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Abstract 

Purpose: Radiation pneumonitis (RP) is the most significant dose-limiting toxicity and is one major 
obstacle for lung cancer radiotherapy. Grade ≥2 RP usually needs clinical interventions and serve RP 
could be life threatening. Clinically, tissue response could be strikingly different even two similar patients 
after identical radiotherapy. Previous methods for the RP prediction can hardly distinguish substantial 
variations among individuals. Reliable predictive factors or methods emphasizing the individual differences 
are strongly desired by clinical radiation oncologists. The purpose of this study is to develop an approach 
for the personalized RP risk prediction. 
Experimental Design: One hundred eighteen lung cancer patients who received radiotherapy were 
enrolled. Seven hundred thousand single-nucleotide polymorphism (SNP) sites were assessed via 
Generalized Linear Models via Lasso and Elastic-Net Regularization (GLMNET) to determine their 
synergistic effects on the RP risk prediction. Non-genetic factors including patient’s phenotypes and 
clinical interventional parameters were separately assessed by statistic test. Based on the results of the 
aforementioned analysis, a multiple linear regression model named Radiation Pneumonitis Index (RPI) 
was built, for the assessment of Grade ≥2RP risk.  
Results: Only previous surgery and fractional dose were discovered statistical significantly associated 
with grade ≥2RP. Thirty-nine effective SNPs for predicting the Grade ≥2RP risk were discovered and 
their coefficients of the synergistic effect were determined. The RPI score can successfully distinguish the 
RP≥2 population with 92.0% sensitivity and 100% specificity. 
Conclusions: Individual radiation sensitivity can be determined with genotype information and 
personalized radiotherapy could be achieved based on mathematical model result. 

  

Introduction 
Lung cancer is one of the most common cancers 

in the world that has a poor prognosis with the 5-year 
survival rate of less than 18%.1 According to the 
estimation from the World Health Organization 
(WHO), lung cancer will cause about 2.09 million 
annual cases of death worldwide, making it a leading 

cause of cancerous death (https://www.who.int/ne 
ws-room/fact-sheets/detail/cancer). Radiotherapy 
(RT) is one of the major treatments for lung cancer. 
The main restriction for lung cancer radiotherapy is 
radiation-induced lung injury (RILI). Although 
radiologists already took advantages of modern 
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radiation techniques to minimize the injury of normal 
tissue, pulmonary toxicity has always been an 
obstacle for them that cannot be bypassed.2 The same 
restriction applies to the treatments of other thoracic 
malignancies, like esophageal cancer. 

RILI includes acute radiation pneumonitis (RP) 
and chronic lung fibrosis. Depending on the methods 
of assessment, it has been estimated that about 5% to 
nearly 40% of lung cancer patients who underwent 
radiotherapy will develop RILI.2 Since lung is a very 
radiosensitive organ, radiation pneumonitis can occur 
in a short period and lead to pulmonary insufficiency. 
Grade≥2 RP usually needs clinical interventions and 
about 10%-20% of them are severe RP (grade≥3). Once 
a severe acute radiation pneumonitis occurred, the 
symptom usually will progress very rapidly, could be 
irreversible, and might turn into a life-threatening 
syndrome. Unfortunately, once the severe RP was 
developed limited clinical interventions could be 
applied to control the condition. Therefore, it is of 
importance to estimate the RP risk, particularly for the 
RP that needs interventions.3 An early prediction will 
help clinicians actively take interventional measures 
an reduce the risk of patients. Although 13-100% 
patients after the RT could be found had radiological 
signs of RILI in the images by computed tomography 
(CT), single-photon emission computerized tomo-
graphy (SPECT), or magnetic resonance imaging 
(MRI), much less fraction of these patients will 
actually develop clinical symptoms.2 Thus, reliable 
predictive methods are strongly desired by clinical 
radiologists.  

Tissue response to the radiation is a complex 
pathophysiological process and multiple factors 
might influence the symptoms. These factors include 
treatment factors like dosimetric parameters, physio-
logic factors such as age or gender, and genetic factors 
like genetic variants that confer radiosensitivity. From 
the previous studies, the suggested multiple 
predictive factors for the RP risk include dosimetric 
parameters, age, gender, smoking history, and 
cytokines like TGF-bete1 etc. Models that combined 
multiple clinical and dosimetric variables were also 
suggested, such as Lyman model and its improved 
version, Transfer Factor Spared from receiving >5 Gy 
model, and QUANTEC model.4-12 However, there was 
still inconsistent opinions about the power of each 
interventional parameters and no consensus was 
achieved about the best appropriate approach for RP 
risk assessment. More importantly, one problem that 
is difficult to solve for radiation oncologist is that two 
similar patients received identical radiotherapy could 
response significant differently. The underlying 
reason can be the difference of radiosensitivity 
between the two patients, which is determined by 

genetic. Unfortunately, most of the previous studies, 
the effects of genetic variations have been largely 
ignored. Only one model incorporated the patient’s 
genetic information into RP prediction but focused on 
limited genetic variants.11  

To address the issue of radiation-induced 
pulmonary toxicity, particularly on the individual 
variances of pneumonitis, we systematically assessed 
a large number of genetic variants as well as other 
factors that could potentially affect the risk of 
developing RP. Our results showed that the 
dosimetric parameters and other clinical factors 
played a much less important role than expected 
while genetic variations were much more suggestive. 
Based on these results, we built a mathematical model 
that can predict the risk of developing an RP that 
needs clinical interventions (grade ≥2). The algorithm 
just needs personal genotype information and it can 
help radiologists accurately assess the risk even before 
the radiotherapy.  

Materials and Methods 
Patients  

In this prospective study, a cohort of 118 newly 
diagnosed lung cancer patients with definitive 
radiotherapy was recruited from April 2016 to March 
2018 at the Chinese PLA General Hospital (Beijing, 
China). The eligible criteria were as following: 
histologically or cytologically confirmed lung cancer 
including non-small cell lung cancer and small cell 
lung cancer; no severe radiotherapy contraindications 
(including severe cardiopulmonary disease, severe 
autoimmune diseases, pregnant or lactating women, 
etc.); no previous and coexistent thoracic 
radiotherapy; Pulmonary function tests for patients 
before radiotherapy were strongly recommended but 
not compulsory; Karnofsky performance status (KPS) 
≥60 scores. Symptom evaluation for each patient was 
required in advance; Patients’ characteristics and their 
outcomes were unknown to investigators performing 
genetic analysis. Genetic analyses were independent 
of clinical practice. The research was approved by the 
Internal Review Board of Chinese PLA General 
Hospital (Beijing, China) and consent was obtained 
from all patients enrolled.  

Radiation treatment 
All patients were treated with image-guided 

intensity-modulated radiation therapy (IMRT) with 
6-MV X-rays from the two predefined linear 
accelerators (Elekta Synergy and Varian clinic ix). 
Radical and palliative treatment with a total dose of 
30-72Gy was performed once a day, five days per 
week. A computed tomographical simulation was 
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performed before radiotherapy treatment. Target 
volumes and critical normal organs were delineated 
by the three-dimensional Pinnacle planning system 
(version 9·2, Philips). Basic clinical characteristics and 
treatment details of those patients are shown in 
Table 1. 

 

Table 1. Patient Information and Dosimetric Parameters 

 Histology/ 
Stage 

Patients 
(n) 

Median Percentage/ 
Range 

Male  102  86·5% 
Female  16  13·5% 
Age   60 years 36-79 years 
Histology squamous 41  34·7% 

adeno 19  16·1% 
small cell 53  44·9% 
other 5  4·2% 

Stage I-II 7  5·9% 
III 86  72·9% 
IV 25  21·2% 

Smoker  97  82·2% 
Non-smoker  21  17·8% 
COPD  40  33·9% 
With former surgery  10  8·5% 
With chemotherapy or 
targeted therapy 

 114  96·6% 

Primary tumor dose   61·6 Gy 30-70 Gy 
MLD   11·6 Gy 3.3-19 Gy 
V30   12·0% 2·0%-23·1% 
V20   20·0% 2·0%-30·5% 
V10   34·2% 4·0%-60·0% 
V5   51·0% 13·8%-86·0% 
Follow-up time   314 days 37-614 days 
RP grade≥2 patient  50  42·4% 
median interval to RP 
grade≥2 diagnosis 

  86 days 33-205 days 

COPD= chronic obstructive pulmonary disease; MLD= mean lung dose in Gy; V30, 
V20, V10, V5= the percentage of the lung volume (with subtraction of the volume 
involved by lung cancer) which receives radiation doses of 30, 20, 10, 5 Gy or more. 

 

Pulmonary toxicity assessments and 
follow-ups 

All patients recruited were checked and were 
evaluated prospectively by their radiation oncologists 
weekly during radiotherapy and 4–6 weeks after 
treatment completion. Follow-ups were performed 
every 6 weeks for the first 3 months and thereafter 
every 3 months. Extra visits were required if 
symptoms showed up. Radiographic examination by 
chest X-ray or computerized tomography was 
performed at every follow-up visit. RP was diagnosed 
by clinical manifestations (e.g. dyspnoea, cough, pain 
and low-grade fever) and radiological findings. Once 
diagnosed, RP was further graded by at least two 
radiation oncologists following the Common Toxicity 
Criteria for Adverse Events (CTCAE) version 4.03. If 
the symptoms were present at baseline, worsening of 
symptoms of at least one grade was considered as RP. 
In addition, if there was pulmonary infection or 
thoracic disease progression, RP was excluded from 
the diagnosis. The diagnosis of RP of grade ≥ 2 was 

defined as the primary end point. If symptoms were 
present at baseline, worsening at least one grade was 
considered as RP. The following situations were 
excluded when diagnosis the RP: (1) pulmonary 
infection; (2) thoracic disease progression (PD). 
Criteria for each grade were as follows. Grade 0, no 
change. Grade 1, RP was asymptomatic and can only 
be observed in radiographic findings. No intervention 
was indicated. Grade 2, patient manifested symptoms 
that limit activities of daily living (ADL). Medical 
intervention has been indicated. Grade 3, patient 
manifested severe symptoms limiting self-care ADL. 
Oxygen has been indicated. Grade 4, patient 
manifested life-threatening respiratory compromise 
with urgent intervention indicated (e.g. tracheotomy 
and intubation). Grade 5, RP has caused lethality. 
Treatment periods started with the initiation of 
radiotherapy, and the patients were censored until 
last follow-up or death. 

DNA extraction and genotyping 
Peripheral blood leukocytes from patients before 

the radiotherapy was used for genomic DNA 
extraction using the Maxwell system (Promega, 
Madison, WI, USA). Genotypes of ~70,000 sites were 
determined by Infinium® Global Screening Array 
system (Illumina, San Diego, CA, USA) following the 
manufacturer’s instruction.  

Statistical analysis  
The association between patient characteristics 

and variables were separately assessed by 
MannWhitney U test for continuous variables (i.e. 
age) and Fisher-exact test categorical variables (i.e. 
Gender).  

Quality control 
We excluded SNPs in each individual dataset 

that had a mean GenCall score < 0.7, missingness 
>5%, MAF < 0.01 or a Hardy-Weinberg equilibrium 
test P < 10−6 using PLINK. We also excluded variants 
with multiple alleles. A total of 720,078 SNPs in the 
genotypic data set and 299,054 SNPs in the dataset 
passed this process for further prediction.  

Initial value assignment 
Genotyping result of each site was converted 

into a numerical value as the initial assignment of that 
site. Basically, the genotype on the human standard 
reference genome (version 37, GRCh37) was used as 
reference genotype and was referred as ‘wild type’. 
Patient’s genotype was compared with the reference 
genome. If the sequence of the allele was the same as 
the wild type, the initial assignment for that allele will 
be ‘0’. If the sequence was different from the wild type 
and was the alternative sequence on the standard 
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reference genome, the initial assignment for that allele 
will be ‘1’. If the allelic sequence was different from 
the wild type and was not the alternative sequence on 
the standard reference genome, the initial assignment 
for that site will be ‘0’. The sum of two allelic values 
will be the initial assigned value for that site. This 
value is an integer varies from 0 to 2 (See 
supplemental method for detailed method and scripts 
for computer programing). 

Model developing strategy 
Our goal is to build a mathematical model that 

can predict the risk of RP that needs interventions. 
Although we believe that the susceptibility of a tissue 
to the radiation is mainly determined by the 
genotypes, we cannot presumably exclude the impact 
of non-genetic factors (phenotypes and dosimetric 
parameters), since developing RP is a very complex 
process. First, we assessed the relevance of the 
non-genetic factors to the RP risk using statistical 
tests. If any of these factors showed statistical 
relevance to the RP risk, we would incorporate this 
factor into our model. Because there are too many 
genetic variants (genotypes), we decided to directly 
apply regression analysis to the data set and to check 
if the desired result can be acquired. Briefly, the data 
was split into two parts, one part for the training and 
the other part for the validation. To obtain a more 
reliable model, the majority part of the data was used 
for the training set. Ninety sets of data were randomly 
selected from the pool for the training and the rest 28 
sets of data, which were also random data, were used 
for the validation. 

Coefficients for the model  
The diagnostic model of RP was made with a 

multivariate linear model approach based on the 
Elastic Net algorithm implemented in the R (version 
3.5.1) package ‘‘glmnet’’. This approach is a 
combination of traditional Lasso and ridge regression 
methods, emphasizing model sparsity while 
appropriately balancing the contributions of 
correlated variables. It is ideal for building linear 
models in situations where the number of variables 
(markers) greatly outweighs the number of samples. 
Optimal regularization parameters were estimated 
via 10-fold cross-validation. Bootstrap analysis was 
employed sampling the data set with replacement 500 
times and a model for each bootstrap cohort were 
built. Only markers that were present in more than 
half of all bootstraps were included in the final model. 
The covariates age, dose, fractional dose, V5, V10, 
V20, V30, and MLD were included in the model and 
were exempted from penalization (regularization). 

Results 

Patient characters 
Archived information of 118 lung cancer patients 

was obtained from the People's Liberation Army 
General Hospital. All patients received IMRT therapy 
from June 2015 to May 2018. The case information of 
118 lung cancer patients, including 102 men (86·5%) 
and 16 women (13·5%) was listed in Table 1. The 
median age of patients was 60 years old (age ranges 
from 36 to 79 years old). In terms of histology, 41 
(34·7%) out of the 118 patients were diagnosed with 
squamous cell carcinoma, 19 (16·1%) with 
adenocarcinoma, and 53 (44·9%) with small cell lung 
cancer. 86 cases (72·8%) had stage III lung cancer, 25 
cases (21·2%) in stage IV, and 7 patients in stage I-II. 
Of all patients, 82·2% were current or former smokers. 
Forty patients (33·9%) were also diagnosed with the 
chronic obstructive pulmonary disease (COPD). 
Notably, 10 patients (8·5%) had undergone surgery 
before radiotherapy. Most patients (96·6%) were 
treated with a combination of radiotherapy, 
chemotherapy, or targeted therapy. The median 
radiation dose delivered to the primary tumor was 
61·6Gy (range 30-70Gy). The median values for MLD, 
V30, V20, V10 and V5 were 11·6 Gy (range 3·3-19Gy), 
12% (2·0%-23·1%), 20% (2·0%-30·5%), 34·2% 
(4·0%-60·0%) and 51·0% (13·8%-86·0%), respectively. 
The median follow-up time was 314 days (range 
37~614 days) after the beginning of radiotherapy. 
Among the 118 patients, 50 patients (42·4%) 
developed RP of grade ≥2. The median interval to RP 
(grade ≥ 2) diagnosis was 86 days (range 33-205 days). 

Clinical and other non-genetic factors 
Non-genetic factors including age, gender, 

COPD status, smoking status and multi dosimetric 
parameters from all 118 patients were firstly assessed 
for their relevance to the RP. Based on clinical 
relevance, instead of classifying whether the patient 
will develop the RP, we classified patients as whether 
they will develop an RP that needs clinical 
intervention, i.e. whether RP grade ≥2. The p-values of 
Mann–Whitney U test for continuous variables and 
Fisher-exact test for categorical variables were 
calculated for each individual factor. The statistical 
comparison of the clinic parameters of major clinic 
parameters were shown in Table 2. Among all clinical 
parameters, only one parameter, previous history of 
surgery showed statistical significance, which was in 
consistent with previous report.13 As for other 
non-genetic parameters particularly the most 
important dosimetric parameters, the only factors that 
showed statistical significance is the fractional dose 
(Table 3), with the p-value of 0.029.  
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Table 2. statistical comparison of the clinic parameters between patients with and without G≥2 radiation pneumonitis 

 Patients with RP≥2 
(need clinical interventions) 

Patients with RP<2 or no RP 
(do not need clinical interventions) 

p-value 

Patients (n) 50 68 N/A 
Male (percentage) 41(82.0%) 61 (89.7%) 0.2803 
Female (percentage) 9 (18.0%) 7 (10.3%) 
Age (median) 46-79 (61)  36-77 (58)  0.08805 
Histology Non-small cell 25 (50.0%) Non-small cell 35 (51.5%) 0.3102 

small cell 20 (40.0%) small cell 31 (45.6%) 
other 5 (10%) other 2 (2.9%) 

Stage I-II 3 (6.0%) I-II 3 (4.4%) 0.946 
III 36 (72%) III 50 (73.5%) 
IV 11 (22%) IV 15 (22.1%) 

Smoker 10 (20.0%) 11 (16.2%) 0.6319 
Non-smoker 40 (80.0%) 57 (83.8%) 
With COPD 20 (40.0%) 20 (29.4%) 0.2444 
KPS 80-90(88.6) 70-90(88.38) 0.7955 
With former chest surgery 9 (18.0%) 1 (1.5%) 0.001854 
With chemotherapy or targeted therapy 49 (98.0%) 64 (94·1%) 0.5647 

COPD= chronic obstructive pulmonary disease; KPS= Karnofsky Performance Scale. 
  

Table 3. statistical comparison of the dosemetric parameters between patients with and without G≥2 radiation pneumonitis 

 Patients with RP≥2 
(need clinical interventions) 

Patients with RP<2 or no RP 
(do not need clinical interventions) 

p-value 

Patients (n) 50 68 N/A 
Primary tumor dose (median) 28.6-70 (60.8) 22-70 (61.6) 0.3403 
MLD (median) 14.6-1800.5 (1117.0) 12.1-1900.4 (1200.1) 0.2154 
V30 (median) 2.02-22.27 (11.93) 2.00-23.05 (12.89) 0.4908 
V20 (median) 2.00-30.00 (19.99) 6.02-30.54 (19.90) 0.7315 
V10 (median) 4-59.96 (34.45) 14-55(33.47) 0.8831 
V5 (median) 12.75-86 (50.07) 3-86(53.43) 0.8424 
Fractional dose (median) 2.00-4.67 (2.40) 2.00-7.00 (2.45) 0.02936 

MLD= mean lung dose in cGy; V30, V20, V10, V5= the percentage of the lung volume (with subtraction of the volume involved by lung cancer) which receives radiation 
doses of 30, 20, 10, 5 Gy or more. 

 
 

Genetic variations 
The previous works have shown some specific 

genes, such as TP53, may play a key role in the 
outcomes of radiotherapy. However, in this study, to 
avoid introducing any artificial bias in our model, 
non-biased initial values were assigned for all the 
700,000 sites, including important sites reported in the 
literature.11,14 Because there are too many of them 
(over 299,000 sites after quality control) and each of 
them might have only minor effect with unknown 
dependence on other genetic factors. Therefore, it will 
be inappropriate to do statistical analysis on those 
genetic factors one by one. Thus, we directly applied 
the mathematical model on those factors. Thirty-nine 
effective SNP sites were discovered after applying the 
GLMNET regression on 90 sets of random training 
data. The exact locations of these 39 sites were shown 
in Supplementary Table 2 and the coefficients of these 
effective sites were illustrated in Figure 1. Precise 
coefficients of these 39 sites were also included in the 
Supplementary Table 2. Among the 39 sites, 14 of 
them had a negative coefficient and 25 were positive 
with value varying from about -0·26 to about 0·31 
(Figure 1). 

Radiation pneumonitis index 
Since our result showed that non-genetic factors 

may not play key roles for the RP development, only 
genotype data were used to build the predictive 
model for the grade≥2 RP risk. We compared 
genotype information of 39 sites discovered by 
GLMNET with the stand human reference genome 
(GRCh37). If the allele is the same as reference, we 
defined it as wild-type and abbreviated as ‘W’. If the 
allele is the same as the alternative in the stand 
reference genome, we defined it as alteration and 
abbreviated as ‘A’. Therefore, the genotyping result 
for each site can be converted to ‘WW’, ‘WA’/‘AW’ or 
‘AA’. We assigned value 0 to ‘WW’ genotype, value 1 
to ‘WA’/‘AW’ genotype and value 2 to ‘AA’ 
genotype. By combining the assigned value and 
coefficient values of each site, a Radiation 
Pneumonitis Index (RPI) was defined as: 

RPI=Pr (Ai*Ci) 

Where: Ai=assigned value of the site i, which 
equals “0” when genotype is homozygous of 
“wildtype”, or equals “1” when genotype is 
heterozygous of “wildtype” and “alterate”, or equals 
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“2” when genotype is homozygous of “alterate”; Ci = 
coefficient value of the site i, the detailed value for 
each site see Supplementary Table 1.  

i.e. RPI=Pr(-0.2603*(RP1 value)-0.25247*( RP2 
value)+… +0.279084*(RP37 value)+ 0.305607*(RP38 

value)),  

Pr is the probability obtained from the GLMNET 
algorithm. 

The RPI is a numerical value that can predict the 
risk of developing a grade≥2 RP based on multiple 
linear regression algorithm using genotype 
information. In our training data set, if using the 
threshold value 0·5 for the RPI value, all the patients 
who had no RP or developed a grade1 RP could be 
identified. Among those who had grade≥2 RP, only 4 
out of 33 who had marginal scores were falsely 
classified (Figure 2A). This result demonstrated in the 

90 sets of training data, the RPI value could be used to 
differentiate the patients that have the RP grade ≥2 
with 87·9% sensitivity and 100% specificity. 

Validation 
Based on the aforementioned model, the RPI 

values were calculated for the 28 random validating 
samples. The results were illustrated in the Figure 2B. 
As shown in Figure 2, all 17 grade ≥2 RP patients had 
significantly higher RPI value than those who had no 
RP or grade1 RP. If also using the threshold value 0·5 
for the RPI value, the RPI score can distinguish the 
grade≥2 RP and the RP<2 populations with 100% 
sensitivity and 100% specificity in our validation 
dataset. If combined two sets of data together, the 
overall sensitivity and specificity of RPI model would 
be 92·0% and 100%, respectively. 

 
 

 
Figure 1. Calculated effects of SNPs. The coefficients of 39 SNP sites were shown for their synergistic powers on the prediction of RP ≥2. The SNP sites were shown only when 
absolute effects are greater than zero using Elastic net and generalized linear model. X-axis: Correlation coefficients. Y-axis: IDs of the SNP sites. 
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Figure 2. Prediction model and validation for RP ≥2. The RPI scores of each sample were calculated according to the multivariate regression model. The categories of two types 
of patients were color indexed (RP<2, green; RP≥2 red). Dashed line indicates a threshold that separates two groups. A. Training dataset. B. Validating dataset. X-axis: Sample 
IDs. Y-axis: RPI Scores 

 

Discussion 
Radiation-induced pneumonitis is a major 

obstacle for the radiotherapy for the thoracic 
malignancies, particularly lung cancer. One common 
question asked by the clinical radiation oncologists is 
why two similar patients who underwent almost 
exact same radiotherapy developed completely 
different pneumonitis symptom. We believe the 
answer exists in the genetic variations and the 
problem could be solved by the genetic test. Here we 
introduced a method that can accurately predict the 
risk of developing the RP that needs interventions 
even before the therapy. In our study, the statistical 
results indicated phenotypic factors like age, gender, 
or smoking history and interventional factors such as 
dosimetric parameters might not be dominant factors 
for predicting individual variances of RP risk, which 
seemed to be against intuition and was inconsistent 
with the results in the previous literature4,5,15-18, 
particularly when the dosimetric parameters 

considered. Indeed, the only significant clinical 
parameter is the chest surgery history before the 
radiotherapy and the reason is understandable since 
the tissue with preexisted lesion will be more 
vulnerable. The reason for such kind of result could be 
that the maturation of therapeutic regimen and the 
technological advancement made the variations of 
these parameters among individuals minimized to a 
non-significant level. Nowadays most radiothera-
peutic plans gave each patient a very similar overall 
dose and total fractions, and the sophistical delivery 
technique made other parameters like MLD, V20 or 
V30 also less diverse. Therefore, the variances of 
dosimetric parameters became minimized among 
patients and the decrement of these variances made 
the dosimetric factors less relevant to the personalized 
response to the radiation. Our results are by no means 
unprecedented in the field. Indeed, other researchers 
also found similar results in their studies.19 One 
interesting discovery on the dosimetric parameters is 
that the fractional dose shows some significance (p 
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value= 0.02936, Table 3) although the real difference 
between the G≥2 RP and G<2 RP is very subtle. It is 
hard to fully assess the meaning of this finding at the 
current stage because the fractional dose used in this 
study is calculated dose. There always is a variance 
between the calculated dose and the real delivered 
dose. Since the variance of fractional dose between 
two groups is so small that the difference may be 
smaller than the variance between the calculated dose 
and the real delivered dose, we could not exclude the 
possibility that in the reality the significance of 
fractional dose is not as strong as calculated in this 
study because of error. However, we will keep 
monitoring this point in future studies and will collect 
more precise data for validation. The unified 
therapeutic regimen assumes every patient will have 
a similar radio-sensibility, nevertheless, clinically 
there does exist significant responsive variances such 
as the development of RP, and these variations of 
individual response have turned into a clinical 
problem.  

Clinicians already realized that the genetic 
variations may play important roles in this issue and 
have started working towards this direction. 
Previously, several groups including ours studied the 
association between the single nucleotide 
polymorphism (SNP) site and the RP risk.20-24 
However, these studies focused only on few genetic 
variants and lacked a comprehensive assessment of 
the synergistic effect of multiple variants. The isolated 
results from these studies could barely be used for 
clinical guidance while the complexity of human 
genome brought many difficulties for solving the 
problem methodologically. To overcome this 
drawback, a systematic study on large number of 
SNPs was performed in this study. For each patient, 
about 700,000 sites, which covered the whole area of 
the human genome, were scanned to discover 
possible RP relevant genetic variations. The goals of 
the study were to: 1.) discover as many as possible 
variants that are relevant to the RP risk; 2.) 
quantitatively determine the effects of these effective 
variants; 3.) build an accurate model for the RP risk 
prediction that can be easily used by the radiation 
oncologists in the clinic. Multiple linear regression 
model is a model that can fit in many scenarios and 
was also used in this study for the RP risk prediction.  

There are several methods to build the multiple 
linear regression model, as each method is suitable for 
a given data set with specific features. The least 
squares regression is the most commonly used 
method for multivariate linear regression. If there is a 
significant linear relationship between the response 
variable and the predictive variable, the least square 
regression will have a very small bias. Especially, if 

the observed number of samples n is far greater than 
the number of predictive variables p, the least square 
regression will have a smaller variance. However, if n 
is close to p, it is prone to overfitting; if n<p, least 
squares regression cannot get meaningful results. In 
addition, many variables in the multivariate linear 
regression model may be independent of the response 
variables, and there may be multiple collinear 
phenomena. These situations will increase the 
complexity of the model and weaken the explanatory 
power of the model. This requires variable selection 
(feature selection). The character of our data is a small 
sample population (118 samples) and a high number 
of independent variables (about 700,000).it is obvious 
that n<<p. In view of the above problems, Robert 
Tibshirani and others introduced the shrinkage 
method.25 It is mainly ridge regression and lasso 
regression. By adding penalty constraints to the least 
squares estimate, some coefficients are estimated to be 
zero. Elastic net combines two regularization 
methods, ridge regression, and lasso regression. 
Elastic net has an obvious better effect on p than n or 
severe multi-collinearity. We used Generalized Linear 
Models via Lasso and Elastic-Net Regularization 
(GLMNET) to build our algorithm, which is known to 
work better for the data that has much more 
independent variables than dependent variables, or 
data has serious multiple collinearities.26-30 This 
algorithm just fitted the data type of our kind, and the 
final model was validated well.  

The basic idea for precision medicine is that each 
therapy should be tailored to the personal 
characteristics, which may include congenital features 
and acquired characters. Genetic features are the most 
widely used personal characteristics for precision 
medicine. Medical oncologists have taken advantage 
of both congenital genetic features (e.g. germline 
mutations of breast and ovarian cancers) and acquired 
genetic characters (e.g. somatic mutations of lung 
cancer etc.) to make cancer therapies advanced into 
targeted therapy and immunotherapy.31,32 However, 
in the field of radiotherapy, much less attention has 
been paid on the genetic features and much work 
need be done to make personal genetic features as a 
guiding biomarker for the clinical practice of 
radiologists. Here we attempt to develop a kind of 
precision medicine approach that can help radiation 
oncologists take advantage of genetic features. 
Comparing with other methods, our approach is 
relatively simpler and clinically more practicable. The 
method just needs the blood sample, which is easy to 
access, and the genotype information, which can also 
be easily acquired either by fluorescent PCR, or by 
gene chip genotyping or by sequencing. The 
algorithm for the RPI is also straightforward and can 
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be integrated into a simple program. The whole 
method is time-saving and cost-efficient.  

In an early study, Barnett et al performed a 
research work trying to validate the associations 
between the previously reported genetic variations 
and the radiation toxicity in a large independent 
dataset.33 However, the overall results of their study 
were negative and none of the previously reported 
association were confirmed. There could be multiple 
causes for the failure of the confirmation. One 
possible reason we believe is that the radiotoxicity is a 
complex pathophysiological process and it is unlikely 
to predict such a complex process with just single or 
few genetic variants within limited signal pathways. 
That is also the problem what we are trying to solve in 
this study. We believe the ultimate solution should be 
a model combining multiple variables with the 
synergistic effect of all factors considered.  

We hope other researchers for the precision 
medicine studies can gain inspirations from the 
experience we learned in this study and can explore 
deeper in this field. The type of data we used in this 
study is very commonly encountered in clinical 
researches and we believe this method is suggestive 
and other clinicians can draw on the experience of. 
Though the sample population in our study is limited 
and more samples are still needed to stabilize our 
model, we believe our work explored a new direction 
for other clinicians and wish this work would also 
help the advancement of radiogenomics.  

Conclusions 
The dosimetric parameters may not play 

dominant roles in the individual difference of 
radiation pneumonitis risk for the patients with 
definitive radiotherapy while the genetic variations 
are more relevant. A model or an algorithm that 
incorporates multiple genetic variations is more 
effective than a single biomarker for the risk 
assessment and should be the direction in future. 
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