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The COVID-19 pandemic has wreaked havoc
around the globe and caused significant disruptions
across multiple domains'”. Moreover, different
countries have been differentially impacted by
COVID-19 — a phenomenon that is due to a
multitude of complex and often interacting
determinants®. Understanding such complexity and
interacting factors requires both compelling theory
and appropriate data analytic techniques. Regarding
data analysis, one question that arises is how to
analyze extremely non-normal data, such as those
variables evidencing L-shaped distributions. A
second question concerns the appropriate selection
of a predictive modelling technique when the
predictors derive from multiple domains (e.g.,
testing-related variables, population density), and
both main effects and interactions are examined.

To address these questions, we propose a novel
statistical approach for analyzing and understanding
complex data interactions. Using data collected in
the USA during the first month in which COVID-19
testing was performed (March of 2020
Supplementary Table S1 available in  www.
besjournal.com), we examined the following six
predictors of COVID-19 related deaths: (i) the
proportion of all tests conducted during the first
week of testing; (ii) the cumulative number of (test-
positive) cases through 3-31-2020; (iii) the number
of tests performed/million inhabitants; (iv) the
cumulative number of inhabitants tested; (v) the
number of cases/million inhabitants (cases/mill inh);
and (vi) the number of diagnostic tests performed in
week one of testing/million inhabitants/state-

doi: 10.3967/bes2021.102

specific population density (w1DT/MI/PD), where
“population density ” is defined as the number of
inhabitants per square kilometer.

The purpose of this study was to examine the
ability of the six variables to predict COVID-19
related deaths in the United States during March of
2020. We ran the predictive model twice, once for
each dependent variable: mortality count (overall
number of deaths), and deaths per million
inhabitants. Because our model (a) uses predictors
that leverage information from multiple domains, (b)
captures both nationwide and state-specific
dimensions, and (c) examines two different
mortality-related outcomes, the results are expected
to have relevance for policy-makers.

All data used in this study were obtained from
three sources in the public domain: Worldometer
(https://www.worldometers.info/coronavirus/), World
Population Review (https://worldpopulationreview.
com/states), and Covidtracking (https://covidtracking.
com/). The data were processed and analyzed using
IBM SPSS, Minitab, and R. Univariate skewness and
kurtosis values indicated that all predictors and
outcomes were non-normally distributed, with a few
variables evidencing L-shaped distributions. The L-
shaped variables were normalized using the rank-
based inverse normal (RIN) transformation®. For
extremely non-normal data, the RIN method is a
highly effective normalizing transformation"’

The prediction models were first examined using
linear multiple regression, with the RIN-transformed
versions of all variables used in the regressions.
Because the homoscedasticity assumption (i.e.,
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constant variance of the predicted Y-values) was not
met, we re-ran the prediction models using a non-
parametric approach known as Kernel Regularized
Least Squares (KRLS) Regression[4]. KRLS is an
appropriate method to use when the assumptions of
linear regression are not met and the precise
functional forms between the predictors and
outcomes are unknown. All KRLS regressions used
the RIN-transformed variables and all analyses were
performed using the KRLS package for R. The use of
non-parametric, machine learning-based methods
such as KRLS is consistent with recent calls to place
greater reliance on artificial intelligence systems for
understanding the causes and consequences of the
COVID-19 pandemic”.

The KRLS regression results are presented in
Table 1. For number of deaths, the six predictors
accounted for 98.8% of the variance. Five of the
predictors were statistically significant (P-values <
0.002). Two of the significant predictors (i.e.,
number of test-positive cases, Cohen’sd = 2.3; and

represent different ways of quantifying the illness
burden due to SARS-CoV-2 infection. The ratio of the
two d values indicated that the predictive strength of
number of test-positive cases was 77% greater than
was cases per million inhabitants. Regarding the
second dependent variable, the six predictors
accounted for 92.6% of the variance in deaths per
million inhabitants. Five of the predictors were
significant (P-values < 0.03). For this regression
analysis, the number of test-positive cases (d = 1.1)
and cases per million inhabitants (d = 1.4) were
similar in predictive strength.

In addition to number of test-positive cases and
cases per million inhabitants, another interesting
predictor was our geo-demographic variable (i.e.,
the number of diagnostic tests/million inhabitants/
population density performed in week one of
testing, or w1DT/MI/PD). This predictor was
significantly associated with both dependent
variables. Because w1DT/MI/PD is a complex, ratio-
based predictor, discerning the precise nature of its

cases per million inhabitants, Cohen’sd = 1.3) predictive association from a single regression

Table 1. KRLS regression of potential predictors of COVID-19 related mortality

Items Estimate Std. Error t value P-value

Predictors of number of deaths
Totaltests RIN 0.111 0.033 3.326 0.002
Testedpermil RIN -0.153 0.026 -5.782 <0.001
Wkonepropalltests RIN 0.044 0.030 1.452 0.153
Wkonepermilcitperpopden RIN 0.169 0.032 5.262 <0.001
Confircases RIN 0.568 0.035 16.340 <0.001
Casespermil RIN 0.215 0.023 9.185 <0.001

Predictors of deaths per million inhabitants
Totaltests RIN -0.138 0.058 -2.352 0.023
Testedpermil RIN 0.004 0.048 0.091 0.928
Wkonepropalltests RIN 0.136 0.061 2.234 0.031
Wkonepermilcitperpopden RIN 0.161 0.063 2.570 0.014
Confircases RIN 0.408 0.055 7.353 <0.001
Casespermil RIN 0.441 0.045 9.748 <0.001

Note. All predictors were normalized using the rank-based inverse normal (RIN) transformation. Estimates
are sample-average partial derivatives. The set of predictors accounted for 98.8% of the variance in number of
deaths (R® = 0.9875). For deaths per million citizens, the predictors accounted for 92.6% of the variance (R* =
0.9264). Description of predictors: totaltests = number of tests performed in March of 2020; testedpermil =
number of all tests conducted per million inhabitants, in March of 2020; wkonepropalltests = all tests
conducted during the first week of testing, expressed as the percentage of all tests performed in March 2020;
wkonepermilcitperpopden = the number of tests performed during week one per million inhabitants, divided
by state-specific population density; confircases = total number of test-positive individuals, in March of 2020;
casespermil = number of test-positive individuals per million inhabitants, in March of 2020.
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estimate alone is challenging. To further enhance the
interpretation of this variable, we created two
scatterplots showing the association between
wi1DT/MI/PD and each dependent variable. Both
scatterplots include a best fitting linear regression
line and a lowess line (with accompanying 95%
confidence interval). Lowess stands for locally
weighted scatterplot smoothing. The lowess line is
the best fitting non-linear curve that tracks the data
points in the scatterplot. The lowess curves allow us
to make inferences about COVID-19 related deaths
at low and high levels of wiDT/MI/PD. Such
inferences are tantamount to examining COVID-19
related deaths for U.S. states scoring low versus high
on the geo-demographic predictor variable. The
scatterplots were created using the car package
for R.

As the lowess curve in the top panel of Figure 1
indicates, at higher and medium levels of
w1DT/MI/PD, the association between the geo-
demographic predictor and death count was strongly
negative and moderately negative, respectively. In
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Figure 1. Scatterplots depicting lowess curves
(the middle dashed lines) and accompanying
95% confidence intervals (top and bottom
dashed lines) for the association between
number of tests during week 1/million
inhabitants/population density and (A) number
of COVID-19 related deaths (top panel) and (B)
number of COVID-19 related deaths per million
inhabitants (bottom panel). All variables were
normalized using the rank-based inverse
normal (RIN) transformation.

contrast, at lower levels of wlDT/MI/PD, there was
little if any association between the geo-
demographic variable and number of fatalities. The
bottom panel of Figure 1 indicates that at lower
levels of wliDT/MI/PD, the association between the
geo-demographic variable and deaths per million
inhabitants was moderately positive. At medium
levels of wi1DT/MI/PD, there was little if any
association between the two variables. Finally, at
higher levels of wi1DT/MI/PD, there was a
moderately strong negative association between the
geo-demographic variable and deaths per million
inhabitants.

In constructing our geo-demographic predictor
variable, we controlled for population density
because it is an important factor associated with
disease transmission'®. Moreover, because there
typically is a lag time of several weeks or more
between being infected with SARS-CoV-2 and
showing disease-related symptoms, the association
between population density and disease-related
deaths should strengthen over time. To highlight this
point, Figure 2 presents scatterplots showing the
Pearson correlations between population density
and cumulative COVID-19 related deaths per million
inhabitants through March 31% and June 17, 2020,
respectively. The correlations were as follow: March
31% (r = 0.228, P > 0.05); June 17" (r = 0.800, P <
0.01). The difference between the two statistically
dependent correlations was evaluated using Hittner,
May and Silver’s modification of Dunn and Clark’s z
test”. The two correlations were significantly
different (z = 5.85, P < 0.0001), thereby supporting
the prediction that the association between
population density and COVID-19 related deaths will
strengthen over time.

To the best of our knowledge, this is the first
study that examines testing-, case count- and geo-
demographic variables as predictors of COVID-19
related deaths. Using a flexible, machine learning-
based approach (KRLS regression), we found that our
predictors accounted for very high percentages of
outcome variance (98.8% and 92.6% for number of
deaths and deaths per million inhabitants,
respectively).  Furthermore, with very few
exceptions, our predictors were both statistically
significant and practically important.

One novel contribution of this study was our
examination of a complex, ratio-based geo-
demographic predictor variable. This variable—the
number of diagnostic tests performed in week one
of testing/million inhabitants/state-specific
population density  (w1DT/MI/PD)—significantly
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predicted COVID-19 related deaths, but did so
differently depending on where, along the
continuum of geo-demographic values, the
predictive association was examined. At the lower
end of the geo-demographic predictor, more tests
during week one per million inhabitants, normalized
by population density, were associated with more
deaths per million citizens. In contrast, at the higher
end of the geo-demographic predictor, more tests
during week one per million inhabitants, normalized
by population density, were associated with fewer
deaths per million inhabitants. These different
guantitative patterns could reflect different
qualitative situations. In the first case (lower values
on the geo-demographic variable, where more tests
are associated with more deaths), testing seems to
pursue a confirmatory purpose. In contrast, for the
second case (higher values on the geo-demographic
variable, where more tests are associated with fewer
deaths), diagnostic testing appears to be
emphasized[gl. One implication of these findings is
that when examining our geo-demographic variable
as a predictor of deaths, the inflection points along
the lowess curves (the positions where the slope
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Figure 2. Scatterplots showing the Pearson
correlations between population density and
cumulative COVID-19 related deaths per
million inhabitants through (A) March 31,
2020, top panel (r = 0.228, 95% ClI: -0.054,
0.476) and (B) June 17, 2020, bottom panel (r =
0.80, 95% Cl: 0.671, 0.882).

rises and falls) can serve as approximate cut-points
demarcating three types of testing: confirmatory,
diagnostic, and other.

When testing prioritizes symptomatic cases, it is
expected that most tested individuals will result in
positive results (infection will be confirmed).
Because deaths will occur within a subset of infected
individuals, when testing is confirmatory (when only
symptomatic patients are tested), more tests will be
associated with more deaths. In contrast, when
asymptomatic individuals are also tested, more
tests, conducted earlier, will allow clinicians to
detect, treat, and isolate infections earlier and
prevent further viral dissemination which, in turn,
will result in fewer deaths/million inhabitants. Our
findings thus support an important recommendation
from the World Health Organization, which is that
early and frequent testing helps to prevent deaths".

In addition to the contributions described above,
we performed supplemental analyses examining the
association between population density and COVID-
19 related deaths. The role of population density in
predicting epidemic dispersal and epidemic-related
deaths is receiving increased research attention™.
To the best of our knowledge, the present study is
the first to demonstrate that the magnitude of
association between population density and COVID-
19 related deaths strengthens as the time since first
infection increases. Understanding how factors such
as testing frequency, the relative proportion of
confirmatory versus diagnostic testing, and
sociodemographic  composition influence the
temporal association between population density
and COVID-19 related deaths is an important priority
for future research.

Overall, our findings highlight the importance of
considering predictor variables from multiple
domains. When ratio-based predictors such as our
geo-demographic variable are analyzed, we
recommend examining lowess curves as a visual
interpretational aid for explicating the (often)
complex non-linear associations between such ratio-
based predictors and various outcomes of interest.
An important direction for future research on
epidemic dissemination and potential control is to
examine both ratio-based composite variables—such
as our geo-demographic measure—and traditional
multiplicative interaction terms (created as linear
products of two or more variables). The joint
examination of both types of complex variables
might result in greater predictive power and/or
might foster additional insights into the dynamics of
infectious diseases, such as COVID-19.
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