
1Scientific REPOrTS |  (2018) 8:10778  | DOI:10.1038/s41598-018-28972-z

www.nature.com/scientificreports

Temporal evolution of 
hydroclimatic teleconnection and 
a time-varying model for long-
lead prediction of Indian summer 
monsoon rainfall
Riya Dutta & Rajib Maity

Several cases of failure in the prediction of Indian Summer Monsoon Rainfall (ISMR) are the major 
concern for long-lead prediction. We propose that this is due to the temporal evolution of association/
linkage (inherent concept of temporal networks) with various factors and climatic indices across the 
globe, such as El Niño-Southern Oscillation (ENSO), Equatorial Indian Ocean Oscillation (EQUINOO), 
Atlantic Multidecadal Oscillation (AMO), North Atlantic Oscillation (NAO), Pacific Decadal Oscillation 
(PDO) etc. Static models establish time-invariant (permanent) connections between such indices 
(predictors) and predictand (ISMR), whereas we hypothesize that such systems are temporally 
varying in nature. Considering hydroclimatic teleconnection with two major climate indices, ENSO 
and EQUINOO, we showed that the temporal persistence of the association is as low as three years. 
As an application of this concept, a statistical time-varying model is developed and the prediction 
performance is compared against its static counterpart (time-invariant model). The proposed 
approach is able to capture the ISMR anomalies and successfully predicts the severe drought years too. 
Specifically, 64% more accurate performance (in terms of RMSE) is achievable by the recommended 
time-varying approach as compared to existing time-invariant concepts.

Spatio-temporal variability of rainfall has significant economic and societal impacts, particularly for agricul-
ture based countries. For instance, India receives more than 80% annual rainfall in four monsoon months 
(June-September) and substantial fluctuations are noticed in the annual food grain production due to the vagar-
ies of monsoon. The association can be stated by the fact that the dips (such as 2002 and 2014) and peaks (such 
as 2013 and 2016) in the food grain production correspond to below normal and above normal monsoon rainfall 
respectively1. Naturally, considerable efforts including long-lead monsoon prediction needs to be made towards 
identifying and adopting strategies to deal with crisis situations. Due to considerable complexity in the evolution 
of ISMR, the long-lead prediction remains as a challenging task, particularly in a changing climate2–4. A large 
number of studies have analyzed the inter-annual variability of ISMR5; however the long-term climate fluctua-
tions which modulate such variability are still not clear.

The long-range forecasting of ISMR was started more than a century ago. These are broadly grouped into 
statistical6–18 and dynamical19–25 forecasting approaches. Despite advancement in physical understanding and 
development of advanced statistical models the forecast failed in recent years too. Some major issues and inher-
ent problems in the statistical models such as variation in the predictor-predictand relationship over time and 
conditional dependence among the predictors shows the necessity for constant scrutiny and update in the mod-
els2,12,26–29. The changes can be brought out in different ways, such as the use of new predictors, changing the 
combination of the predictors or lags, updating the model parameters, etc.

Predictor selection is an important aspect of statistical modeling and two climatic indices strongly influenc-
ing the variability of ISMR are El Niño-Southern Oscillation (ENSO) and Equatorial Indian Ocean Oscillation 
(EQUINOO)10,13,15,30–32. The concept of utilization of ENSO and EQUINOO as predictor lies in the hydroclimatic 
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teleconnection33,34. However, we hypothesize that the nature of such association varies considerably with time 
and must be considered for consistency in long-lead prediction. The above and below normal summer monsoon 
rainfall from 1958 to 2003 are associated with favorable (unfavorable) phases of both the climatic indices10. In 
fact, inter-annual variation of ISMR is concurrently associated with ENSO and EQUINOO, for e.g. the impacts of 
El Niño during 1997 and 2002 were neutralized by negative/positive phases of EQUINOO31.

Though the statistical models used at present by IMD strongly acknowledge the association of large scale 
coupled atmospheric-oceanic circulation from tropical Pacific (e.g., ENSO) and tropical Indian Ocean (e.g., 
Equatorial South East Indian Ocean SST anomaly) with ISMR35, forecasts have failed in many recent years. 
The reason was considered to be weakening and or evolving nature of association between climatic indices and 
ISMR26,36–38. Continuous occurrence of such events over the years shows that the association between ISMR 
(predictand) and the climatic indices (predictor/input variables) varies with time. Thus, long-lead seasonal pre-
diction of ISMR is required to consider two important issues – (i) identifying the most influencing predictors with 
appropriate lags and (ii) identifying the time-varying nature of predictor-predictand association. These form the 
motivation of this study. Conditional independence among the predictors is utilized to address the former issue 
and time-varying characteristics of the proposed model addresses the latter issue. Thus, the objective of this study 
is to develop a long-lead, time-varying statistical model for the prediction of ISMR along with uncertainty quan-
tification. The potential of using time-varying approach is contrasted against classical time-invariant approach.

Results
Model development and selection of optimum time horizon.  Methodological outline and concept 
of time-varying approach is shown in Fig. 1. Details of mathematical steps and discussion are provided later 
in methodology section. At the outset, optimum prediction time horizon (n years) has to be decided for the 
development of the time-varying model. Towards this a range of prediction time horizons, starting from 1 to 10 
years are utilized and the model development period is considered as a moving 30 years window. The conditional 
independence structure is used to obtain the potential predictors, listed in Table 1, for a particular model develop-
ment period and the prediction model is developed by employing conditional dependence using C-Vine copula 
approach. The analysis is repeated for each prediction time horizons and the results are compared for identifica-
tion of the optimum value of n. The performance statistics namely Correlation coefficient (R), Root Mean Square 
Error (RMSE), Index of agreement (Dr), Nash-Sutcliffe Efficiency (NSE) and Coefficient of determination (R2), 
comparing the observed and the predicted ISMR for different prediction time horizons are shown in Fig. 2a. A 
heat map depicting the deviation of predicted values from observed ISMR for each time horizon (1, 2… 10 years) 
during entire model testing period (1980–2009) is shown in Fig. 2b. As expected, with an increase in the predic-
tion time horizon the model performance becomes poorer as it is unable to capture the variations in association 
between the climatic indices and ISMR, which is true for prediction time horizon beyond 3 years. On the other 
hand, prediction time horizon shorter than 3 years does not yield significant improvement in model performance. 
Moreover, associating with the heat map, the total absolute error for the entire testing period associated with 
each time horizon (Fig. 2c) depicts that minimum error is obtained for prediction time horizon of 3 years. Thus, 
the optimum value of n for the time-varying model is considered as 3 years. In other words, association between 
predictor set of climatic indices and ISMR is recommended to check and update the model parameter after every 
3 years.

Considering an optimal time horizon of 3 years, successive model development periods are 1950–1979, 1953–
1982, 1956–1985, …, 1977–2006, and the corresponding testing periods are 1980–1982, 1983–1985, 1986–1988, 
…, 2007–2009 respectively. As a typical example, the conditional independence structure for the first model 
development period (1950–1979) is shown in Supplementary Fig. S1. It is noticed that the variation of ISMR is 
directly dependent on the August (9th lag) ENSO En( )9  and July (10th lag) EQUINOO Eq( )10  of the previous year 
and thereby stated as the potential predictors. Thus probabilistic model is developed using the potential predic-
tors and the corresponding model is f y En Eq( / , )9 10 . Similar conditional independence structures have been 
developed for all the model development periods using the directly influencing predictors (Table 1). It can be 
noticed, that the input variables and corresponding model structure is getting modified gradually over time, 
indicating the necessity of time-varying model.

Time-varying association of the climatic indices and ISMR.  After identification of the potential pre-
dictors, the time variability of their effectiveness can be studied using the edge strength. The temporal variation of 
association between ISMR and the climate indices at different lags are shown in Fig. 3 (3-D plots showing only the 
significant edge strength for both ENSO and EQUINOO), Supplementary Fig. S2 (ENSO), and Supplementary 
Fig. S3 (EQUINOO) along with the significance threshold of Edge Exclusion Deviance (EED) >3.84. The anal-
ysis was carried out using April (1st lag) ENSO and EQUINOO of present year to April (13th lag) ENSO and 
EQUINOO of the previous year. However, significant edge strength were found only in the range of September 
to April (8th to 13th lag) ENSO and EQUINOO of the previous year. Thus, the above mentioned figures depict 
these lags only. The plots show the temporal variation in association of September to April (8th to 13th lag) ENSO 
and EQUINOO of the previous year, the time when these were found statistically significant. Supplementary 
Fig. S2 shows an increasing trend in the strength of association between different lags of ENSO and ISMR from 
1962 to 1991, which reaches a peak around 1991. Then the strength of association drastically reduces for most 
of the lags and again increases gradually till 2009. Supplementary Fig. S3, shows that April, May, August and 
September EQUINOO of previous year do not have any significant edges with ISMR, that is the strength of asso-
ciation is either very low or nil. However, July and June EQUINOO of previous year shows significant association, 
where July EQUINOO of previous year shows an increasing trend and June EQUINOO of previous year shows 
a decreasing trend. The 3-D plots in Fig. 3 explicitly show the appearance and disappearance of different lags 
of ENSO and EQUINOO. The appearance (disappearance) of the bars in these figures indicates the significant 
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Figure 1.  Methodological concept and flowchart. (a) Model development involves two major steps – 
development of the conditional independence structure and development of the C-Vine copula model. The 
conditional independence structure is utilized for identification of the potential predictors. In this process, 
initially a fully saturated model is considered where the red nodes signify the predictors and the green nodes 
signify the target variable. After eliminating the insignificant edges (at 95% significance level), the blue nodes 
designate the parents of the target variable and the purple node designates conditionally independent variables. 
Next, the C-Vine copula model is utilized to evaluate the conditional dependence of the target variable given 
the potential predictors (directly influencing variables). (b) The time-varying concept utilizes a series of moving 
model development periods that utilizes the concept shown in a. The time-varying concept is incorporated in 
the model by sliding the model development period by n years (optimum prediction horizon) and updating the 
input variables and the model parameters (Table 1).

Sl. 
No

Model Development 
Period

Model Testing 
Period Probabilistic Model with Inputs

1 1950–1979 1980–1982 ( )f y En Eq/ ,9 10

2 1953–1982 1983–1985 ( )f y En Eq/ ,9 10

3 1956–1985 1986–1988 ( )f y En En Eq/ , ,8 9 10

4 1959–1988 1989–1991 ( )f y En En En En En En Eq/ , , , , , ,8 9 10 11 12 13 11

5 1962–1991 1992–1994 ( )f y En En En En En En Eq/ , , , , , ,8 9 10 11 12 13 11

6 1965–1994 1995–1997 ( )f y En En En En Eq/ , , , ,8 9 10 11 11

7 1968–1997 1998–2000 ( )f y En En Eq/ , ,8 9 11

8 1971–2000 2001–2003 ( )f y En En En En Eq Eq/ , , , , ,8 9 10 11 10 11

9 1974–2003 2004–2006 ( )f y En En En En En Eq Eq/ , , , , ,8 9 10 11 12 10, 11

10 1977–2006 2007–2009 ( )f y En En En En En En Eq Eq/ , , , , , , ,8 9 10 11 12 13 10 11

Table 1.  Details of the model development period, testing period and the probabilistic models developed from 
the dependence structure for the respective time period using optimal time horizon of 3 years.
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(insignificant) edge strength for that particular lag at 95% significance level. Such variation in the strength of 
association may be the major source of inconsistency in seasonal forecasting.

Performance and comparison of time-varying C-Vine model.  In general, the time-varying associa-
tion suggests that the time-invariant set of predictors may suffer from consistency in performance. To investigate 
this fact, the performance of time-varying approach and time-invariant approaches are compared.

To assess the improvement gained through the time-varying approach as compared to time-invariant 
approach, four models are used – Time-varying C-Vine model, Time-varying Support Vector Regression (SVR) 
model, Time-invariant C-Vine model and Time-invariant SVR model. In case of time-invariant approaches, 
the model developed for time period 1950–1979 is used for prediction of ISMR for the entire testing period 
1980–2009. The relative efficacy of first three models, in capturing the variation in anomalous ISMR (deviation 
from the long-term mean), is shown in Fig. 4a. The corresponding percentage errors obtained using these mod-
els are shown in Fig. 4b. Absolute errors are shown for easy comparison. The actual values of error percentage 
are given in Supplementary Table S1. It is noticed that the time-invariant SVR model performs very poorly and 
excluded from Fig. 4a,b for clarity. In general, the time-varying models are found to yield more accurate results, 
as compared to the time-invariant model, rightly capturing the nature/behavior of the recorded anomalous rain-
fall values in almost all the years during the testing period (Fig. 4a,b). The significantly above normal (e.g., 1988, 
1994) and below normal (e.g., 1986, 1987, 2002, 2004, and 2009) ISMR are very well captured. Thus, the results of 
the proposed approach suggest that the time-varying model used in this study appropriately predicts the ISMR 
anomalies including major drought years, such as 2002, 2004 and 2009.

The comparison is also carried out between the predicted values obtained from different models and the 
actual values of ISMR during the testing period through scatter plot (Supplementary Fig. S4) and performance 
statistics. The performance statistics obtained using time-varying C-Vine model is superior in comparison to its 
time-invariant counterpart as well as time-varying and time-invariant SVR model (Table 2). Thus, the C-Vine 
copula based time-varying model is able to provide the most precise long-lead (almost a year ahead) ISMR anom-
aly pattern. In general, the time-varying concept provides better results.

Time-varying association has been identified as one of the major issues, however it is also true that the com-
plex nature of the association needs an advance statistical model, such as C-Vine copula based approach as used 
in this study. This is established through the inferior performance of time-varying SVR model as compared to 
time-varying C-Vine model (Fig. 4a,b). Minimum error in case of time-varying C-Vine model is confirmed for 
all the years in the testing period except 2001, when the error with time-varying C-Vine model was found to be 
7%. For this particular year and only for this year, time-invariant C-Vine model shows better performance with 
5% error. However, time-varying SVR model yields a 2% error in 2001. Thus, in general, the time-varying concept 
provides better results for 2001 also. Slightly poorer performance of time-varying C-Vine model could not be 
explicitly pointed out. However, in general, we also agree that consideration of other factors (discussed later) may 
improve the results in general including the stray performances as noticed in 2001.

Figure 2.  Selection of optimum time horizon for the time-varying model. (a) ISMR prediction during the 
testing period (1980–2009) is carried using the time-varying C-Vine model considering the prediction time 
horizons of 1 to 10 years for the selection of the optimal time horizon. A grouped bar-plot showing different 
performance statistics for the predicted results using each time horizon clearly depict 3 years as the optimal 
prediction time horizon, (b) a heat map showing the year-wise deviation of the predicted values from observed 
ISMR for each time horizon and entire model testing period, and (c) the map is associated to the total error for 
the entire testing period, which shows prediction time horizon of 3 years is optimum. As the prediction time 
horizon increases beyond 3 years, the value of error increases indicating the decreasing temporal persistence of 
the identified model.
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Figure 3.  The significant edges between the climatic indices and ISMR for time horizon of 3 years. (a) The 
presence or absence of association between the different lags of ENSO and ISMR is investigated through their 
respective edge strengths. The significant edges and the corresponding edge strength for a particular lag of 
ENSO with ISMR is shown by the bar plot. It is observed that the August (9th lag) ENSO of the previous year 
appears in 1950–1979, however with very low strength of association. The remaining five lags (8th, 10th, 11th, 
12th and 13th lag) appear in 1959–1988 and show an increasing strength of association till 1962–1991 and then 
gradually reduce. Again the edges appear around 1971–2000 and the edge strength for all the lags (8th to 13th 
lag) shows an increasing association till 2009, and (b) the significant edges and the corresponding edge strength 
for a particular lag of EQUINOO with ISMR is shown by the bar plot. It can be observed that only July and 
June (10th and 11th lags) EQUINOO of the previous year, show significant association with ISMR. The July 
EQUINOO of previous year appears in the time period 1959–1988, right around the years lags of ENSO showed 
an appearance, and is consistently showing an increase in the edge strength till 2009. The June EQUINOO of 
previous year also shows significant edge strength right from 1950, then gradually reduces, again reappears 
around 1971 and again disappears by 2009.
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The C-Vine copula based approach also provides conditional uncertainty quantification, which is another use-
ful information. It is due to probabilistic nature of prediction which is obtained from the conditional distribution, 
conditioned on the potential inputs. Figure 4c shows the confidence interval (uncertainty band) of the predicted 
ISMR with the lower and the upper limits as 5th and 95th percentile respectively, and the 50th percentile values are 
compared with the observed values. It is noticed that most of the observed values are captured within this range.

Discussion and Conclusion
The problem of long-lead prediction of ISMR has been addressed, through a time-varying model, which uses 
lagged large scale climatic indices (ENSO and EQUINOO) as the predictors. Previously 1997, 2002, 2004 and 
2009 were the examples of failure in ISMR prediction4,10,26,39. The year 1997 was expected to be a drought due to 
a huge El Niño event year however turned out to be normal and the years 2002, 2004 and 2009 were not expected 
but turned out to be severe drought years. Weakening relationship, unaccounted influence of Indian Ocean 
Dipole, and non-stationarity are some of causes listed in the literature and new analyses are attempted in several 
studies26,35–38,40. Our analysis indicates the possible cause could be the absence of temporal persistence in the net-
work structure of the prediction model. That means the temporal links owing to hydroclimatic teleconnections 
changes over time. In this context, temporal networks, that changes over time, have proven to be advantageous 
compared to their static counterparts that are characterized by permanent connections between variables29,41. 
In our study, inherent concept of the temporal networks is used that is the network structure itself changes over 
time. Towards this, identification of the directly influencing predictors and their respective lags poses a challenge 
in the field of long-lead seasonal prediction of ISMR as the number of influencing variables is high. The condi-
tional independence structure is employed to identify the association among the different lags of climatic indices 
and ISMR. It can be noticed, that the input variables and corresponding model structure is getting modified 

Figure 4.  Comparison of the performance between time-varying and time-invariant approaches. (a) Observed 
and predicted rainfall anomaly (deviation from long-term mean) obtained using the time-varying C-Vine 
model, time-varying SVR model and time-invariant C-Vine model. For clarity time-invariant SVR model 
is not included which performs much poorer (Table 2), (b) the percentage absolute error resulted from 
aforementioned three prediction models. The time-varying C-Vine model is found to be the best performing 
model, and (c) comparison of the observed and predicted (50th percentile) ISMR using the time-varying C-Vine 
model. The uncertainty band of the predicted ISMR is shown as an envelope where the lower and the upper 
limits corresponds to the 5th and 95th percentile respectively.

Performance 
Statistics

Model Used

Time-varying 
C-Vine

Time-invariant 
C-Vine

Time-varying 
SVR

Time-invariant 
SVR

R 0.85 0.28 0.69 0.12

RMSE 30.16 84.74 58.28 103.88

NSE 0.72 0.02 0.42 0.01

Dr 0.75 0.53 0.65 0.36

R2 0.72 0.07 0.48 0.01

Table 2.  Model performances during the testing period (1980–2009). In general, the time-varying concept 
provides better results and time-varying C-Vine model provides best results.



www.nature.com/scientificreports/

7Scientific REPOrTS |  (2018) 8:10778  | DOI:10.1038/s41598-018-28972-z

gradually over time, indicating the necessity of time-varying model. The time-varying nature of the association 
throttles the consistency of any prediction model and can be addressed by considering the time-variation in the 
predictand–predictor relationship as utilized in the proposed model. Temporal networks also emphasize on the 
concept of identification of the optimal prediction time horizon and updating the predictors and the parameters 
of the model for each moving window29. Literature states that optimization of the prediction time horizon is vital 
as larger time horizons are unable to capture the temporal variation in associations and tends to a more static 
network and shorter time horizons may provide erroneous results. In this study, it is found that the model should 
be updated after an optimum prediction time horizon of 3 years after which the model and the input set needs to 
be updated.

The lead time of prediction for the time-varying model is 8 months, which enables us to predict the nature 
of ISMR for the following summer monsoon season at the end of the present monsoon season. In brief, 
time-varying, C-Vine copula based approach provides less than 5% error in most of the years and less than 10% 
error in all the years during the testing period (1980–2009) (Fig. 4b). Thus, the consistent performance is achieved 
following the proposed approach.

The performance of time-varying approach is found to yield more accurate results, as compared to the 
time-invariant model, rightly capturing the anomalies of ISMR. To be specific, 64% more accurate performance 
(in terms of RMSE) is obtained by the proposed time-varying model as compared to time-invariant C-Vine 
model. Further, among the time-varying approaches, C-Vine based model is found to provide 21.8% more accu-
rate performance in terms of RMSE as compared to SVR based approach.

Finally, we like to state that this study uses two major climatic indices, however many other large scale indices 
namely, Atlantic Multidecadal Oscillation (AMO), North Atlantic Ocsillation (NAO), Pacific Decadal Oscillation 
(PDO), El Niño Modoki Index (EMI) etc. influence the ISMR. Using the time-varying concept, these climatic 
indices can be also used in addition to ENSO and EQUINOO. Moreover similar studies can be carried out at finer 
spatial scale to study the time-varying association of the climatic indices and other factors with the variability of 
regional rainfall.

Data and Methodology
Data Used.  The following data sets for the period 1950–2009, are used in this study: (i) ISMR obtained from 
Indian Institute of Tropical Meteorology (available at www.tropmet.res.in), (ii) SST anomaly over Niño3.4 region 
(120°–170°W, 5°S–5°N) obtained from climate analysis section, National Center for Atmospheric Research, USA 
(available at www.cgd.ucar.edu) and (iii) surface wind data42 from National Center for Environmental Prediction 
(available at www.cdc.noaa.gov). Rainfall anomaly values are obtained considering 1970–2000 as base period and 
EQUINOO43 index is computed as the negative of the zonal wind anomaly at surface in the equatorial Indian 
Ocean region (60°E–90°E, 2.5°S–2.5°N).

Methodology.  The overall methodology consists of several important aspects. First, it starts with the iden-
tification of the time-varying association of the predictors (ENSO and EQUINOO with several lags) with ISMR. 
However, there could be redundancy in information from different input variables, i.e., same information may be 
available from more than one variable. Hence, the predictors are selected based on the conditional independence 
structure between the pool input variables and the target variable (ISMR). Conditional independence structure 
helps to identify the variables that are directly or indirectly influencing the target variable. No influence of some 
variables is also identified, if such variable(s) exist (exists) in the pool of input variables. Indirectly influencing 
variables are known as conditionally independent for the target variable, i.e., given the directly influencing var-
iables, such conditionally independent variables can be ignored from the set of predictors. Next, discarding all 
the independent and conditionally independent input variables, the prediction model is developed using C-Vine 
copula approach.

Secondly, a prediction time horizon (n years) after which the model needs to be updated to impart the 
time-varying characteristics needs to be identified. This is optimized in such a way that it should not be too long 
to miss the temporal variation in association and too short to avoid frequent updating. An optimum value of n 
years will ensure the best possible prediction results.

Finally, the time-varying model is compared with the existing time-invariant concept based model to study 
the benefit of the former. A flowchart showing the overall methodological concept is given in Fig. 1 and the math-
ematical formulations of all the steps are elaborated in the following sections.

Predictor selection based on the conditional independence structure.  The conditional independ-
ence among the input and target variables can be revealed through a graph, which is a mathematical object, 
G = (V, E), where V is a set of vertices or nodes (representing the variables) and E is a set of edges (representing 
the association among the variables). The identification of the conditional independence structure among the 
input variables (ENSO and EQUINOO with lag 1 to 13 months) and target variable is determined using the 
maximum likelihood approach44. In this approach, initially a fully interconnected graph structure (also referred 
to as a saturated model) is considered where all the nodes are connected to each other. Next, the Edge Exclusion 
Deviance (EED) is used for testing if an edge can be eliminated from the saturated model44. The formula for the 
calculation of EED is as follows,

( )( )EED N corr X Xlog 1 , rest (1)N i j
2= − −

where N is the size of the sample and corr X X( , rest)N i j
2 |  is the partial correlation coefficient between any two ran-

dom variables Xi and Xj given the rest. The statistics EED follows a chi-squared distribution, at 5% significance 
level with one degree of freedom (as one edge is removed at a time). The threshold of EED is 3.84, so the edges for 

http://www.tropmet.res.in
http://www.cgd.ucar.edu
http://www.cdc.noaa.gov
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which the EED is less than 3.84 are to be excluded. For application of this approach the data should follow normal 
distribution, else it can be transformed using some transformation methodology (e.g., Box and Cox 
transformation45).

To check the acceptability of the obtained independence structure at a particular confidence level a test sta-
tistic, known as the deviance, can be used. The generalized likelihood ratio test statistics, evaluated based on the 
observed sample variance and the estimated variance obtained from the independence structure is called the 
deviance of the model. The deviance can be evaluated as follows44,

= − −
− −{ }( ) ( )dev N tr SV SV Klogdet

(2)
1 1ˆ ˆ

where S is the variance matrix, V̂  is the estimated variance matrix evaluated based on the number of edges 
removed from the model, K is the number of random variables and N is as stated before. The deviance (dev) fol-
lows an approximate chi-squared distribution with d degrees of freedom (where, d is the number of edges 
excluded from the saturated graph). Thus, p-value of the test statistics can be computed as χ >( )P devp

2 . For this 
study the acceptable significance level is fixed at 0.05, i.e. the obtained conditional independence structure is 
acceptable if the p-value is higher than 0.05. In case the structure fails to meet the acceptability criteria, structure 
is to be modified with lesser number of edges removed from the saturated graph.

Whereas the conditional independence structure helps to identify the potential predictors, time variability 
of their potential is another important aspect. This is quantified through a statistical measure known as edge 
strength. Thus, the surviving edges of the conditional independence structure are investigated for their strength 
of association, also known as edge strength. The edge strength between two nodes (for a surviving edge) in the 
conditional independence structure can be calculated as follows44,

( )( ) ( )Inf X X rest corr X X rest1
2

log 1 , (3)i j N i j
2



= − −

where 
( )Inf X X resti j  is the edge strength between Xi and Xj given rest. This is also known as divergence against 

conditional independence44. This information on edge strength is used to investigate the temporal evolution of 
association of a particular input with the ISMR.

Development of time-varying association based model.  First step towards the development of the 
time-varying model is to identify the optimum prediction horizon after which the model needs to be updated. 
Denoting this as n years, the time-varying association between the predictors and the predictand is captured by 
updating the potential predictor after each n years. Development of the time-varying association based model and 
optimization of the prediction time horizon to update the model are described as follows: a climatological time 
scale is recommended for any hydroclimatic model development and thus 30 years is used as model development 
period which is considered as a moving window in the time-varying approach. The concept is as follows: consid-
ering the prediction time horizon for updating the prediction model to be n years, the first model development 
period is considered from 1950 to 1979 and the model testing period is from 1980 to1980 + (n − 1). As the model 
is updated after n years the next model development period is shifted by n years. Thereby, the second model 
development period is considered from 1950 + n to 1979 + n and the model testing period is from (1979 + n) + 1 
to (1979 + n) + 1+ (n−1). To identify the optimum prediction time horizon, the procedure is repeated for n = 1, 
2, 3, …, 10 years. The model performance is noted in each case for the contiguous model testing periods during 
1980–2009.

Development of the prediction model.  The probabilistic model is developed using the selected predic-
tors identified through the conditional independence structure. Even after obtaining the structure, there could be 
multiple predictors directly associated with ISMR. Multivariate copulas, like nested copula or vine copula are the 
best choice to develop a multivariate probabilistic model. Among different alternatives in vine copulas, canonical 
vine (C-Vine) is used in this study to develop the probabilistic model. C-Vine can be used for prediction of a 
variable by a sequence of trees46–50. These trees are referred as C-Vines and the corresponding multivariate distri-
bution is called C-Vine distribution. For a D-dimensional C-Vine (considering D − 1 number of predictors are 
selected based on the conditional independence structure), the first tree identifies (D − 1) pairs of variables whose 
distribution is modeled directly, utilizing the random variables. The second tree identifies (D − 2) pairs of vari-
ables whose distribution is conditional on a single variable evaluated by pair copula. This tree uses transformed 
variables based on the structure of the preceding tree. Proceeding, in this manner the final tree determines a 
single pair of variables conditional on the remaining variables. The analysis using C-Vine includes identifying the 
trees, its pair copula families and estimating their parameters.

Selection of each tree is based on a maximum spanning tree algorithm, where edge weights are chosen to 
reflect the dependencies. In this case, the absolute value of the empirical Kendall’s tau (τ̂i j, ) (evaluated for two 
adjoining variables of the tree Xi and Xj) is utilized as the edge weight and optimization problem is solved 
( τ∑ ∈max edges e in spanning tree ijij

ˆ  where, a spanning tree is a tree on all nodes) for each tree51. Evaluation of the 
transformed variables (for selection of the subsequent trees after the first tree) requires estimation of the pair 
copula families and parameter estimation based on the conditioning variables. Considering XD as the target var-
iable and ... −X X X, , , D1 2 1 as the conditioning variables (predictors), the conditional distribution can be devel-
oped for a −D( 1) dimensional vector = ... −V X X X( , , , )D1 2 1  by applying the following recursive relationship‒
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where V j D( 1, 2, , 1)j = ... −  is an arbitrary component of V , and = ... ...− − + −( )V X X X X X, , , , , ,j j j D1 2 1 1 1  
denotes the vector V excluding element Vj. The bivariate copula function is specified by 

−
CX V V, /j j

. The final tree can 
be utilized to evaluate the conditional dependence for prediction of the target variable given the input variables 
using the above equation.
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