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IBD, a chronic inflammatory disease, has been manifested as a growing health

problem. No Crohn’s and Colitis councils have officially ratified anti-depressants

as a routine regimen for IBD patients. However, some physicians empirically

prescribe them to rectify functional bowel consequences such as pain and

alleviate psychiatric comorbidities. On the other side, SSRIs’ prescription is

accompanied by adverse effects such as sleep disturbances. Prolonged

intermittent hypoxia throughout sleep disturbance such as sleep apnea

provokes periodic reductions in the partial oxygen pressure gradient in the gut

lumen. It promotes gut microbiota to dysbiosis, which induces intestinal

inflammation. This phenomenon and evidence representing the higher

amount of serotonin associated with Crohn’s disease challenged our previous

knowledge. Can SSRIs worsen the IBD course? Evidence answered the question

with the claim on anti-inflammatory properties (central and peripheral) of SSRIs

and illuminated the other substantial elements (compared to serotonin elevation)

responsible for IBD pathogenesis. However, later clinical evidence was not all in

favor of the benefits of SSRIs. Hence, in this review, the molecular mechanisms

and clinical evidence are scrutinized and integrated to clarify the interfering

molecular mechanism justifying both supporting and disproving clinical

evidence. Biphasic dose-dependent serotonin behavior accompanying SSRI

shifting function when used up for the long-term can be assumed as the

parameters leading to IBD patients’ adverse outcomes. Despite more research

being needed to elucidate the effect of SSRI consumption in IBD patients,

periodic prescriptions of SSRIs at monthly intervals can be recommended.

KEYWORDS

inflammatory bowel diseases, serotonin uptake inhibitors, pro-inflammatory,
anti-inflammatory, Crohn’s disease, ulcerative colitis, antidepressant, dysbiosis
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• Tissue-available dosage can be assumed as Serotonin’s

affinity determinant in binding with receptors to

represent the stimulatory or inhibitory functions.

• Complications associated with long-term SSRI use, such

as dysbiosis, overwhelm its anti-inflammatory properties

and stimulate the gut toward inflammation.

• Periodic prescription at monthly intervals is

recommended to inhibit the biphasic dose-dependent

serotonin behavior and adverse effects of long-term SSRI

consumption.
1 Introduction

One of the most prevalent manifestations of chronic

inflammation is Inflammatory Bowel Disease (IBD), which

principally comprises Crohn’s Disease (CD) and Ulcerative

Colitis (UC). IBD affects the colon, small intestine, or both and

is characterized by chronic recurrent bowel ulceration (1). The

IBD pathogenesis likely involves the complex interaction between

genetic, environmental, and immunological factors resulting in an

upsetting and exaggerated intestinal inflammatory response to

intestinal microbiota in vulnerable individuals (2, 3). A significant

part of disability and malfunctioning that occurs in chronic health

problems is associated with psychological disorders (4).

Psychological disorders can affect the symptomatic disease

courses and increase inflammation. Anxiety and depression are

known as comorbidities in IBD patients (5). They are related to the

Hypothalamic-Pituitary-Adrenal (HPA) axis activation and

increased circulating cortisol levels. Lengthened activation of the

HPA axis, as occurs in prolonged stress or chronic inflammation,

including IBD, causes chronic cortisol level elevation, leading to

reduced sensitivity of glucocorticoid receptors. Reduced

glucocorticoid receptor sensitivity can enhance immunological

responses and augment inflammation (6, 7). On the other hand,

remedies with corticosteroids can induce psychiatric symptoms (7).
eviations: IBD, Inflammatory bowel disease; CD, Crohn’s disease; UC,

ative colitis; HPA, Hypothalamic-pituitary-adrenal; SSRI, Selective

onin Reuptake Inhibitors; 5-HT, 5-Hydroxytryptamine; CNS, central

us system; EC, Enterochromaffin; Trp, Tryptophan; TPH, Tryptophan

xylase; GI: Gastrointestinal; GABA, Gamma-aminobutyric acid; SERT,

onin transporter; 5-ASA, 5-Aminosalicylic acid; SA, Sleep apnea; IH,

mittent hypoxia; SCFA, Short-chain fatty acids; TLR, Toll-Like Receptor;

Tumor Necrosis Factor; IL, Interleukin; NF-kB, Nuclear factor kappa-

-chain-enhancer of activated B cell; cAMP, cyclic Adenosine

phosphate; IFN-g, Interferon-gamma; Ahr, Aryl hydrocarbon; Kyn,

renine; TCA, Tricyclic Antidepressant; DC, Dendritic Cell; Ach,

lcholine; ROS, reactive oxygen species.
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The findings declare that the depression prevalence is

between 15% and 25%, with possibly lower rates in UC

patients than in those who suffer from CD (8, 9). Anxiety is

even more rampant, with rates of nearly 30% in IBD patients

(10). The rates of anxiety and depression have been higher

pending periods of disease flare-up (11). Interestingly almost

three-fourths of anti-depressant medications are prescribed

without companioning psychiatric indications (12).

Approximately 30% of IBD sufferers administrate anti-

depressant medications for mental health, bowel symptoms, or

both (13).

Despite the NICE guideline, which suggests taking anti-

depressants for the long term when depression is accompanied

by a chronic physical ailment such as IBD or cancer (14), none of

the Crohn’s and Colitis councils have officially ratified anti-

depressants as a routine regimen for IBD patients. However,

some physicians empirically prescribe them for two aims (15).

First, they recommend anti-depressants to rectify functional

bowel consequences such as pain (16). A qualitative study

appraising the use of anti-depressants for IBD patients

demonstrated that most gastroenterology specialists (78%) had

treated the patients for symptoms palliation with anti-

depressants as adjunctive therapy, especially for pain (17).

Second, they claim anti-depressants profitability since they can

ameliorate the psychiatric comorbidities in IBD (18).

However, findings regarding the direct benefit of anti-

depressants on IBD, regardless of their impact on psychiatric

comorbidities, are restricted, and existing ones are controversial,

especially with current investigations. Hence, in this review, the

molecular mechanisms and clinical evidence are scrutinized and

integrated to clarify the proper decision-making about Selective

Serotonin Reuptake Inhibitor (SSRI) prescribing. This study

focused on SSRIs among all the anti-depressant classes since

each class’s proficiency differs. SSRIs have been the most

common anti-depressants since 1974 (19) when they were

introduced, so debating on this group is more necessary.

Functions and pathways should be discussed to recognize

better what is happening during the SSRI treatment in IBD.
2 SSRI and IBD

2.1 Serotonin metabolism

The gut and brain, constructing 95% and 5% of serotonin (5-

Hydroxytryptamine or 5-HT), respectively, are considered the

primary sources of serotonin in the body. Serotonergic neurons

generate serotonin in the central nervous system (CNS); however,

this process in the gut is conducted by enterochromaffin (EC) cells

and the myenteric nerve plexus (20). Considering that an

enormous quantity of serotonin is attributed to the EC cells, 5-

HT metabolism and homeostasis are narrated with a focus on EC

cells (Figure 1).
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2.1.1Production
Serotonin is synthesized from the amino acid L-tryptophan

(Trp) within two stages. At first, with the indole ring

hydroxylation, tryptophan is converted to 5-hydroxytryptophan

(5-HTP) (21). This action is mainly catalyzed by tryptophan

hydroxylase (TPH), a rate-limiting enzyme identified as two

isoforms (22). TPH1 originates in the pineal gland and gut, and

TPH2 is located in the brain and serotonergic enteric nerves (23,

24). Within the next stage, amino acid decarboxylation is taken

place by tryptophan decarboxylase (25). The final product, 5-HT,

is stowed inside the vesicles by the vesicle-associated

transporter (21).

2.1.2 Distribution and function
By the luminal stimuli, mechano- and chemo-sensitive ion

channels on the EC cells are activated, and, with the influx of Ca2+

ions, 5-HT is discharged from the basolateral and apical surfaces of

EC cells (26, 27). Intraluminal-released 5-HT can affect gut

microbiota’s composition and function (28), whereas serotonin in

tissue-surrounding basal space acts as a pleiotropic component. 5-

HT exerts diverse operations in the gastrointestinal (GI) tract

through distinct receptors. Serotonin receptors can be divided

into seven types (15 subtypes) from 5-HT1 to 5-HT7, which are
Frontiers in Immunology 03
all families of G-protein-coupled receptors. In contrast, 5-HT3 is a

member of the nicotinic/Gamma-aminobutyric acid (GABAA)

family of Na+/K+ channel proteins (29, 30). Except for 5-HT5

and 5-HT6 receptors, other classes can be found in the GI tissue

(31). Mucosal secretion is adjusted with the effect of serotonin on

epithelial 5-HTR2 and neuronal 5-HTR1P, 5-HTR3, and 5-HTR4

receptors (32). Besides, the impact of 5-HT3R and 5-HT4R agonists

to reinforce muscular peristalsis has illuminated the motor

regulatory role of 5-HT (26). Platelets’ serotonin transporter

(SERT) can pick up released extracellular serotonin. 5-HT is a

component of the clotting process (31); thus, platelets are the blood

serotonin reservoirs that liberate the 5-HT to develop

vasoconstriction during bleeding (33).

2.1.3 Expunction
After all effects on the enterocytes, myenteric neurons, and

leukocytes in the surrounding tissue and catching up by platelets

remain accessible 5-HT should be deactivated. Serotonin is re-

uptaken by the SERT, and monoamine oxidase incepts a process

in which 5-HT eventually turns into 5-hydroxy indoleacetic acid

(34). SERT exists on both enterocytes and presynaptic neurons;

For this reason, to terminate the serotonin function, expunction

can be performed within either EC cells-surrounding basal space
FIGURE 1

Serotonin Metabolism. Tryptophan intracellular transport is carried out by an L-amino acid transporter; then, it turns to 5-hydroxytryptophan,
which is facilitated by tryptophan hydroxylase-1. In the second step, aromatic L-amino acid decarboxylase converts 5-hydroxytryptophan into
5-hydroxytryptamine; eventually, serotonin is stored in vesicles by Vesicular Monoamine Transporter. With the influx of Ca2+, serotonin is
exocytosed into the extracellular matrix. After affecting the targeted receptors, it is reabsorbed by the serotonin transporter and degraded by
Monoamine oxidases to 5-hydroxyindoleacetic acid.
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or synaptic cleft (31, 35). Here is where exactly SSRIs act and,

with the serotonin re-uptaking blockage, 5-HT consequences are

continued (36).
2.2 Adverse effects of SSRIs on IBD

2.2.1 GI Upset
GI upset can be a common concern of individuals with IBD

and is reported with many anti-depressant medications. These

side effects are dose-dependent and tend to decrease over the

first weeks of treatment. As a symptom of IBD, diarrhea was

reported more often with sertraline than with the rest of the

SSRIs medicines (7).

2.2.2 Risk of the bleeding
Mesalazine [5-aminosalicylic acid (5-ASA)] has been used

for a long time to treat IBD. It is an effective, safe, well-tolerated

remedy for mild to moderate UC (37, 38). SSRI use per self has

been associated with an increased risk of bleeding, particularly

during the administration’s first month. The inhibition of SERT

by SSRIs is supposed to be responsible for the risk of bleeding.

Platelets release serotonin at the bleeding site. They do not

synthesize 5-HT but acquire it from the blood and store it (39).

In this way, SSRIs may also worsen the bleeding caused by ASA,

the backbone of Mesalazine. The inhibition of cytochrome P450

by SSRIs has also been associated with an increased risk of drug

interaction, exacerbating the bleeding (40). This risk may be

increased by continuous synchronous use of other medications

associated with an increased risk of bleeding (41).

2.2.3 Sleep disturbances
Different adverse effects have been identified with SSRIs,

including sleep disturbance, sexual dysfunction, and weight gain.

The most troubling ones are seen during long-term SSRI

medication (42). Sleep Apnea (SA), as a sleep disturbance

category, is linked with many comorbidities, leading to

generally augmented morbidity. The negative effect of sleep-

disordered breathing and its connection with some

comorbidities are supposed to be secondary to the recurrent

hypoxia and sleep destruction that characterize this

disorder (43).

2.2.3.1 SSRIs, sleep disturbances, and dysbiosis

A concept that seems to be interconnected to numerous

ailments is the gut microbiome. Human microbiota refers to the

broad and thorough gathering of microbes living in an organ

such as the gut. Changes in gut microbiota have been presented

as critical in developing some chronic diseases (44).

Simultaneously, changes in the gut microbiome are related to

SA, implying that the gut microbiome is an ordinary player in

SA. Prolonged intermittent hypoxia (IH) throughout sleep

provokes periodic reductions in the partial oxygen pressure
Frontiers in Immunology 04
(PO2) gradient in the gut lumen, promoting changes in the

relative plenty of aerobic bacteria alongside the rise of amplified

obligate and facultative anaerobes (45).

Moreover, such conversion can be achieved through the

direct impact of SSRIs on the gut luminal bacterium (46, 47).

SSRIs can exert antimicrobial activity and affect bacterium

community diversity, especially considering they are taken for

long durations (48, 49). One theory proposed for SSRIs

antimicrobial relics is that they may undergo passive diffusion

across the phospholipid membrane more efficiently, allowing

interaction with cellular machinery (50). Also, SSRIs have been

shown to inhibit microbial efflux pumps, which contribute to

antimicrobial resistance and include competitive and non-

competitive inhibition and clogging of the pump’s external

pore (51). In addition, Diviccaro et al. have recently displayed

that commencing or withdrawing paroxetine (a class of SSRI)

treatment can directly alter the gut microbiota composition (52).

However, for SSRIs to affect microbiota diversity, they would

need to be present in the gut lumen at sufficient concentrations,

especially in the microbial-enriched regions such as the

ascending colon (53).

2.2.3.2 How does dysbiosis augment the inflammation
and lead to IBD?

Pieces of evidence struggle to identify the possible

mechanisms through which gut dysbiosis contributes to many

comorbid medical circumstances such as IBD. Some bacterial

species, within the normal gut microbiota composition, display

mucin-degrading features and, at the same time, do the

fermentation of nutritional fibers. This leads to short-chain

fatty acids (SCFA) production, which are vital nutrients and

energy sources for the colon epithelium (54). Gut dysbiosis

reduces butyrate and acetate levels, depriving the epithelium of

needed nutrients, which can cause epithelium dysfunction (55–

57). In addition, IH, which represents recurrent reoxygenation

cycles, induces epithelium damage (58). These perturbations

cause disorders in the tight junctions among the intestinal

epithelial cells (59). As one of the manifestations of alteration

in gut microbiota baseline composition, toxin-producing

bacteria may be increased. Endotoxins produced by these

germs can efficiently translocate through the damaged gut

epithelium into the systemic circulation and cause a state of

systemic inflammation (Figure 3) (60). Moreover, a subsidiary

duty of butyrate as the regulator of T-cells differentiation is

affected by nutrition poverty, promoting inflammation (61).

With dysbiosis, the expression of genes contributing to

oxidative stress mechanisms will be enhanced (62). Sulfate-

reducing bacteria level elevation in UC results in hydrogen

sulfate production, which can cause intestinal mucosal

inflammation due to cytotoxic features (63). Other dysbiosis-

mediated IBD elements are linked with Trp metabolism

(Figure 3). Trp metabolism with three distinct pathways

touches the immune system. Indole derivatives manufactured
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by the aryl hydrocarbon (Ahr) signaling pathway modulate

immune balance (e.g., regulation of killer T-cells) (64).

Kynurenine (Kyn) secondary production due to the Kyn

pathway exhibits inflammation regulation responses (65).

Serotonin, the final component of 5-HT signaling, has a

crucial role in immune reactions (66), which will be explained

in the subsequent section.

Abnormal regulation of 5-HT in the human gut has been

implicated with various GI disorders, such as IBD (67, 68).

Pieces of evidence showed that 5-HT was increased in CD (69,

70) and serum serotonin enhanced with SSRIs; therefore, our

former perception of SSRIs’ advantages comes across some

questions. Can SSRIs worsen the IBD course by inducing SA

or providing a high amount of 5-HT? Despite these detrimental

effects of SSRIs in IBD patients, for which purposes are they

prescribed for these individuals?
2.3 Useful effects of SSRIs on IBD

Investigators formerly believed that serotonin-dependent

mechanisms constitute a small part of IBD pathogenesis, but

other substantial elements are responsible for it. Thus, an

increase in 5-HT content due to SSRIs therapy cannot be

mainly related to IBD. On the other hand, relieving IBD

symptoms boosts the patients’ tolerance (16, 71), eliminating

psychiatric comorbidities and reducing relapse rates (11, 72).

The direct anti-inflammatory trace of SSRIs (73, 74) encouraged

physicians to prescribe SSRIs.
2.3.1 SSRI and anti-inflammation
The discovery of the inflammation role in the pathogenesis

of depression proposed that anti-depressants may participate in

inflammatory mechanisms and immune system regulation (75).

A meaningful correlation between psychological stress and

increased inflammation affirmed the mood disorders-

inflammation association (76). A significant decrease in serum

C-reactive protein concentrations four weeks after initiating

SSRIs in people with major depressive disorder (77)

corroborated their immune-regulatory properties. SSRIs do not

significantly impact inflammatory mechanisms, but other

factors modulate the complex interaction between SSRIs and

inflammation (78). Although both anti-inflammatory (73, 74,

79, 80) and pro-inflammatory (75, 81–84) effects of SSRIs were

reported, prescribing them seems to be based on their anti-

inflammatory nature.

The anti-inflammatory effects of SSRIs can be categorized

into two classes based on the mechanism’s mediators: CNS-

mediated mechanisms, represented by microglial cells, and

peripheral mechanisms, facilitated by tissue-habitant or

circulating immune-system cells (Figure 2).
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2.3.1.1 CNS-mediated mechanisms

Microglial cells are the targets for SSRIs and Serotonin and

norepinephrine reuptake inhibitors in CNS-mediated

mechanisms to apply their anti-inflammatory impresses (84).

They are essential in inflammatory regulation and primary

inflammatory response (85, 86). The glial cells mainly express

Toll-Like Receptor (TLR) 4 and CD14. TLRs mediate immune

responses to exogenous and endogenous stimulations and are

also vital regulators for neuroimmune reactions caused by stress

and major depression. CD14 plays a co-receptor role for TLR4

when inflammatory responses release inflammatory factors like

tumor necrosis factor-a (TNF-a) and interleukin (IL)-1ß (87–

90). Different cytokines (such as TNF-a and IL-1ß) are released

by activated glial cells to influence neurotransmission, HPA

activity, neuronal plasticity, and neurogenesis. Previous studies

have suggested that anti-depressant drugs act through altered

cytokine networks (91). SSRIs have been shown to influence

microglia’s capability to produce pro-inflammatory cytokines

and free radicals, including nitric oxide (82, 92–94). In their

conventional pharmacological dosage, Tynan et al. reported that

SSRIs (fluoxetine, sertraline, paroxetine, fluvoxamine, and

citalopram) with the impression of TLR decreased TNF-a
production by microglia. However, they have established that

SSRIs were moderate pro-inflammatory agents when used for

lengthened periods at low doses (95).

2.3.1.2 Peripheral mechanisms

The peripheral mechanisms mainly influence the immune

system’s regulation and inflammatory cytokine production. A

recent study in multiple sclerosis patients with major depression

reported that the expression of TLR2 and TLR4 on circulating

CD4+ and CD8+ T-cells decreased with SSRI therapy, reducing

cytokine production (96). In addition, medications such as

sertraline may debar the inflammation via the TLR3-IRF3

pathway (97). So, SSRI therapy in the stressful condition is

associated with anti-inflammatory responses (98–100). Another

suggested SSRI anti-inflammatory process is mediated by their

possible effects on decreasing nuclear factor kappa-light-chain-

enhancer of activated B cell (NF-kB) activity (101), which is

induced by the expression of pro-inflammatory cytokine genes

(14, 102). The other suggested mechanism is through the cyclic

adenosine monophosphate (cAMP). Vetulani et al. declared that

anti-depressants could increase intracellular cAMP (103) in

microglia and macrophages, alleviating pro-inflammatory

cytokines (104, 105). Another anti-inflammatory mechanism is

the inhibition of interferon-gamma (IFN-g) production by T

helper 1. Also, SSRIs suppress mitogenic-stimulated T-cell

proliferation and increase IL-10 (a cytokine against

inflammation) production by T-cells (81). Diminished

expression of inducible co-stimulatory ligand on intestinal

dendritic cells (DCs) by fluoxetine down-modulates the

antigens presenting from DCs to T-cells and impedes
frontiersin.org
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constitutes of inflammatory responses against gut microbiota

(106). Stated specificities against the inflammatory processes are

serotonin-independent, and the performance of SSRIs via 5-HT

will be described in another section. Besides the anti-

inflammatory properties of SSRIs, other components can

justify their prescription.
3 Clinical evidence

The advantage of fundamental science is more when it

becomes clear that the outcomes can be generalized to clinical

science. Assumed mechanisms about the usefulness of SSRIs

should experiment with under clinical conditions (Table 1).
3.1 Supporting evidence of
SSRI prescription

Goodhand et al. described that prescribing anti-

depressants (including SSRIs) to remedy concomitant
Frontiers in Immunology 06
depression in IBD patients not only ameliorates the current

course of inflammation but also, by preventing inflammation

relapse, diminishes the need for corticosteroid therapy and

endoscopy (72). Daghaghzade et al., in a randomized, double-

blind controlled clinical trial, demonstrated the significant

profit of duloxetine in improving the frequency of diarrhea

and severity of symptoms like pain in IBD patients (110). Also,

the amending effects of SSRIs on inflammation and symptoms

of IBD patients were affirmed by the CD activity index, as

illustrated by Yanartas et al. (109). Another prospective cohort

study conducted between 2000 and 2017 with around 44,000

subjects indicated a positive aspect of anti-depressant

treatment in IBD patients, particularly those with no history

of taking anti-depressants before IBD diagnosis. A better

influence was found in CD patients compared to UC

patients. Thus, this study showed that patients treated with

anti-depressants had a significantly lower risk of receiving

corticosteroids and anti-TNF medication than patients who

did not take anti-depressants (107). In agreement with

previous findings, Iskandar et al., in a retrospective cohort

investigation, represented that the anti-depressants can
B A

FIGURE 2

Anti-Inflammatory properties of SSRIs. (A) CNS-mediated mechanisms: SSRIs target microglial cells to impact through TLR4 and CD14, resulting
in decreased inflammatory cytokines generation (IL-1ß and TNF-a) and reduced free radicals production. HPA-axis activation via alteration in
cytokine network comes up with inflammation decrement. (B) Peripheral mechanisms: T-cell activation is inhibited by diminished antigen
presentation of intestine-habitant DC. Circulating immune cells are also impressed; increasing cAMP in monocytes and macrophages brings
about inflammatory cytokines drop. Generic immune cells were targeted through decreased pro-inflammatory cytokine gene expression,
followed by subsidence in the NF-kB pathway activity and B-cell activation. Also, alleviating TLR3 activity with the inhibition of the IRF3 pathway
leads to an inflammation drop. SSRIs directly affect T-cell by reducing TLR2/4 expression, a decline in IFN-g generation, a rise in IL-10
production, and disturbance in their proliferation.
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appease the severity of IBD patients’ condition, more

specifically in UC patients (111) (Table 1).
3.2 Evidence against SSRI prescriptions

In a qualitative questionnaire-based online survey by

Mikocka-Walus et al., most IBD patients observed no

difference with taking the SSRIs, and only 25% declared an

enhancement in their clinical presentations (115). Exploring the

relationship between SSRIs and inflammation in the colon led to

detecting a significant positive association. Fernandez et al.

realized that patients with microscopic colitis (both types of

lymphocytic and collagenous) possessed a higher rate of taking

SSRIs than the control group, particularly in the case of

sertraline (117). In a sizeable case-control study with 5,751

microscopic colitis cases based on nationwide Danish

registries, Bonderup et al. figured out a positive association

between SSRI exposure and microscopic colitis (116). In a

retrospective cohort study conducted from 1986 to 2012 on

400,000 patients with new-onset depression, SSRIs were

indicated as protective agents for UC and CD development in
Frontiers in Immunology 07
depressed patients. However, uncertainty was raised since they

had found no discrepancy in IBD development in the trial of

SSRI vs. placebo among normal individuals. SSRIs cannot

provide their protective role when consumed due to any

indication except depression (prevention of IBD in the healthy

population) (114).

Despite documents about SSRIs’ advantages in IBD patients

being controversial, comprehensive systematic reviews

announced that SSRIs are beneficial for IBD courses as the

conclusion (108, 112). Certainty about prescribing SSRIs for IBD

management existed until 2021 when Blackwell et al. declared

that continued administration of SSRIs or tricyclic

antidepressants (TCA) is a red flag for IBD patients. They

indicated that continuous consumption of SSRIs or TCAs is

correlated with corticosteroid dependency and worse clinical

outcomes in the future (113). The power of their study,

comprising a large sample size (over 6,000 participants with

UC) and long-term follow-up (between 2005 and 2016),

challenged our previous belief about SSRIs. Also, this

prospective cohort study reinforces the conclusion of a

Cochrane systematic review in 2019 that declared no firm

decision regarding the profits of SSRIs (16). How could these
TABLE 1 Clinical documents of SSRI prescription.

Authors (year) Study design Sample
population

Result

Supporting evidences

Kristensen et al. (2019) (107) Prospective cohort 42,890 cases Anti-depressants in UC and CD patients lead to decreasing the relapse rate and the risk of
taking corticosteroids and anti-TNF.

Macer et al. (2017) (108) Systematic review N/A The vast majority of studies (80%) concluded the effectiveness of anti-depressant therapy in
IBD patients.

Yanartas et al. (2016) (109) Prospective cohort 67 cases Six-month anti-depressant therapy improved depression, anxiety, and sexual function, as
well as the disease activity.

Dehghanzadeh et al. (2015)
(110)

Randomized controlled
trial

44 cases Effectiveness and safety of anti-depressants for treatment of depression and anxiety and
decreased Lichtiger Colitis Activity Index.

Iskandar et al. (2014) (111) Retrospective
observational study

81 cases The effectiveness of anti-depressants in gastrointestinal symptom relief based on the Likert
response score.

Goodhand et al. (2012) (72) Retrospective
observational study

29 cases The advantages of antidepressants in reduction of relapse rate, corticosteroid dependency,
and endoscopy procedures.

Mikocka-Walus et al. (2009)
(112)

Systematic review N/A Antidepressants posse a positive influence on the course of IBD.

Dissenting evidences

Blackwell et al. (2021) (113) Prospective cohort 6373 cases Continued SSRI use is associated with steroid dependency and demonstrated no beneficial
effect on the UC course.

Frolkis et al. (2019) (114) Retrospective cohort 403,665 cases No discrepancy in the prevention of IBD in the trial of SSRI vs. placebo within the healthy
population.

Mikocka-Walus and Andrews
(2014) (115)

Cross-sectional 98 cases Most IBD patients reported no improvement in their symptoms following the SSRI
treatment.

Bonderup et al. (2014) (116) Case-control 5751 cases The positive association between SSRIs and microscopic colitis.

Fernández-Bañares et al.
(2007) (117)

Case-control 233 cases SSRIs increase the hazard of microscopic colitis

Impartial evidence

Cochrane Database (2019)
(16)

Systematic Review And
Meta-analysis

N/A No firm decision regarding the efficacy and safety of antidepressants in IBD patients can be
made
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consequences be justified with all our knowledge about SSRIs?

Basic science answers.
4 Behind the scene

Previous evidence made the point clear that desired outcomes

of prescribing SSRIs are free from their effects on 5-HT and rely

on their immune-regulatory properties; nevertheless, subsequent

clinical proof made us doubtful about the utility of these

medications. Why should these adverse consequences appear in

IBD patients after years of SSRI consumption? We hypothesized
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that an abundant amount of serotonin resulting from continuous

consumption of SSRIs with the effect on immune system

induction might overwhelm the anti-inflammatory SSRIs’

features. We need to scrutinize the exact interactions between 5-

HT and the immune system for this theory (Figure 3).
4.1 Striking role of serotonin in the
immune system

Recognizing serotonin as a pivotal component in the immune

system began with discovering serotonergic receptors on immune
BA

FIGURE 3

The dual demeanor of Serotonin. (A) Anti-Inflammatory: The gut microbiota enter the Trp into Ahr and Kyn pathways and the 5-HT synthesis
process. Initially, SSRIs inhibit 5-HT reabsorption in platelets and myenteric nerves and boost mucosal serotonin content, initiating anti-
inflammatory mechanisms. Proliferation and resistance to ROS arise in the epithelium via the 5-HT4 receptor. 5-HT reduces TNF-a production
by monocytes and macrophages (1) directly through their 5-HT4 and 5-HT7 receptors and (2) indirectly via the 5-HT4 receptor on the
myenteric nerve, which is accompanied by releasing Ach that eventually comes up with IL-1ß, IL-6, and TNF-a decrement. Similar changes in
TNF-a fabrication occur via B-cell, T-cell, and NK cell 5-HT2 receptors. Additionally, 5-HT7 on the DC turns down the IL-6 and IL-1ß and
elevates IL-10. (B) Pro-inflammatory: Over time, SSRI dosage augmentation affects, directly and indirectly, the gut microbiota composition, and
disrupts Ahr and Kyn pathways. Pathogens’ toxins pass the leaky epithelium created by dysbiosis and stimulate the gut toward inflammation.
Moreover, the inhibition of 5-HT reabsorption is amplified, resulting in much more serotonin levels. This primes pro-inflammatory mechanisms,
which are known as the endocrine-immune axis. Macrophage phagocytosis is reinforced, and through the 5-HT2 receptor, they release IL-2
that activates T-cells. In addition, by acting on DC, 5-HT activates T-cells and increases IL-17, IL-12, and IFN-g via the NF-kB pathway.
Monocyte 5-HT1A receptor provocation reduces the inhibitory effect on NK-Cell to increase IFN-g production. On the other hand, the impacts
on 5-HT3, 5-HT4, and 5-HT7 monocyte receptors increase IL-6, IL-8, and INF-1ß. Also, B-Cell proliferates and activates through 5-HT1A
receptor instigation. The serotonin amount can boost neutrophil, basophil, and mast cell chemo-toxicity. This process is turned into a
destructive cycle since increased T-cells (CD4+ types) initiate the immune-endocrine axis (EC cells proliferation and boosting the serotonin
content). Eventually, the destructive cycle exacerbates the inflammation.
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cells in 1982 (118, 119). Since then, some immune system

functions have been attributed to serotonin, recognized as the

endocrine-immune axis. Serotonin can enhance macrophage

phagocytosis (120), increase DC, basophil, neutrophil, and mast

cell chemotaxis (121), and regulate cytokine production (122, 123).

Lately, it was elucidated that monocytes, macrophages, and T-cells

not only can be assumed as peripheral sources of 5-HT (124, 125)

but also can induce the immune-endocrine axis by affecting EC

cells. Likewise, Wang et al., in a model to discover the manner of

the immune-endocrine axis, compared the amount of 5-HT

production between wild-type mice and severe combined

immunocompromised mice in the setting of contamination with

the same Trichuris muris infection. They revealed new interactions

between CD4+ T cells with EC cells to enhance the generation of 5-

HT in the gut viaTh2-based mechanisms (126). Also, detecting the

IL-13 receptor on EC cells reinforced previous findings (126).
4.2 Stimulatory or Inhibitory modulator

Despite the cyclic interaction between the immune-

endocrine and endocrine-immune axis, serotonin can

eventually be defined as an immune system stimulatory or

inhibitory modulator (Figure 3).

As a stimulatory constituent, 5-HT actuates the molecular

mechanisms toward inflammation. The proliferation of T-cells

and B-cells is mediated by 5-HT2 and 5-HT1A receptors,

respectively (127, 128), whereas T-cells are activated via their 5-

HT7 receptors (129). Treated mice by P-chlorophenyl alanine

(inhibitory molecule of TPH-1) indicated that with the effect of

serotonin on macrophage 5-HT2 receptors, an accessory pathway

to activate CD4+ cells by releasing IL-2 is initiated (130). Serotonin

binding to the 5-HT1A receptor on monocytes makes these cells

less efficient in suppressing NK cells that are typically inhibited.

Thus, cytotoxicity and IFN-g production will be augmented based

on NK cell activity (131, 132). Later, evidence of enhancing the

NK cell proliferation and their cytosolic functions was obtained by

trials of SSRI medications (133). Another study declared that

serotonin directly improves NK cell function while some

dopamine/serotonin antagonists suppress the CD16-mediated

activity of NK cells (134). Durk et al. demonstrated that the

augmentations of IL-1ß, IL-6, IL-12p40, and IL-8/CXCL8

cytokines are 5-HT3, 5-HT4, and 5-HT7 monocyte receptor-

mediated (135). Serotonin by activating DCs motivates CD4+ T-

cells to generate IL-17 and IFN-g cytokines (136). Studies on

disease-specific cytokine patterns have elucidated the type of

CD4+ T-cells differentiation and cytokine production. Th1 and

Th17, with their manufactured cytokines (IFN-g, IL-17, and IL-

22), are assumed to be related to CD pathogenicity. Meanwhile,

Th2-like differentiation with increased natural killer T-cells

producing IL-13 is associated with UC (137).

The inhibitory role of releasing serotonin to decrease

inflammation has been portrayed in other investigations. In an
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asthma model, the 5-HT2A receptor on eosinophil exerts its

anti-inflammatory function by preventing the recruitment to the

inflammatory site (138). Suppression of IFN-g-inducing
macrophage phagocytosis through 5-HT occurs at the high

concentration of IFN-g (at the physiological dose of IFN-g, it
provides stimulatory phagocytes) (139). Inhibition of TNF-a
production by peripheral blood mononuclear cells was

illustrated by 5-HT2A excitation (140). As another piece of

evidence, TNF-a decrement was authenticated by 5-HT4 and 5-

HT7 monocyte receptors instigation (135). In an in-vitro rat

model, mosapride (5-HT4 agonist) administration enhanced

acetylcholine (Ach) release from myenteric neurons, resulting

in macrophages/monocytes Ach receptors activation. The

expression of cytokines’ (IL-1ß, IL-6, and TNF-a) mRNA

decreased in addition to immune cel l recruitment

suppression (141).
4.3 New insight into serotonin function

The dual role of serotonin not only can be exerted in the GI

system but also can affect other organs such as the vasculature.

Vascular smooth muscle cells synthesize IL-6, possibly inducing

atherogenicity of vessels in response to serotonin (142).

Furthermore, downregulating the expression of pro-

inflammatory genes and preventing the TNF-a-mediated

inflammatory pathways are obtained by selective activation of

the 5-HT2A receptor on aortic smooth muscle cells (143).

The accumulative evidence pointed to the fact that performing

the stimulatory or inhibitory role of 5-HT depends on the receptor

and the cell to which it attaches. The 5-HT4 receptor on epithelial

cells is responsible for the proliferation, resistance to Reactive

Oxygen Species (ROS)-induced apoptosis, and eventually anti-

inflammatory effect (based on barrier function improvement)

(144). In contrast, in colitis mice, IL-6 and IL-1ß (responsible

for inflammation) excessed with the administration of

intraperitoneal 5-HT and its binding to the 5-HT4 receptor on

immune cells (145). In addition to cell type, the receptor is another

role-determining element. Activation of 5-HT7 receptors on

antigen-presenting DCs and lipopolysaccharide-stimulated

macrophages, likely with the cytokine production adjustment,

diminishes inflammation severity (146). In contrast, by

implicating the other receptor on the same cell (DC), serotonin

leads to the elevation of IL-12 (through the NF-kB pathway), IL-

17, IFN-g, and ultimately the deterioration of inflammation (136).

No literature has discussed the serotonin’s affinity

determinant factors in binding to receptors to represent the

stimulatory or inhibitory function. It is now obscure that with

the dissemination of 5-HT, why it operates excitatory and does

not exert its prohibitory action, or conversely. A theory that may

justify this phenomenon is dose-dependent serotonin behavior.

This theory’s origin dates back to when Kubera et al. (95)

discovered a dose-dependent binary 5-HT function in cytokine
frontiersin.org

https://doi.org/10.3389/fimmu.2022.980189
https://www.frontiersin.org/journals/immunology
https://www.frontiersin.org


Hatamnejad et al. 10.3389/fimmu.2022.980189
production. They believed cytokine production (IL-6 and TNF-a)
by macrophages and lymphocytes needs low-level serotonin,

whereas a high dose of serotonin reduces these cytokines;

however, in our literature review, more convincing evidence

illustrated a direct correlation between serotonin dose and

stimulatory action. Tolerance induced by the SSRIs’ long-term

use, giving rise to consumption dose increment. A high amount of

available serotonin primes its stimulatory demeanor and steers the

gut toward inflammation. This process, accompanied by the

SSRIs’ dose-dependent functional alteration (shifting to pro-

inflammatory performance when applied for long periods (74)),

exacerbates the IBD patients’ condition.

The hypothesis of inhibitory or excitatory dose-dependent

serotonin role was extended, one more time, by the serotonin-

gut microbiota axis in which a lower amount of mucosal 5-HT

with direct and indirect (via producing the antimicrobial

peptides, specifically ß-defensins) effects on gut microbiota

leads to reducing pro-inflammatory cytokines, enhancing the

epithelial barrier function, and eventually prohibiting gut

inflammation, and vice versa (147).

The theory of SSRI intake’s role in setting up an oxidative

stress response has been debated (148, 149). Therefore, SSRI-

induced oxidative stress can cause cellular damage and release

endogenous ligands like adenosine triphosphate. These particles

have been termed damage-associated molecular patterns

(DAMPs), which are recognized by the pattern recognition

receptors (PRRs) on immune cells like DC cells (150, 151).

The role of PRR signaling in instigating the intestinal immune

cells against the microbiota and inducing inflammation has been

illuminated (152). Therefore, the act of SSRIs to cause the

immune response, dysbiosis, and IBD through the PRRs can

fortify the previous hypothesis.
5 Conclusion

Numerous studies have claimed SSRIs’ benefits due to their

anti-inflammatory properties and psychiatric comorbidities
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treatment. In contrast, biphasic dose-dependent serotonin

behavior accompanying SSRI shifting function, when used up

for the long-term, can be assumed as the reason for IBD patients’

adverse outcomes. Despite more trials and cohorts being needed

to illuminate the exact effect of long-term SSRIs consumption in

IBD patients, periodic prescriptions of SSRIs at monthly

intervals can be recommended.
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