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Photonic ququart logic assisted by 
the cavity-QED system
Ming-Xing Luo1, Yun Deng2, Hui-Ran Li1 & Song-Ya Ma3

Universal quantum logic gates are important elements for a quantum computer. In contrast to 
previous constructions of qubit systems, we investigate the possibility of ququart systems (four-
dimensional states) dependent on two DOFs of photon systems. We propose some useful one-
parameter four-dimensional quantum transformations for the construction of universal ququart logic 
gates. The interface between the spin of a photon and an electron spin confined in a quantum dot 
embedded in a microcavity is applied to build universal ququart logic gates on the photon system 
with two freedoms. Our elementary controlled-ququart gates cost no more than 8 CNOT gates in a 
qubit system, which is far less than the 104 CNOT gates required for a general four-qubit logic gate. 
The ququart logic is also used to generate useful hyperentanglements and hyperentanglement-
assisted quantum error-correcting code, which may be available in modern physical technology.

Quantum algorithms have been explored to solve several difficult problems in terms of classical comput-
ers, e.g., large integer factoring1 and the quantum searching algorithm2. A full-scale quantum algorithm 
always requires joint control over multiple quantum systems, which currently represent challenging 
problems in experimental quantum physics. If the quantum circuit model3 is considered, any joint system 
evolutions may be synthesized with small-system evolutions, i.e., universal quantum gates4,5. Progress 
has been achieved for a variety of on universal quantum gates based on different physical architectures 
including the ions6,7, nuclear magnetic spins8,9, atoms10,11, and polarized photons12–15.

Large-dimensional states are necessary for quantum computation and for certain quantum informa-
tion protocols16. Experimentally, the physical carrier of the qudit can be any d-dimensional quantum 
system. The high-dimensional quantum system is flexible in the storing and processing of quantum 
information17, such as the improvement of the channel capacity18,19, simplification of quantum gates20,21, 
and improvement of the communication security22–24. Moreover, the high-dimensional quantum system 
provides an alternate way for scaling quantum computation. Quantum algorithms with qubits typically 
require enforcing a two-level structure on atoms, ions or photon systems that naturally have many acces-
sible degrees of freedom. Meaningful applications of qudits in quantum information always involves joint 
multiple qudits operations in a scalable manner.

In this paper, we consider the extension of universal qubit logic to the multivalue domain with hybrid 
quantum information systems, where the unit of memory is the ququart, a four-dimensional quantum 
system16,17. In photonic quantum information research, to encode a qudit, it is necessary to choose a 
multi-dimensional degrees of freedom (DOFs) of a single-photon, such as transverse momentum-position, 
the angular momentum, or time of arrival. Our four-dimensional quantum states are reformed from the 
natural two DOFs of photon in contrast to the symmetric primitive state of multiple photons under 
permutation invariance25,26. Although it is difficult to generate photonic nonlinear interactions with lin-
ear optics, however, recent hybrid systems (photon-matter)27–30 have been explored to effectively ena-
ble strong nonlinear interactions between single photons31 in the weak-coupling regime. The interface 
between special hybrid systems behaves in a manner similar to a beamsplitter using spin selective dipole 
coupling. Their optical selection rules are realized with a single-electron charged self-assembled GaAs/
InAs quantum dot in a micropillar resonator32,33, which may be applied to construct universal qubit gates 
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on photon systems with one degree of freedom31,34,35 or two freedoms36–38. We first present universal 
ququart gates with only one parameter16. And then, the hybrid systems are used to realize these univer-
sal ququart gates on the photonic ququart system with polarization and spatial mode freedoms. All the 
proposed schemes are applicable in larger-scale quantum algorithms because of the high fidelities and 
efficiencies of the present quantum techniques.

Results
Our consideration of a qudit system is the four-dimensional quantum system (ququart system). Similar 
to the qubit system3, it is very difficult to realize the evolutions of the joint ququart systems by controlling 
multiple systems. Therefore, elementary logic gates16,17 are very useful for synthesizing any quantum 
transformation in SU(4n) derived from the n-ququart system evolution. We introduce some one-parameter 
universal ququart gates that are different from the multiple-parameters based quantum logic gates16 and 
are very simple to demonstrate in an experiment. These elementary gates may be implemented on a 
photon system with two DOFs, i.e., , , ,R a L a R a L a{ }1 1 2 2  as the basis in four-dimensional 
space. Here, ,R L{ } denotes the circular polarized basis, while ,a a{ }1 2  denotes the spatial modes. 
The primitive element is the quantum interface between a single photon and the spin state of an electron 
trapped in a quantum dot. These photonic ququart gates may be used for distributed quantum informa-
tion processing.

Cavity-QED system.  The cavity-QED system used in our proposal is constructed by a singly charged 
In(Ga)As quantum dot located in the center of a one-sided optical resonant cavity27–31, as shown in 
Fig. 1. The single-electron states have Jz =  ± 1/2 spin ( ↑ , ↓ ) and the holes have Jz =  ± 3/2 ( , ). 
Two electrons form a singlet state and therefore have a total spin of zero, which prevents electron spin 
interactions with the hole spin. The photon polarization is commonly defined with respect to the direc-
tion of propagation, whereas the absolute rotation direction of its electro-magnetic fields does not change. 
The input-output relation of this one-sided cavity system can be calculated from the Heisenberg equa-
tion36–42 of motion for the cavity field operator and dipole operator as follows:

∆ω κ κ σ κ= −( + + ) − − , ( )−
ˆ ˆ ˆ ˆda

dt
i a g a 1c s in

σ
∆ω η σ σ= −( + ) − , ( )

−
−

ˆ ˆ ˆ ˆd
dt

i g a 2e z

κ= + ( )ˆ ˆ ˆa a a 3out in

where Δ ωc =  ωc −  ω, Δ ωe =  ωe −  ω. ωc, ω and ωe are the frequencies of the cavity mode, the input probe 
light, and the dipole transition, respectively. g is the coupling strength between the cavity and dipole. η, 
κ, and κs are the decay rates of the dipole, the cavity field, and the cavity side leakage mode, respectively. 
If the dipole stays in the ground state most of the time39–42, then by adapting the frequencies of the light 
and the cavity mode, the interaction of a single photon with a cavity-QED system can be described as 
the following transformation

Figure 1.  Schematic dipole spin-dependent transitions with circularly polarized photons. (a) A charged 
quantum dot inside a one-side micropillar microcavity interacting with circularly polarized photons. âin and 
âout are the input and output field operators of the waveguide, respectively. (b) The optical selection rules 
due to the Pauli exclusion principle. L and R denote the left and right circular polarization respectively. ↑  
and ↓  represent the spins of the excess electron. ↑ ↓ ⇑  and ↓ ↑ ⇓  denote the negatively charged excitons.
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Universal ququart logic gates.  Consider the following gates
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with j =  1, 2, 3, which are operated on the four-dimensional Hilbert space (ququart system). diag(·,·) 
denotes the diagonal matrix. Ry(2ϑj) denote real rotation matrices with phases ϑj, and Ik represents the 
identity operation in SU(k) for each k ≥  1. {Z4(θ), Tj(ϑj), j =  1, 2, 3} as a set of one-parameter transfor-
mations may be sufficient to simulate all single-ququart unitary transforms. The proof of the idea is 
derived in Ref. 16. In fact, for a logic four-dimensional basis , , ,{ 0 1 2 3 }, note that
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In other words, the ququart system 0  may be changed into an arbitrary ququart system ∑ θ
= a e jj j

i
0

3 j . 
For simulating the evolution of a joint system, similar to the qubit case3,4, elementary logic gates should 
be constructed. In detail, we define controlled ququart gates as follows:

( )θ( ) , 
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ϑ 

, = , , ( ){ }C Z C T j[ ] 1 2 3 8j j4

acting on a two-ququart system, where C[Z4(θ)] and C[Tj(ϑj)] are defined as
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which indicates that the ququart operation Z4(θ) or Tj(ϑj) is performed on the target ququart system if 
the controlling ququart system is in the state 3 . Generally, the set

( ) ( )θ θ( ), ϑ , ( ′) , 

ϑ′ 
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, = , , ( ){ }Z T C Z C T j[ ] 1 2 3 11j j j j4 4

is a set of simplified universal ququart gates for synthesizing the joint system operations in SU(4n). In 
fact, from the representation theory of the unitary matrix and eigenoperator decompositions16, all 
n-ququart unitary operations U ∈  SU(4n), and there exist 4n different eigenstates E j  of U, = , , ,j 1 2 4n, 
with corresponding eigenvalues λei j. Here, each eigenstate is represented as
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From the unitary matrix representation theory U is rewritten as
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thus generating a phase λj of E j  without affecting any other eigenstates16. The followed proof synthesizes 
these eigenoperators from
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Here, ,Uj 4n and ,Zj 4n are the 4n-dimensional analogs of the ququard operation in Equation (7) and Z4(θ). 
,Uj 4n only transforms the j-th eigenstate to −4 1n , i.e.,
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where sgn is the sign function. With involved computations similar to these in Ref. 16, one can prove 
that ,U j 4n and ,Z j 4n may be realized with logic gates in equation (11). Thus all n-ququart unitary opera-
tions U ∈  SU(4n) may be synthesized with ququart operations {Z4(θ), Tj(ϑj)} and controlled ququart oper-
ations {C[Z4(θ′ )], C[Tj(ϑj′)]}. However, different from the multiple-parameter ququart gates16, all the 
universal ququart gates are of one-parameter and easy to be realized in an experiment.

Photonic universal ququart logic gates.  The ququart basis is defined as 
, , ,R a L a R a L a{ }1 1 2 2 . Note that all ququart logic gates Z4(θ) and Tj(ϑj) are also two-qubit 

logic gates. The ququart rotation Z4(θ) is a controlled phase rotation gate on a two-qubit system. The 
ququart gates T1(ϑ1) and T3(ϑ1) are controlled rotations on a two-qubit system. The second qubit is the 
controlling qubit for T1(ϑ1) while the first qubit is the controlling qubit for T2(ϑ1). T2(ϑ1) is a general 
swapping gate on a two-qubit system. Thus, they are easily synthesized with the universal qubit gates, 
such as the controlled not gate (CNOT) and single qubit rotations3,4. These universal qubit gates may be 
realized on the photon with the polarization and spatial mode DOFs35–38.

Figure 2 shows how the interface between the input photon and an electron spin confined in a quan-
tum dot embedded in a microcavity can be used to construct two-ququart gates defined in equation (8). 
The auxiliary electron spins are in the states ↑ . Two input ququart photons A and B are in the states

φ α β γ δ= + + + , ( )R a L a R a L a 18A1 1 1 1 1 1 2 1 2

φ α β γ δ= + + + ( )R b L b R b L b 19B2 2 1 2 1 2 2 2 2

respectively.
The controlled ququart gate C[Z4(θ)] is realized as follows. The first step is to complete a hybrid 

CNOT gate on the polarization DOF of the photon A and the auxiliary photon A′  (red line) in the state 
R , shown in Fig. 2(a). After a Hadamard operation W1 on the electron spin e1, the photon A from the 
spatial mode a2 passes through CPS1, Cy1, CPS2, sequentially. With a Hadamard operation W2 on the 
electron spin e1, the joint system of the photon A and the spin e1 is changed from φ +

A e1 1
 into

α β γ δΦ = ( + + ) ↑ + ↓ ( )R a L a R a L a 20A e e1 1 1 1 1 1 2 1 2
1 1

from a hybrid CNOT gate on the polarization freedom of the ququart photon and the spin e1,
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⊗ ( ↑ ↑ + ↑ ↑ ) + ⊗ ( ↓ ↑ + ↓ ↑ ) ( )R R L L 21

The followed circuit consisting of the H1, CPS3, Cy1, CPS4, and H2 represents a hybrid CNOT gate on 
the electron spin e and the auxiliary photon A′  as follows

↑ ↑ ⊗ ( + ) + ↓ ↓ ⊗ ( + ) ( )R R L L L R L R 22

which may change the joint system in the state Φ
′

RAe A1
1

 into

α β γ δΦ = ( + + ) ↑ + ↓ ( )′ ′ ′
R a L a R a R L a L 23AA e A A e A e2 1 1 1 1 1 2 1 2

1 1 1

The quantum spin e1 in the entanglement Φ2  shown in equation (23) may be measured under the basis 
± = ( ↑ ± ↓ )/{ 2 } in order to achieve a ququart-qubit photon system

α β γ δΦ = ( + + ) + ( )′ ′ ′
R a L a R a R L a L 24AA A A A3 1 1 1 1 1 2 1 2

Here, a Pauli phase flip (σZ) is performed on the polarization DOF of the photon A from the spatial mode 
a2 for the measurement outcome − e1

. Thus, Fig.  2(a) has realized a hybrid CNOT gate on the 
ququart-qubit photon system with the matrix representation diag(I6, σX). Similarly, for the photon B and 
an auxiliary photon B′  in the state R , by using the circuit shown in Fig.  2(a), the joint system of the 
photon B and auxiliary photon B′  is changed from the state φ

′
R

B B2  into

α β γ δΦ = ( + + ) + ( )′ ′ ′
R b L b R b R L b L 25BB B B4 2 1 2 1 2 2 2 2

Note that θ θ θ θ( ) = ⋅ ( / ) ⊗ (− / ) ⋅ ⋅ ⊗ ( / )Z CNOT Z Z CNOT I Z[ 2 2 ] [ 2 ]4 2 , which may be rede-
fined as the controlled rotation gate on the two-qubit photonic system A′  and B′  with two CNOT 
gates34,35. The joint system of four photons A, B, A′  and B′  in the state Φ Φ

′ ′AA BB3 4  will collapse into

α β γ φ

δ α β γ δ

Φ = ( + + )

+ ( + + + ) ( )
θ

R a L a R a

L a R b L b R b e L b 26
AB A B

i
B

5 1 1 1 1 1 2

1 2 2 1 2 1 2 2 2 2

after the measurements of the photons A′  and B′  under the basis ( ± )/R L{ 2 }. Here, the Pauli 
phase flip σZ is performed on the polarization DOF of the photon A(B) from the spatial mode a2(b2) for 
the measurement outcome ( − ) /

′
R L 2A  or ( − ) /

′
R L 2B . Z(θ/2) =  diag(1, eiθ/2) is a general 

qubit phase gate. Therefore, the controlled ququart rotation C[Z4(θ)] =  diag(I14, 1, eiθ) is realized with 
eight CNOT gates on a hybrid two-qubit system (spin and photon or photon and spin), as shown in 
Table 1.

To realize the controlled ququart rotation C[Xj(ϑj)], consider the special controlled-ququart flip gate 
C[Z4(π)] without two auxiliary photons, shown in Fig. 2(b). One hybrid CNOT gate is performed on the 
photon A and an auxiliary spin e2 in the state ↑  with W3, CPS5, Cy2, CPS6, and W4. The other hybrid 

Figure 2.  Schematic circuit of elementary ququart gates. (a) Schematic hybrid controlled not (CNOT) 
gate on a ququart-qubit photon system. (b) Schematic controlled phase C[Z4(π)] on a two-ququart photon 
system. CPSj represent polarizing beamsplitters in the circular basis, which transmit R  and reflect L . Wj 
represent the Hadamard operations ↑ → ( ↑ + ↓ )/ , ↓ → ( ↑ − ↓ )/2 2 on the excess 
electron spins ej. Hj represent half-wave plates (HWP) to perform the Hadamard operation 
→ ( + )/ , → ( − )/R R L L R L2 2 on the polarization DOF of a photon.
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CNOT performed on the electron spin e2 and the photon B is realized with H3, CPS7, Cy2, CPS8, and H4. 
The joint system of two photons A and B may be changed from the initial state φ φ

A B1 2  into

α β γ φ δ α β γ

δ δ

( + + ) + ( + + )

− ( )

R a L a R a L a R b L b R b

L a L b 27
B B

A B

1 1 1 1 1 2 2 1 2 2 1 2 1 2 2

1 2 2 2

after measuring the spin e2 under the basis ±{ }, where a Pauli phase flip σZ is performed on the 
photon A from the spatial mode a2 for the measurement outcome − e2

. Thus, a controlled-ququart flip 
gate C[Z4(π)] has been realized on the photons A and B.

With the circuit the two-ququart gate C[Z4(π)], the controlled ququart gates C[Tj(ϑj)] may be realized 
with the following decomposition

σ σ(ϑ ) = ⊗ ⊗ ⋅ (ϑ ) ⋅ ⊗ ⊗ , ( )C T I I C T I I[ ] [ ] [ ] [ ] 28X X1 1 4 2 3 1 4 2

(ϑ ) = ⊗ ⋅ (−ϑ ) ⋅ ⊗ , ( )C T I CNOT C T I CNOT[ ] [ 2] [ ] [ 2] 292 2 4 3 2 4

π π(ϑ ) = ( ) ⋅ ⊗ (ϑ ) ⋅ ( ) ⋅ ⊗ (ϑ ) ⊗ (−ϑ ) ( )C T C Z I R C Z I R R[ ] [ ] [ ] [ ] [ ] 30y y y3 3 4 8 3 4 4 3 3

Here, CNOT2 denotes the CNOT gate with the second input qubit being the controlling qubit. The costs 
of hybrid CNOT gates are shown in Table 1. They are far less than 104 CNOT gates required for general 
unitary operations acting on four-qubit system5.

Hyperentanglement preparation.  Hyper-entangled photonic states43 have been experimentally 
realized and shown to offer significant advantages in quantum information processing19,22–25,44. Our first 
scheme is for the cat state in the form

( )= ⊗ + ⊗
( )

⊗
= =Cat R a L b1

2 31
n

j
n

j j j
n

j j
2

1 1

where R and L denote right- and left-circular polarization and ai, bj label two orthogonal spatial modes of 
the photons. This state exhibits maximal entanglement between all photon polarizations and spatial qubits, 
and has been experimentally realized with n =  1045 from the spontaneous parametric down-conversion 
and pseudo-single photon source. Here, we present a general n-ququart cat state with the present ele-
mentary ququart gates in Equation (11), shown in Fig. 3. Note that from Fig. 3(a)
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which has realized the ququart copying operation on the photon A1 in the state ( )+R a L b1
2 1 1 1 1  

and the photon Aj in the state R a j . With this elementary circuit, by using the parallel implementation 
in Fig. 3(b), ⊗Cat n2  can be easily generated.

The second hyper-entangled photonic state is the n-ququart cluster state,

Ququart gates Z4(θ) T1(ϑ1) T2(ϑ2) T3(ϑ2)

Hybrid CNOT cost 4 2 6 2

Controlled ququart gates C[Z4(θ)] C[T1(ϑ1)] C[T2(ϑ2)] C[T3(ϑ3)]

Hybrid CNOT cost 8 4 8 4

Table 1.   The cost of CNOT on a hybrid two-qubit system (spin and photon or photon and spin) for 
each elementary ququart logic gate.
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which may be used for one-way quantum computing44 when n =  2. Our generation circuit is shown in 
Fig. 4. It easily follows that
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Figure 3.  Schematic ququart cat-state preparation. (a) Elementary ququart copying operation on two-
ququart system, (b) Parallel implementation of n-ququart cat state with = +l nlog 12  time slices.

Figure 4.  Schematic ququart cluster-state preparation. C[T] is defined in Fig. 3(a).
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2

1

3
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
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
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π

π

π


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
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1
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C T

j j j j j j j j

T

T

j j j j j j j j

2
1 1 1 1 1 1 1 1

2

2
1 1 1 1 1 1 1 1

1

3

2

which has realized the ququart copying operation on the photon A1 in the state 
( )+ + −R a L a R b L b1

2 1 1 1 1 1 1 1 1  and the photon Aj in the state R a j . With this elementary 
circuit, similar to Fig. 3(b), Ψ  can be easily generated. Moreover, if the first photon is in the initial state 
( )+ ⊗ ( + )R L a b1

2 1 1 1 1 , from Fig. 4, it can follow another hyperentangled n-photon GHZ state, 
which can be written as

( ) ( )= ⊗ + ⊗ ⊗ ⊗ + ⊗ ( )= = = =GH Z R L a b1
2 35h j

n
j j

n
j j

n
j j

n
j1 1 1 1

Hyperentanglement-assisted quantum error-correcting code.  The code is hyperentanglement 
assisted because the shared entanglement resource is a photonic state hyperentangled in the polariza-
tion and spatial mode. It is possible to encode, decode, and diagnose channel errors using cavity-QED 
techniques. This code may be used to correct the polarization flip errors and is thus suitable only for a 
proof-of-principle experiment. The quantum channel is constructed with the following hyperentanglement

( + ) ⊗ ( + ) ( )RR LL a a b b1
2 361 2 1 2

If we only change the polarization DOF of the first photon in this state according to the four Pauli oper-
ators, it then follows four hyperentangled states:

Φ = ( ± ) ⊗ ( + ), ( )
± RR LL a a b b1

2 37h 1 2 1 2

Ψ = ( ± ) ⊗ ( + ) ( )
± RL LR a a b b1

2 38h 1 2 1 2

These states may be rewritten in terms of the single-photon polarization-spatial mode states

φ φ φ φ ψ ψ ψ ψΦ = ( + + + ), ( )
± + ± − + ± − 

1
4 39h h h h h h h h h

φ ψ φ ψ ψ φ ψ φΨ = ± ( − + − ) ( )
± + ± − + ± − 

1
4 40h h h h h h h h h

where

φ ψ= ( ± ), = ( ± )
( )

± ±Ra Lb Rb La1
2

1
2 41h h1 1 1 1

with single photon basis states , , ,Ra La Rb Lb{ }1 1 1 1 . Figure 5 shows our hyperentanglement-assisted 
quantum code. As an example, the input state can be φ +h A

. The encoding circuit consists of one 
controlled-sign gate C[Z(π)] such that the joint state is the following normalized encoded state
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( )φ π φΦ + ( ) Φ
( )

+ + + +C Z1
2

[ ]
42h A h BC h A h BC

If the noisy environment has not introduced polarization errors on the photons A and B, after the decod-
ing circuit (same as the encoding circuit), and the resulting decoded state is defined by

φ Φ ( )
+ +

43h A h BC

For polarization errors, the relationship between the syndrome and errors is shown in Table 2. Here, we 
encode one of four classical messages (two classical bits) by applying one of four transformations to the 
first photon of Φ+h : (1) the identity, (2) Pauli phase flip → −L L  on the polarization DOF which 
corresponds to ( ) ( ) ( ) ( )π π( ) ( )π π π πZ T T Z T T2 2 3 2 3 2 2 2

 realizing φ φ ψ ψ↔ , ↔+ − + −
h h h h , (3) Pauli 

flip ↔R L  on the polarization DOF, which corresponds to ( ) ( )π πT T1 2 3 2
 realizing φ ψ↔ ±± ±

h h , or 
(4) both Pauli phase flip and Pauli flip. The result is to transform the original state Φ+h  to one of the four 
states Φ , Ψ+ +{ }h h .

Discussion

In the experiment, the ququart gates’ fidelities are defined by ∫= Ψ ΨF f i
2
, where Ψi  and Ψ f  are 

the final states under the ideal condition and the real situation with side leakages, respectively. In the 
resonant condition, if the cavity side leakage is considered, then the optical selection rules in equation 
(4) from the cavity-QED system is given by:

↑ ↑ , ↓ ↓ ,

↑ ↑ , ↓ ↓ ( )

 

 

R r R R r R
L r L L r L 44

0

0

Figure 5.  Schematic hyperentanglement-assisted quantum code. Blue lines are a hyperentangled state 
Φ+h BC

. The input photon A is in the state φ+n . The encoding circuit consists of one controlled-phase gate 
C[Z(π)]. The polarization-error may be derived in a noisy environment or noisy quantum channel for 
quantum super-dense coding. The joint measurement is completed with a hyper-Bell state analysis to 
determine the error syndrome. The recovery operations R is dependent of the measurement outcomes shown 
in Table 1.

Errors I ( ) ( )σ = π πT TX
A

1 2 3 2
σX

B σ σX
A

X
B

Hyper-Bell state Φ+h BC Φ−h BC Ψ+h BC Ψ−h BC

Measure state φ + Rah B C2 φ − Rah B C2 ψ + Rah B C2 ψ − Rah B C2

Recovery R I Z(π) ( ) ( ) ( )π π πT T T1 2 2 2 3 2 ( ) ( ) ( )π( ) π π πZ T T T1 2 2 2 3 2

Table 2.   The recovery operations dependent of the results of hyper-Bell state analysis.
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where only real reflection coefficients |r0| and |r| are considered. To estimate the photon scattering prob-
ability, the area of the light beam, ωπ

4 0
2 is compared to the absorption cross section of the spin39,46, λ

π
3
2

2
 

with the optical wavelength λ. Deterministic spin-photon interaction requires  ω×λ
π π

π


3
2 4 0

22
 with the 

number of bounces 
π

35,47. The resonator quality   is characterized by its finesse  = π

( − )

R R

R R
4

1

4
1 2

1 2
4 , which 

depends on the reflectivity of the mirrors, R1 and R2. The spin-cavity coupling constant g is determined 
by the electric dipole matrix element μ of the transition from the (coupled) ground state to the excited 
state and by the electric field E of a single photon in the mode volume V of the resonator39,46–50:

 
μ μ ω

ε
= = (→)

( )
g

E
V

u x
2 45

c
2

0

∈0 is the permittivity of free space, and ∫= (→)V u x d x2 3  is the integral over the dimensionless electric-field 
mode function (→)u x  of the resonator, normalized to one at the field maximum. The decay rate η of the 
dipole is formed as

ε �
η

μ ω

π
=

( )c6 46

2 3

0
3

The decay rate κ of the cavity field is defined as39


κ

π
= ( )

c
L2 47

where c is the speed of light and L is the resonator length. The deterministic spin-photon interaction 
condition leads to the strong coupling

κη ( )g 482

In this strong-coupling regime (coupling constant g =  2π ⋅  6.7 MHz, atomic dipole decay rate ς =  2π ⋅  3  
MHz, cavity field decay rate κ =  2π ⋅  2.5 MHz), with a coupled atom, the phase shift is realized to be 
zero35. The resulting conditional phase shift is the basis for the realization of robust quantum gates31,48. 
This gate, as a primitive gate for photonic qubit-based computation, is also an elementary gate for our 
universal ququart gates presented in Table 1. In our setup, the input photon is either transmitted through 
the cavity mirror with rate κ or lost with rate κs. κs gives35

κ
κ

κ
=

+ Δ
=

Γ

+ ( )κ

Δ

g

2 49
s

c

2

2 2 2 c
2

2

with the relaxation time Γ  =  2g2/κ of the dipole. The decay into the resonator mode is suppressed by 
increasing the detuning Δ c between spin and cavity. On resonance, the radiative interaction of the spin 
with the environment is then dominated by the cavity mode rather than the free-space modes. A recent 
experiment shows that an almost tenfold reduction of the spin excited state lifetime is observed50.

Based on the new rule in equation (44), the fidelities and efficiencies of our ququart gates Z4(θ) and 
C[T3(ϑ)] are calculated, as shown in Figs  6 and 7, respectively. The other ququart gates may be easily 
calculated using equation (28) and equation (29). The efficiency is defined as the probability of the two 
photons to be detected after the logic operation. To demonstrate our fidelities and efficiencies, these 
evaluations are based on the relative coupling strength and relative decay ratios. When κ

κ
 1s , i.e,


π

Γ

+ ( )π
Δ



L

c
1

50
L

c
4 c

2 2 2

The above may be realized by enhancing the resonator quality  , increasing the resonator length L or 
detuning Δ c. In this case, high fidelities and efficiencies may be achieved, even in the weakly coupling 
regime ≤

κ κ+
4g

s
. If κs ≪  κ is not satisfied, then high fidelities and efficiencies require strong coupling 

g2 ≫  η(κ +  κs) from equation (48). A recent experiment39 has raised the coupling from 0.5 (the quality 
factor Q =  880041) to 2.4 (the quality factor Q =  4000040) by improving the sample designs, growth, and 
fabrication in 1.5 μm micropillar microcavities. For our ququart gates, the fidelities are greater than 
93.5% and the efficiencies are greater than 64.6% for = .κ

κ
0 25s  and = .

κ κ+
2 4g

s
. In the experiment, to 

derive a critical photon number, which determines the number of photons required to significantly 
change the radiation properties of the spin, the rate of spontaneous emission 2γ must be compared to 
the rate of stimulated emission per photon, λ

π
c

V
3
2

2
.
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In the poor cavity limit, the coupling between the radiation and the dipole can change the cavity 
reflection and transmission properties49,50, which allows for quantum applications in the weak coupling 
regime. In general the difference between the transmission for the uncoupled and coupled cavity can 
be increased by reducing the cavity losses and increasing the Purcell factor and the dipole lifetime. The 
preparation and the Hadamard operation of an electron spin may be realized using nanosecond elec-
tron spin resonance microwave pulses47. The ground state degeneracy, with Zeeman splitting less than 

Figure 6.  Average fidelities of ququart gates. (a) The average fidelity F(Z4) of the ququart gate Z4(θ) versus 
the normalized coupling strengths κs/κ and g/(κ +  κs). (b) The average fidelity F(C[T3]) of the controlled 
ququart gate C[T3(ϑ)] versus the normalized coupling strengths κs/κ and g/(κ +  κs). The coupling strength is 
defined by η =  0.2κs. The average fidelity is computed as the average of random θ and ϑ.

Figure 7.  Average efficiencies of ququart gates. (a) The efficiency P(Z4) of the ququart gate Z4(θ) versus 
κs/κ and g/(κ +  κs). (b) The efficiency P(C[T3]) of the controlled ququart gate C[T3(ϑ)] versus κs/κ and  
g/(κ +  κs). Here, η =  0.2κs.
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the photon bandwidth, must be restored in the implementation of quantum information protocols46. 
Quantum optical applications, such as the photon entangling gate and quantum computation, require 
the dephasing time being typically within the range of 5–10 ns. The electron spin coherence time can be 
extended to μs using spin echo techniques51–56 to protect the electron spin coherence with microwave 
pulses. The optical coherence time of an exciton is ten times longer than the cavity photon lifetime57,58, 
with which the optical dephasing only reduces the fidelity by a few percent. The hole spin dephasing is 
dominant in the spin dephasing of the dipole, and it can be safely neglected with the hole spin coherence 
time being three orders greater than the cavity photon lifetime59.

In conclusion, we introduced one-parameter universal ququart gates for SU(4n) based on the 
four-dimensional Hilbert space. These elementary gates are simpler than the multi-parameter ququart 
gates16. Moreover, in contrast to their iron-based realizations, our gates may be implemented on a photon 
system with two DOFs. The primitive element is the quantum interface between a single photon and 
the spin state of an electron trapped in a quantum dot, based on a cavity-QED system. Because of the 
superiority of the proposed gates regarding transmission, these photonic ququart gates may be used for 
distribution quantum information processing. Compared with previous qubit gates on the one DOF of 
a two-photon system31,34,38 or the hybrid gates on the photon and stationary electron spins35, our gates 
are created on two photons of two DOFs simultaneously. Different from previous CNOT gates on the 
same DOF of a two-photon system36, or CNOT gates on the different DOFs of a photon system37, our 
ququart gates require four qubits (a pair of two-DOFs). All elementary ququart gates cost no more than 
eight hybrid CNOT gates for a two-qubit system, which is far less than the 104 CNOT gates required for 
a general four-qubit gate. These elementary ququart gates are ultimately realized on the photon system 
for multi-system hyperentanglement, such as the cat state45, cluster state43, or GHZ state. The present 
photonic ququart logic may be applied to large-scale quantum computation.

Method
The cavity-QED system used in our proposal may be constructed as a singly charged In(Ga)As quantum 
dot located in the center of a one-sided optical resonant cavity29–32 to achieve maximal light-matter cou-
pling, as shown in Fig.  1. Microdisks and photonic crystal nanocavities may be used to produce 
single-photon sources and to study the Purcell effect in the weak-coupling regime and the vacuum Rabi 
splitting in the strong coupling regime40. If the quantum dot is singly charged, i.e., a single excess electron 
is injected, the optical excitation can create a negatively charged exciton (X−). The single-electron states 
have Jz =  ± 1/2 spin ( ↑ , ↓ ) while the holes have Jz =  ± 3/2 ( , ). The two electrons form a sin-
glet state and therefore have a total spin of zero, which prevents electron spin interactions with the hole 
spin. Photon polarization is commonly defined with respect to the direction of propagation, whereas the 
absolute rotation direction of its electromagnetic fields does not change. We will therefore label the opti-
cal states by their circular polarization ( L  and R  for left- and right-circular polarization respectively). 
Due to Pauli’s exclusion principle, X− shows that spin-dependent optical transitions39,40 [see Fig. 1(b)], a 
negatively charged exciton ↑ ↓  or ↓ ↑  may be created by resonantly absorbing L  or R 39,40. Due 
to this spin selection rule, the photon pulse encounters different phase shifts after reflection from the 
X−-cavity system when X− strongly couples to the cavity.

In the frame rotating with the cavity frequency ωc, the input-output relation of this one-sided cavity 
system can be calculated from the Heisenberg equation39,40 of motions for the cavity field operator â and 
dipole operator σ−ˆ  shown in equations (1), (2) and (3). In the approximation of weak excitation, i.e., 
〈 σz〉  ≈  − 1, when both the adiabatic condition ( κ( / )/ ,

ˆ ˆda dt a g) and the strong coupling condition 
(g2 ≫  κγ) are satisfied, the spin always stays in the steady state39–44. From =σ−ˆ 0d

dt
 and =ˆ 0da

dt
, it fol-

lows that

ω= ( ) , ( )ˆ ˆa r a 51out in

where the reflection coefficient

ω
ω κ κ
ω κ κ

( ) =
Δ + − +
Δ + + +

,
( )

ˆ
ˆ

r
i g
i g 52

c s

c s

ω η= /( Δ + )ĝ g i e
2  with the frequency detuning of Δ ωe between the photon and the dipole transition. 

g is the coupling strength between the cavity and dipole transition. η, κ, and κs are the decay rates of the 
dipole transition, the cavity field, and the cavity side leakage mode, respectively. In the following, we 
consider the case of a dipole tuned into resonance with the cavity mode (Δ ωe =  0), probed with the 
resonant light (g =  0, η →  0). If the radiation is not coupled to the dipole transition (g =  0, η →  ∞), then 
the reflection coefficient in equation (1) becomes

ω
ω κ κ
ω κ κ

( ) =
Δ + −
Δ + + ( )

r
i
i 53

c s

c s
0
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Thus, the optical process based on the spin-dependent transition is obtained37,38. The reflection coeffi-
cients can reach |r0(ω)| ≈  1 and |rh(ω)| ≈  1 when the cavity side leakage κs is negligible. If the linearly 
polarized probe beam in the state α β+R L  is placed into a one-sided cavity-QED system with the 
superposition spin in the state ( ↑ + ↓ )/ 2 , then the joint system consisting of the photon and 
the electron spin after reflection is

α β α β↑ ( + ) + ↓ ( + ) ( )θ θ θΔ Δe e R L R e L[ ] 54i i ih

where Δ θ =  θ0 −  θh with θ0 =  arg[r0(ω)] and θh =  arg[rh(ω)]. By adjusting the frequencies of the light and 
the cavity mode, the phase difference Δ θ for the left- and right-circular polarized photons may reach up 
to π33. From equation (48), the interaction of a single photon with a cavity-QED system can be described 
as in equation (4)60,61.
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