V_i. In
complete accordance with the Mach’s principle, this potential depends on the topology of
whole D, i.e., it is a nonlocal function of D. It must be emphasized that in the implementa-
tions of DH theory to gravitation, we do not invent the metric tensor g = (g_{ij}); we operate
solely with the V_i-potential. This is the universal potential determining all processes on D
(which are in fact reduced to jumps between its branches or their endpoints on the bottom
level of D). In this theory, all interactions are reduced to the universal nonlocal potential
expressing topology of D.

For each edge (event) i, the p-adic expansion Vi (where its computation is outlined in
Appendix B step 5) represents the potential difference between the edge and the rest of the
universe events. Thus, the sum of these Vi, these potential differences, is the non-referenced
potential value V (This potential treated as a topological potential can be coupled to the
quantum potential of Bohmian mechanics [1]. This coupling is not straightforward: one
must move from the p-adic representation to the real one by using the so called Monna
map based on p to 1/p transformation. Thus, in DH theory, the universal potential can
be interpreted as a non-local Bohmian potential. However, this is merely heuristics and
coupling between Bohmian mechanics, DH theory, and gravity is the complex problem.
We shall work on it further). The potential difference between two edges (events) i and
j is given by Vi − Vj = qij. The potential V represents the “difference between the ob-
server and his universe”; symbolically, we can write O − universe = V. We can also
symbolically write(

O− universeexept event i
)
−
(
O− universeexept event j

)
= Vj −Vi
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Figure 1. Relational observation of events. (A) Observer O discriminates events A–H and constructs
an object, a dendrogram, which describes the relations between these events. (B) Each edge of the
dendrogram is a binary string of 0s and 1s which can be represented as a finite p-adic expansion. Each
edge summation of its finite p-adic expansion results in a natural number. Subtracting between two
edges’ finite p-adic expansion results in “potential gap”—qij. (C) Dendrograms can be constructed by
observing events from a single geodesic event or by observing events from several geodesics.



Entropy 2022, 24, 181 8 of 22

We stress that the dendrogram picture is static, and dynamics can occur only upon
jumping from edge to edge. Thus, the time-role or dynamical evolvement depends only on
which event we jump to. In classical physics, based on the analysis on the real line, we have

∆p = F∆t and W =
∫ x(t2)

x(t1)
Fdx = V(x(t2))−V(x(t1))

In the discrete case, the second Newton law (scaled to unit mass) has the form:

∆p = F∆i→ F =
∆p
∆i

or (pj − pi)/(j− i) = F

where
∫ j

i Fdi = Vj −Vi = p is the discrete differential.(
Vj −Vi

)
/(j− i) = ∆p, where j − i = 1 is the minimal step of the discrete variable i.

We now turn to DH theory. In classical physics a trajectory x(t) is characterized by two
variables, x for space and t for time. In our framework, these two variables are unified into
one: the label i of the edge (or the end point of the dendrogram). This i can be represented
either as a vector with 0/1 coordinates representing the path from tree’s root to the end-
vertex lying at the bottom level of dendrogram D as a natural number. In our model,
we define an analogue of the momentum only for a jump from event i to event j as the
difference of potentials between these events, i.e., the quantity Vi −Vj = qij = pi− pj.

We will summarize the above considerations. The topology of the dendrogram is
described by the p-adic expansions of events encoded in the universal potential field given
by the sequence of Vi. For each edge, its p-adic expansion Vi represents the potential
difference between the edge and the rest of the universe events. Thus, the sum of Vi, the
potential differences, is the non-referenced potential value V. Importantly, we do not have
time and space coordinates in DH theory. They are emergent quantities. Thus, we cannot
clearly define the event’s momentum. Its role is played by the quantity Vi −Vj = qij, i.e.,
the potential gap between two events represented by branches i and j. This potential gap,
qij, can be considered as an analogue to the difference of kinetic energy from edgei to edgej
and as outlined above as an analogue to delta momentum; qij calculations are shown in
Figure 1B.

4. From Mach’s Principle to Variability of the Basic “Constants” of Nature

In various studies of quantum gravity, the theory postulates Mach’s principle as first
assumptions. In a very heuristic way, Mach’s principle states that the inertial forces acting
on a body are a consequence of the quantity and distribution of matter in the universe.

On the other hand, DH theory does not need to postulate Mach’s principle. Mach’s
principle is in fact a direct consequence of constructing a dendrogram. The dendrogram
describes relations between matter objects in our observed universe or, in even more
fundamentally relevant terminology, the dendrogram describes relations between our
observational “events”. In DH theory, an event has no meaning without an observer and
the rest of the observed universe (no dendrogram can be constructed in such a case, e.g., one
observer and one event do not give rise to a dendrogram; we can consider the dendrogram
only with an observer O and at least two events).

Attempts to follow the Machian perspective in constructing gravitational theory were
made by Einstein already. Although the general theory of relativity has its Machian
signatures, Einstein himself admitted he did not fully integrate Mach’s principle in the
theory. An early study by Einstein [23] suggests that the speed of light “in gravitational field
is a function of place” followed Mach’s principle very straightforwardly. Sciama [24], in
1953, developed a theory on the grounds of Mach’s principle that suggests “inertia is not
an intrinsic property of matter” but a consequence of matter relations. Furthermore, his theory

“implies that the gravitational constant at any point is determined by the total gravitational potential
at that point and so by the distribution of matter in the universe” coupling local phenomena in
the universe as a whole. We further note a study (based on Mach’s principle) by Dicke [25],
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where he formulated a gravitational theory with a changing speed of light as a function of
relations to the whole universe matter distribution.

We start with the Einstein derivation [23] where he concluded that

c = c0

(
1 +

Φ
c2

)
(1)

where c0 is the speed of light at the coordinate origin c is the velocity of light at a given
point with gravitational potential Φ.

However, Sciama’s derivation [24] suggested that

Φ
c2 = − 1

G
where G =

1
ρτ2

where ρ is the density and τ is the Hubble onstant, i.e., the Hubble law has the form:

v = τ R, (2)

where v is the recessional velocity, typically expressed in km/s, and R is the proper from
the galaxy to the observer O measured in mega parsecs (Mpc).

We also note that by Sciama

Φ = −
∫

ρ

r
dV (3)

Thus 1 and 2 give

c = c0

(
1 + ρτ2

)
(4)

c
c0

=
(

1 + ρτ2
)

and
c
c0

=

(
1 +

Φ
c2

)
(5)

Which results in

Φ
c2 = ρτ2 =

c2

G
(6)

We note that Sciama as well as Einstein derived these relations in a homogenous and
isotropic distribution of matter of expending density ρ according to the Hubble law.

5. Constants of Nature as an Emergent Property of Dendrogram Topology

As was emphasized in the introduction, the dendrogram universe D is character-
ized by its own constants c, G, and h, so c = c(D), G = G(D), and h = h(D). These con-
stants have the following surprising property: the log-fractions |log2c (D)|/|log2h (D)|
and |log2G(D)|/|log2c(D)| are approximately constant w.r.t. D where dendrograms are
generated by the clustering algorithm from batches of geodesics for the Schwarzschild
metric in the neighborhood of a black hole (see Section 6 and Appendix B for the steps that
produce dendrograms from geodesics).

|log2h (D)|/|log2c (D)| ≈ 3.91405517948, or h(D) = c(D)α, α ≈3.91405517948 (7)∣∣∣log2c2(D)
∣∣∣/|log2c(D)| ≈ 1.66610588966, or c2(D) = G(D)β, β ≈1.66610588966 (8)

The log-quantities log2c(D), log2G(D), and log2h(D) give the measure of information
contained in these numbers. Equations (7) and (8) express the stability of the fraction of the
amount of information used for encoding these basic quantities. Our result is based solely
on the numerical simulation. We hope that it will be supported by an analytic derivation in
the future.
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However, the most astonishing feature is the coupling of the dendrogram’s constants
with the corresponding physical constants determined experimentally: h, c, and G. To
formulate this coupling, we transfer these physical constants into the corresponding dimen-
sionless quantities. Let us set a = 1 m2kg/s, u = 1 m/s, and g = 1 m3/kg s2. The quantities
h = h/a, c = c/u, and G = G/g are dimensionless. We can now consider their logarithms
log2h, log2c, log2G, and find the fractions:

|log2h|/|log2c| = 3.91405517948, (9)∣∣∣log2c2
∣∣∣/|log2G|= 1.66610588966 (10)

The coincidence of the LHSs of (7) and (9) as well as (8) and (10) is surprising. We
cannot explain this coincidence theoretically; we interpret it as a sign that DH theory
matches real physics.

We will define quantities h(D), c(D), and G(D) below.

Φ will be attributed as the dendrogramic property V =
n

∑
i=1

Vi as in (1)

We also introduce the dendrogramic quantity c(D) =
(
median

(
qij
))

i ∈ 1, 2 . . . n− 1 j ∈ i, i + 1 . . . n

c(D) is calculated as follows: for each Vi and Vj such that i 6= j we calculate the matrix

Mi,j =
∣∣Vi −Vj

∣∣ = qij

Then the 50th percentile of the upper triangle values is
(
median

(
qij
))

G(D) is the dendrogramic property representing the mean f unction o f density o f events,
(here we f ollow Sciama)

2α ∗ (
n
∑

i=1
Vi)/n where 2α = 1/τ2

h(D) is the dendrogramic property representingthesquare o f the in f ormation contained in
the universal potential V

h(D) = V2

which gives the estimation of the indistinguishability present in Φ.

6. Dendrogram Representation of Geometry around Schwarzschild Black Hole

In order to construct a dendrogram representing some universe space-time, we de-
cided to use a simulation of trajectories of photons, which represent geodesics on the
space-time manifolds, emitted in the vicinity of a 2 + 1 Schwarzschild black hole. In
order to simulate these trajectories, different local coordinates need to be connected by
tensor networks.

We note that tensor networks in the proximity of a black hole have already been
linked to p-adic numbers and p-adic trees with some analytical solutions that indicate the
emergence of gravity, quantum field theory, and holography [27–31]. The Schwarzschild
metric describes the gravitational field outside a spherical mass where the electric charge
of the mass, angular momentum of the mass, and universal cosmological constant are all
zero. The geodesics which were simulated by the Schwarzschild metric already include
information on the connection of different local coordinates through tensor networks as
well as information on the Schwarzschild black hole mass.

We emphasize that in DH theory all events of the universe are statically present
with no dynamics. An apparent casual structure emerges upon maximizing a certain
action principle (see Section 8). Thus, the black hole mass, which defines the space-time
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manifold geometry, defines also all possible events and thus all possible geodesics and
casual structures.

Alternatively, we have to point out that the space-time geometry and the events it
encompasses define the black hole mass.

The Schwarzschild metric is given by

ds2 = −
(

1− rs

r

)
dt2 + (1− rs

r
)
−1

dr2 + r2dΦ2

where
c is the speed of light, r is the radial coordinate, rs is the Schwarzscild radius, and Φ is

the longitude.
Thus, we produced three sets of geodesics’ events around a Schwarzschild black hole.

These geodesics are formed by pulses of light at the Schwarzschild radius
r = [1.5 1.7 1.9 2.1 2.3 2.5 2.7 2.9] and
Φ = [0 π/2 π π × 3/2] in our “universe”
The output of the simulation is generated data sequences of [t x y] coordinates for

each emitted photon geodesic.

1. t = [0,5] where each pulse is 10 photons: 761,600 total events from 320 geodesics.
2. t = [0,10] where each pulse is 10 photons: 1,523,080 total events from 320 geodesics.
3. t = [0,10] where each pulse is 20 photons: 3,046,160 total events from 640 geodesics.

We first analyzed each of the universal dendrograms constructed out of events in uni-
verses 1–3 (Figure 1C). Each such universal dendrogram was constructed in the following way:

Each geodesic in the universe was coarse-grained by a factor k (jumping from one
event to the next kth event). Then, we constructed a universal dendrogram from all coarse-
grained geodesic events. Figure 2A shows values for each of the universes (1–3), the
|log2h (D)|/|log2c (D)|, and

∣∣log2c2(D)
∣∣/|log2G(D)| ratio compared to the same log-ratios

of the physical constants determined experimentally upon increasing the size of the
universal dendrogram. We note that in different units, the selection of the log-ratios
of the physical constants determined experimentally had different values. We show
that the scaling of regular units corresponded to power scaling of the full dendrogram.
Thus, when we use the Kg-m-s units, we multiply each Vi by 21 while in the kg-cm-s
(|log2h|/|log2c| = 2.7850761987,

∣∣log2c2
∣∣/|log2G| = 5.01810477316) we multiply each Vi

by 220.
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Figure 2. Comparison of the dendrogramic |log2h(D)|/|log2c(D)| and
∣∣log2c2(D)

∣∣/|log2G(D)| ra-
tios to the experimental |log2h|/|log2c| and

∣∣log2c2
∣∣/|log2G| ratios. (A) Values of |(|log2h(D)|/

|log2c(D)|)/(|log2h|/|log2c|) − 1| (blue line) upon increasing size of universal dendrogram of uni-
verses 1–3 where h and c are in kg-m-s units or kg-cm-s. Values of |(

∣∣log2c2(D)
∣∣/|log2G(D)|)/(∣∣log2c2

∣∣/|log2G|
)
-1| (red line) upon increasing size of universal dendrogram of universes 1–3

were G and c are in kg-m-s units (universes 1–3) or kg-cm-s units (universe 4). The mean ± std
of |(|log2h(D)|/|log2c(D)|)/(|log2h|/|log2c|) − 1| for all coarse-grained universal dendrograms,
in each universe, are represented as shaded blue with values 0.0115 ± 0.0071, 0.0121 ± 0.0075 and
0.0129 ± 0.0075 for universes 1–3 with h and c kg-m-s while universe 2 with h and c kg-cm-s re-
sults in 0.0178 ± 0.0104. The mean ± std of |(

∣∣log2c2(D)
∣∣/|log2G(D)|)/

(∣∣log2c2
∣∣/|log2G|

)
− 1|

for all coarse-grained universal dendrograms, in each universe, are represented as shaded blue
with values 0.0174 ± 0.0061, 0.0171 ± 0.0151, and 0.014 ± 0.014 for universes 1–3 with G and c
kg-m-s while universe 2 with G and c kg-cm-s results in 0.0115 ± 0.0078. (B) Values of the free
parameter 2α = 1/τ2 that results in better correpondance between of

∣∣log2c2(D)
∣∣/|log2G(D)| and∣∣log2c2

∣∣/|log2G| for each universe,1–3, upon universal dendrogram size and topology. (C) The
mean ± std of all |(|log2h(D)|/|log2c(D)|)/(|log2h|/|log2c|) − 1| where D is constructed for
each geodesic with coarse-graining factor 20-1 for universes 1–3. (D) The mean ± std of all∣∣(∣∣log2c2(D)

∣∣/|log2G(D)|
)
/
(∣∣log2c2

∣∣/|log2G|
)
− 1| where D is constructed for each geodesic with

coarse-graining factor 20-1 for universes 1–3.

We note that G(D) is also coupled to the dendrogramic Hubble constant. This den-
drogramic Hubble constant in our model is a free parameter that is adjusted according
to size and topology of the dendrogram in order for the

∣∣log2c2(D)
∣∣/|log2G(D)| ratio to

be in accordance with the experimental
∣∣log2c2

∣∣/|log2G| ratio. We show in Figure 2B the
change of the factor 1/τ2 (see Equation (2)) with the universal dendrogram size. This
analysis suggests that the experimental h, c, and G are a consequence of the relational
properties of our real universe. Thus, the Hubble constant is a relational property that
is linked to the size and relational topology of our real universe. Other smaller but
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similar relational topological structural universes must scale the Hubble constant. Thus,
it remains a free parameter in our formulation. Figure 2B shows how we scale the
Hubble constant in order to match the experimental ratio

∣∣log2c2
∣∣/|log2G|. Currently—

until we find what property of the dendrogram this parameter represents—we are left
with the one fundamental ratio |(|log2h(D)|/|log2c(D)|) that depends solely on the
dendrogram topology.

Moreover, for each geodesic, we constructed its own geodesic universal (Figure 1C)
dendrogram upon increasing k factor of coarse-graining. Figure 2C,D show the mean
values of the log-ratios |log2h(D)|/|log2c(D)| (Figure 2C) and

∣∣log2c2(D)
∣∣/|log2G(D)|

(Figure 2D). These are less in agreement with the log-ratio of experimentally determined
constants. For each k (k = 1,2 . . . 20), the log-ratios approach the real values of |log2h|/
|log2c| = 3.91405517948,

∣∣log2c2
∣∣/|log2G| = 1.66610588966 but with significantly less

precision than obtained from the dendrograms constructed from all 320/640 geodesics
(Figure 2C,D). Our coarse-grained universe is constructed from one geodesic, with a clearly
different topology of the dendrogram (compared to a dendrogram constructed from several
geodesics); we cannot agree with the experimentally tested constants h and c. It seems that
we do need a universe with more then one geodesic (and probably homogenous and isotropic
distribution of events) to agree with the experimentally and physically determined constants.

7. Geometrical Meaning of Constants of Dendrograms as Similarity Measures

We claim that these dendrogramic constants h(D), c(D), and G(D) are properties
that measure how much one dendrogram is scale-free similar to another dendrogram.
Hence these are measures of similarity between any two systems. In our model, one of the
systems is the entire observable universe with informational properties manifested by the
physical constants determined experimentally. The second system uses the little universes
we created. Heuristically, we can envision a dendrogram as a triangle with a discrete base
where h(D), c(D), and G(D) are scale-free properties of this triangle. Let us define these
properties in a more geometrical way. See Figure 3.
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Thus, when the ratio between two properties of a triangle is close to the same prop-
erties’ ratio in a different system, these triangles/universal dendrograms are propor-
tional/similar. Our results suggest that if we could make a dendrogram from all the
events of our universe, then this dendrogram would be proportional to the little universes
that we created.

8. The Emergent P-Adic Path

Our aim in this section is to describe a dynamical process on the static universal
dendrogram. (We remind the reader that the epistemic universal dendrogram, with no
apparent dynamical process, is composed of all events in the real dynamical world of [t x y]
coordinates). For that purpose, we again produced three coarse-grained universes: the first
with 25,560 events composed out of 320 geodesics, the second with 50,920 events composed
out of 320 geodesics, and the third with 67,920 events composed out of 640 geodesics. We
also acquired much more detailed (30-fold more) data for each of the geodesics.

We follow the reasoning outlined in our previous study [1] and the D analogue
of the action principle suggested by Smolin for the casual set theory; we consider it as
phenomenological action, and thus:

Vi =
n

∑
j=1

(aj2j)

is the measure of distinguishability of edge i from all edges j 6= i; we mention again that
Vi represents the potential difference between the edge event and the rest of the universe
events. The sum of these Vi, these potential differences to the rest of the universe, is the
non-referenced potential value V. The action of this potential field, SRE, is taken to be
proportional to the potential value V:

SRE = gV where g is a proportion constant, where V =
n
∑

i=1
Vi.

SECS + SRE =
n

∑
i=1 j=i+1

Ñ
q2

ij

2
+

n

∑
i=1

z̃iPi + gV

As shown in the results, qij should be maximal through the chronological measure-
ment/dynamic process. Thus:

Pi = qi,i+1 − qi+1,i+2

The variation by qij yield:

0 = Ñqij + z̃i + gVi

As shown previously [6] in the casual set theory suggested by Smolin, the space-time
coordinates are represented by the Lagrange multiplier z̃i after substituting qij and Vi into
the equation above. Thus, the space-time intervals are the differences between z̃i and z̃j.
As Vi and qij are zero-dimensional p-adic numbers, z̃i are also zero-dimensional p-adic
coordinate numbers that are an emergent consequence of the dendrogramic structure. We
emphasize that the casual structure on the static dendrogram is an emergent property.
This casual structure emerges upon maximizing the above action principle according
to the dendrogramic structure (as will be demonstrated below in Sections 8.1–8.4). this
dendrogramic casual structure is in agreement with the “real world” casual structure.
Moreover, although different coordinates’ systems, metrics, and linkage algorithms will
produce different dendrogramic casual structures, the agreement with the “real world”
casual structure will be preserved.
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8.1. P-Adic Coordinates of Single Geodesic Dendrogram follow the Maximal Path

In accordance with the above action-variation, we further describe each geodesic
in terms of the p-adic z̃i coordinates (or rather points) resulting in a p-adic path. GR
indicates that the chronological path taken by a photon from its emitting point down to
the last point in space-time is minimal in the Schwarzschild coordinates. For that purpose,
we constructed a dendrogram for each geodesic. We showed that the path on such a
dendrogram from edge1 to edgelast results in an emergent p-adic coordinate sequence
z̃1, z̃2, z̃3 . . . z̃last where the sum of log2|z̃i–z̃i+1|p will be maximal suggesting that z̃i and
z̃i+1 are p-adically closer and more similar.

This p-adic chronological path taken is in fact maximal in comparison to any other
randomly chosen p-adic path from edge1 to edgelast. For each geodesic, we chose 10,000 ran-
dom edge-to-edge paths starting at the chronological edge1 and ending at the chronological
edgelast. We then calculated for the geodesic and the randomly selected 10,000 alternative
paths whose z̃i coordinates by z̃i = −Ñqij − gVi were g and Ñ = 1 and i ∈ 1, 2 . . . n− 1.
We calculated the intervals between consecutive z̃i as ds = log2|z̃i–z̃i+1| This is in fact a
degree of similarity, ds between z̃i and z̃i+1.

For the chronological sequence and the randomized scrambled geodesic

path =
n−1
∑

i=1
ds. For each scrambled geodesic, we calculated the ratio

pathgeodesic/pathrandom where pathgeodesic was the geodesic from which the pathrandom
was scrambled. We plotted the CDFs of all such ratios in all three universes (Figure 4).
As can be seen in Figure 4, all pathgeodesic/pathrandom values are above the value of one
which means p-adically that the geodesic is the shortest possible path. For universes 1–3
the CDFs have the corresponding mean ± std values, 2.9479 ± 0.3653, 3.3113 ± 0.5305, and
3.296 ± 0.5084.
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Figure 4. The p-adic path on z̃i coordinates is p-adically maximal.

The CDFs showing all ratio pathgeodesic/pathrandom values are above 1 for every geodesic
in all universes 1–3.

8.2. P-Adic Coordinates of Single Geodesic Edge as Part of the Universal Dendrogram follow a
Maximal Path

We next verified that we see this effect also in a universe with 320/640 geodesics when
all events from all the geodesics are clustered together into a dendrogram. The only differ-
ence is that now each geodesic’s edges are mixed with the other geodesics’ corresponding
edges. We identified each geodesic edge in the big universal dendrogram and carried
the same analysis as in Section 8.1 for the calculation of the ratio pathgeodesic/pathrandom
(Figure 5). As can be seen in Figure 5, all pathgeodesic/pathrandom values are above the value
of one which means p-adically that the geodesic is the shortest possible path. For universes
1–3 the CDFs have the corresponding mean ± std values, 2.3017 ± 0.5646, 2.3471 ± 0.3498,
and 2.4355 ± 0.4192.
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8.3. Geodesics as Sub-Universes

We tested whether an event from one geodesic will dynamically transfer to a different
event in a different geodesic. Thus, we calculated the potential gap qij, where i j are edges
that belongs to the same geodesic, and the potential gap qir where i are edges that belong to one
geodesic and r belongs to another geodesic.

We noticed that in the mean log2|qir|, where i are all edges of one geodesic and all r
belong to another geodesic, these values are very distant from the mean of log2

∣∣qij
∣∣p where

i and j are all edges of one geodesic. Figure 6 indicates that on average two edges from
two different geodesics cannot communicate because their p-adic potential gap is larger
than the difference allowed by each of the geodesic’s mean potential gap. This can be seen
by dividing the geodesic’s mean log2

∣∣qij
∣∣

p by each of the two geodesics’ mean log2|qir|.
When the resulting number is greater than one, this means p-adically that qir is bigger
than the average potential gap inside a geodesic (Figure 6). For universes 1–3 the CDFs of
the ratio mean

(
log2

∣∣qij
∣∣

p

)
/mean

(
log2|qir|p

)
have the corresponding mean ± std values,

3.0233 ± 1.5694, 1.5999 ± 0.5582, and 2.0446 ± 0.6714.
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8.4. Transformation from P-Adic Coordinates to Real Space-Time Coordinates

In order to understand the relation between the p-adic coordinates z̃i and the real
space-time t, x, and y coordinates split the p-adic coordinates z̃i arbitrarily into three p-adic
t̃p, x̃p, and ỹp coordinates.

Each z̃i p-adic expansion was split in this manner:

x̃p = 2 in the power of the last place of one digit of the p-adic expansion
ỹp = 2 in the power of the second last place of one digit of the p-adic expansion
t̃p = sum of all two places of the first digit until the second last.

For example:

z̃i = 0 0 0 1 0 1 1 1
x̃i = 0 0 0 00 0 0 1
ỹi = 0 0 0 00 0 10
t̃i = 0 0 0 10 1 0 0

we then could calculate a three-dimensional p-adic path interval as

∆pathi padic = dst̃i,i+1
+ dsx̃i,i+1

+ dsỹi,i+1

The real t x y path interval as

∆pathi = (xi − xi+1)
2 + (yi − yi+1)

2 + (ti − ti+1)
2

The accumulated summation of ∆pathi padic and ∆pathi was then fitted with either
a linear function y = bx or power law y = dxm and the best fitted model was taken as a
function between p-adic coordinates to real space-time coordinates. Figure 7A shows the
values of m and b parameters that resulted from the fitting to power law or linear law.
Figure 7B shows the CDFs of R2 values of all geodesics in each universe. Above 91.97 and
94% (in the corresponding 1–3 universes’ geodesics) have the best fit to the linear law with
very high R2 values.
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9. Concluding Remarks

We hope that this paper is a step towards the realization of Wheeler’s program of
the information reconstruction of physics. As he wrote [4]: “It from bit symbolizes the
idea that every item of the physical world has at bottom—at a very deep bottom, in most
instances—an immaterial source and explanation; that what we call reality arises in the
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last analysis from the posing of yes-no questions and the registering of equipment-evoked
responses; in short, that all things physical are information-theoretic in origin and this is
a participatory universe”. We essentially modified Wheeler’s program: the bit-structure
expresses not digitalization of data, but rather hierarchic relations hidden in physical events
occurring in the universe.

DH reconstruction is based on the exclusion of objects located in space-time modelled
with real continuum form physics. Following Wheeler [4], Rovelly [8], and Smolin [6], we
consider physics as a theory of events not physical systems. Events are represented by
information strings of zeros and ones, i.e., branches of a dendrogram. This is the epistemic
model; transition to the ontic model is done straightforwardly via consideration of infinite
trees. Here p-adic numbers arise. A p-adic universe preserves the information structure: the
ontic events are encoded by infinite p-adic strings of zeros and ones in line with Wheeler’s
project. Topologically, this information universe is very exotic and matches Bohm’s image
of implicate order [32].

The DH theory also matches Mach’s principle. The universal potential V is nonlocal
and determined by the topology of the dendrogram as a whole. In DH theory, such a
V plays the role of the universal potential determining all elements of theory including
analogues of the fundamental constants of nature. These analogues are dendrogram-
dependent, h = h(D), c = c(D), and G = G(D). We found that (amazingly) the log-fractions
of these D quantities (expressing information about them) are consistent with the log-
fractions for the corresponding physical constants. This result was obtained for the
special GR model: the Schwarzschild metric in a neighborhood of a black hole. In
DH theory, a collection of geodesics contains (indirectly) information about the basic
physical constants.

We did not try to quantize GR. We unified QM and GR through a new mathematical
representation based on dendrograms (at the epistemic level) and p-adic numbers (ontic
level). Quantum systems are represented by simple dendrograms and classical by
complex ones. In this framework, the quantum–classical boundary is not sharp. The
main characteristic of the quantum-like ensembles of dendrograms (We follow the
statistical interpretation of quantum mechanics [33]. By this interpretation, quantum
states are mathematical symbols encoding the ensembles of identically (and in real
experiments, similarly) prepared quantum systems. However, DH theory excludes
systems and it operates solely with events. Thus, the statistical interpretation is applied
to ensembles of events. The ensembles of dendrograms whose members have a high
degree of similarity are treated as quantum-like ensembles. Typically, such dendrograms
should be simple: it is difficult to realize an ensemble of complex dendrograms (with
long branches) whose individuals are very similar. “Quantumness” is checked with
various statistical tests, e.g., the CHSH test (see [2])) is their simplicity; geometrically,
these are trees with short branches. The ontic p-adic universe that is geometrically
described by the infinite tree is classical. Thus, “quantumness” appears only at the level
of observation.

Our main mathematical tool was numerical simulation based on the application
of hierarchic clustering algorithms and construction of dendrograms (finite trees) from
geodesics corresponding to metric tensors of GR (in this paper the Schwarzschild
metric) (As was mentioned in the introduction, the generation of tree-like represen-
tation with hierarchic clustering algorithms is like the generation of the ultrametric
structure in the theory of complex disordered systems (e.g., spin glasses). In the p-
adic this was developed in works by Parisi and Sourlas [20] and Khrennikov and
Kozyrev [34–36]). Like the works of Wheeler [4], Smolin [6], and Rovelli [8], space-time
loses its fundamental role in DH theory. Smolin’s theory was based on the causal struc-
ture and not space-time. In DH theory, we consider the hierarchic structure instead of
causal structure.
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In contrast to Smolin [6], we emphasize that all events are always present in DH theory
(this is more in accordance with Barbour’s [37] “always present events”) and does not
need to appear by a dynamic process. We note that we do not need to postulate a casual
structure, the fundamentality of time, momentum, and energy as in Smolin’s study. In
contrast to Barbour, we do not require probabilities in the space phase to produce the
apparent dynamics.

In future work, we will consider a variety of GR metrics and proceed to the basic
GR phenomena.
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Appendix A. Hierarchic Clustering

Clustering is basically a technique that groups similar data points such that the points
in the same group are more like each other than the points in the other groups. The group
of similar data points is called a cluster.

When it comes to clustering, we are provided with a data set that contains only data
points. Each data point has the same number of coordinates (in our study each data point
had three coordinates vector [x y t]). Here we are not provided with the class labels of each
data point. Hierarchical clustering is based on a distance, defined on all pairs of the data
points. That is, a distance is a positive real value. We will require that a distance cannot
be zero-valued unless the objects are identical. Thus, the starting step of the clustering
procedure is the nxn distance matrix between all pairs of data points. In our study, we used
the Euclidean norm the distance metric.

Hierarchical clustering starts by treating each data point as a separate cluster. Then,
it executes the following two steps: (1) identify the two clusters that are closest together,
and (2) merge the two most similar clusters. This iterative process continues until all the
clusters are merged. Thus, the initial step, the merging process between two clusters that
represent two data points into one larger cluster can be visualized as two points or two
edges whose nodes merge into one point/edge; thus, we create a tree with two edges and
two nodes and one root point. After the initial step, we have clusters with either two or
one data points. We merge the clusters based on their root distance metric iteratively until
we have one big cluster. These two steps are accomplished by a linkage method, which in
our study was the ward’s method which uses the increase in the total within-cluster sum of
squares as a result of joining the two clusters. The within-cluster sum of squares is defined
as the sum of the squares of the distances between all objects in the cluster and the centroid
of the cluster. The sum of squares metric we used is defined as:

d(s, r) =

√
2nsnr

(ns + nr)
||x̃s − x̃r||

where

|| || is the Euclidean distance.
x̃s and x̃r are the centroids of clusters r and s.
ns and nr are the number of elements in clusters r and s.
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Appendix B. From Trajectories of Emitted Photons to a P-Adic Scale Free Dendrogram

We outline the simulation and computation steps which produce the p-adic scale free
dendrogram.

Step 1. Producing discrete trajectories of emitted photons.

Step 1.1
We simulated a discrete trajectory of a single point-like photon emitted from a

fixed coordinate point in a certain direction is a 2 + 1 space-time manifold formed by
a Schwarzschild black hole.

Thus, each discrete space-time location i, where i ∈ 1, 2..n n = number o f discrete
locations, of the photon was registered as a three-coordinate vector locationi = [t x y]. In
the principle locationi it can have any number of coordinates or data features’ vectors.
Thus, any number of dimensions of any coordinate system can be treated with exactly the
procedures outlined here.

Step 1.2
We produced N such discrete trajectories of N emitted photons from different locations

and with different directions on the manifold.
Thus, each photon location n by 3 array was attributed to a photonj where j ∈ 1, 2..N

N = number o f emitted photons.

Step 2. Producing an agglomerative hierarchical cluster binary tree from a trajectory of
a single emitted photon.

Step 2.1
Calculating the pairwise distance matrix: for a single photonj, where j ∈ 1, 2..N

N = number o f emitted photons.
We obtained its n by 3 location array. We then calculated ‖locationi − locationr‖ where

‖ ‖ is the Euclidean distance between the three coordinate i’th locations and the three
coordinate r’th locations.

Step 2.2
We used the ward’s linkage method to recursively link clusters according to the

distance matrix. The ward’s linkage method calculates the increase in the total within-
cluster sum of squares as a result of joining two clusters. The within-cluster sum of squares
is defined as the sum of the squares of the distances between all objects in the cluster and
the centroid of the cluster. The sum of squares metric we used is defined as:

d(s, r) =

√
2nsnr

(ns + nr)
||x̃s − x̃r||

where

‖ ‖ is the Euclidean distance.
x̃s and x̃r are the centroids of clusters r and s.
ns and nr are the number of elements in clusters r and s.

We then obtained, as an output from the ward’s linkage method, the agglomerative
hierarchical cluster tree, returned as a numeric matrix Z which is an (n − 1)-by−3 matrix,
where

n = number o f discrete locations in the photon trajectory.

Columns 1 and 2 of Z contain cluster indices linked in pairs to form a binary tree. The
leaf nodes are marked as cluster indices from 1 to n. Leaf nodes are the singleton clusters
from which all higher clusters are built. Each newly formed cluster, corresponding to row
Z(I,:), is assigned the index n + I. The entries Z(I,1) and Z(I,2) contain the indices of the two
component clusters that form cluster n + I. The n − 1 higher clusters correspond to the
interior nodes of the clustering tree. Z(I,3) contains the linkage distance between the two
clusters merged in row Z(I,:).



Entropy 2022, 24, 181 21 of 22

Step 3. Producing an agglomerative hierarchical cluster binary tree from all trajectories
of all emitted photons.

Step 3.1
Calculating the pairwise distance matrix: for each

photonj, wherej ∈ 1, 2..N N = number o f emitted photons

We obtained its n by 3 location array. We then joined all location arrays of all photonj
we created in Step 1.2 with the outcome of a big u by 3 Ulocation array

where u = number o f discrete locations obtained f rom all trajectories.

We then calculated ‖Ulocationi − Ulocationr‖ where ‖ ‖ is the Euclidean distance
between the three coordinate i’th locations and the three coordinate r’th locations.

Step 3.2
We used the ward’s linkage method to recursively link clusters according to the

distance matrix (see Step 2.2).

Step 4. Producing a p-adic scale free dendrogram from an agglomerative hierarchical
cluster binary tree.

Step 4.1
Each leaf node of the agglomerative hierarchical cluster binary tree has a path from

root to leaf. The leaf path passes m nodes of bifuractions. Each node of bifurcation, in a
leaf path, bifurcates right or left. Thus, each leaf path will be represented as a binary string,
branchr r ∈ 1, 2..n n = number o f discrete locations.

- The i’th (i ∈ 1, 2..m) position of the binary string will have the value 1 if at the i’th
node of bifurcation (i ∈ 1, 2..m) the path bifurcates right.

- The i’th (i ∈ 1, 2..m) position of the binary string will have the value 0 if at the i’th
node of bifurcation (i ∈ 1, 2..m) the path bifurcates left.

Step 4.2
All branchr will be joind to form a matrix D, which represents the p-adic scale free

dendrogram with n number of rows and w number of columns where

n = number o f discrete locationsw = maximal i′ th in all pathr with the value 1

Each branchr i’th position that is bigger than its m but smaller or equal to w is filled
with the value 0.

Each row in the D matrix which represents a p-adic scale free dendrogram is a string
with values of 0/1.

Each such row represents the j′th leaf node branch of the p-adic scale free dendrogram,
where j ∈ 1, 2..n n = number o f discrete locations.

Step 5. Calculating the sum of p-adic expansion from p-adic scale free dendrogram, D.

For each row in D, which represent the j′th leaf node branch, we calculated the sum of
p-adic expansion as follows.

branchj = {a1, a2, a3 . . . aw} where ai ∈ 0, 1 thus Vj =
w

∑
i=1

ai2i−1

Thus, Vj uniquely represents the p-adic scale free branch of the j′th leaf node.
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