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A B S T R A C T   

Coronary heart disease leading to myocardial ischemia is a major cause of heart failure. A hallmark of heart 
failure is myocardial fibrosis. Using a murine model of myocardial ischemia/reperfusion injury (IRI), we showed 
that, following IRI, in mice genetically deficient in the central factor of complement system, C3, myocardial 
necrosis was reduced compared with WT mice. Four weeks after the ischemic period, the C3− /− mice had 
significantly less cardiac fibrosis and better cardiac function than the WT controls. Overall, our results suggest 
that innate immune response through complement C3 plays an important role in necrotic cell death, which 
contributes to the cardiac fibrosis that underlies post-infarction heart failure.   

1. Introduction 

Ischemia/reperfusion injury (IRI) underlies critical clinical scenarios 
involving major organs, e.g. myocardial infarction, transplantation, 
trauma and perioperative organ injury. IR elicits an acute inflammatory 
response involving complement factors of the innate immune system 
[1–3]. During IR, the local tissues undergo drastic intracellular changes: 
mitochondria become progressively dysfunctional and excess free radi-
cals are generated, leading to lipid and protein oxidation and DNA 
damage [4]. At the cell signaling level, factors of various cell death 
programs are activated [5,6]. During the ensuing necrosis, cytoplasmic 
membranes become unstable, resulting in the dispersal or exposure of 
intracellular contents to the extracellular space [7]. This triggers an 
immune response, as evidenced by release of pro-inflammatory cyto-
kines [8], activation of the complement system [1–3] and infiltration of 
inflammatory cells [9]. Together with the intracellular changes, these 
inflammatory responses result in the cell death of ischemic tissues and 
subsequent long-term consequences; e.g. in the heart, myocardial IR 
related post-infarction heart failure with the hallmarks of cardiac 
fibrosis [10,11] and heart dysfunction [12,13]. 

It has long been suggested that limiting inflammation during cardiac 

IR injury, for instance via complement inhibitors, would reduce 
myocardial-IR related cell death and thus prevent post-infarction heart 
failure [14–18]. Previous pre-clinical studies supported such a hypoth-
esis, particularly those using anti-complement C5 [16,18–21]. However, 
limited positive results were obtained with the few inhibitors studied in 
clinical trials [3]. In particular, anti-complement C5 (Pexelizumab) 
failed to meet the primary endpoints in acute myocardial infarction 
patients [22]. 

The earliest work that established the role of C5 in a rat myocardial 
IR injury model revealed that, while anti-C5 reduced infarct size and 
apoptosis, it did not inhibit C3 deposition in the injured myocardium 
[18]. Similar results obtained using inhibition of the C5a receptor 
[23–25] supported the conclusion that activated C5 was pro-apoptotic. 
However, anti-C5 failed to inhibit assembly of the terminal comple-
ment complex (TCC) in patients with ST-elevation myocardial infarction 
undergoing primary percutaneous coronary intervention [26], possibly 
due to intense complement activity or different mechanisms leading to 
TCC activation. 

Our view of these basic science and clinical results is that using anti- 
C5 targets a downstream factor in the common complement pathway, 
leaving earlier factors, e.g. C3, unaffected. Complement activation in 
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general can be initiated via three pathways: the classical pathway (CRP, 
antibodies, C1q, C4, C2), the alternative pathway (spontaneous C3 hy-
drolysis, Factor B (FB)) and the lectin pathway (mannose binding lectin 
(MBL), ficolins) [27–34]. These pathways converge at the formation of 
C3 convertase (C3b•Bb). Amplification via a loop involving C3 con-
vertases occurs only through the FB-dependent alternative pathway [35, 
36]. C3 convertases yield C3a and additional C3b, the latter forming C5 
convertases (C4b•C2a•C3b and C3b•Bb•C3b) and that cleave C5 to C5a 
and C5b. C5b initiates formation of the cell membrane attack complex 
(C5b-C9) which binds to and destroys targets. The C3 and C5 con-
vertases are regulated by membrane-bound proteins (e.g. CD46, CD55) 
and soluble factors (e.g. FH, C4BP and FI) [35,37]. Thus, it is possible 
that in the cited studies, activation of factors prior to C5, e.g. C3, would 
initiate upstream complement signaling pathways leading to acute cell 
death and chronic inflammation, thus contributing to post-infarction 
heart failure. Supporting this hypothesis, a clinical study found that 
coronary artery disease patients with lower C3 had less worse outcome 
than those higher levels of C3 [38]. 

Previously we used a clinically-relevant, myocardial IR injury mouse 
model (60 min ischemia resembling clinical door-to-balloon time 
(DTBT) time [39–41]) to show that myocardial necrosis, which 
increased upon reperfusion and was maintained through 24 h, was 
accompanied by deposition of activated C3 fragments in reperfused 
tissues [42]. Here we used this model to investigate the mechanisms by 
which C3 contributes to cell death in the acute phase of infarction (the 
first 24 h of reperfusion). In addition, we examined the long-term effect 
of C3 on post-infarction heart failure, as indicated by cardiac fibrosis and 
dysfunction. 

2. Materials and Methods 

2.1. Mouse model of surgically induced myocardial IR injury 

Complement C3 knockout (C3− /− ) mice and WT (C57BL/6) mouse 
strains were obtained from the Jackson Laboratory (Bar Harbor, ME) 
and maintained at the SUNY Downstate Health Science University 
Department of Laboratory Animal Resources. Genotyping was provided 
by GeneTyper (New York, NY). Male mice were used at 10–12 weeks of 
age (weight 26–30 g) in accordance with the requirements of the NIH 
and the Institutional Animal Care and Use Committee (IACUC) of SUNY 
Downstate Health Science University. The protocol was approved by the 
IACUC of SUNY Downstate Health Science University (Approval 
#11–10276). 

We employed an established model of myocardial IR injury model 
[42,43]. Mice were anesthetized using sodium pentobarbital (60 mg/kg, 
i.p.), intubated and ventilated with a mouse ventilator (Harvard Appa-
ratus, MA). Following sternotomy, the left anterior descending artery 
(LAD) was ligated for 1 h; occlusion of the LAD was confirmed by the 
appropriate color change of myocardial tissue and the ST elevation on 
ECG; reperfusion was verified by the reversed color change of the left 
ventricle and the appropriate ECG changes. Postoperative management 
included fluid replacement with normal saline and pain relief with the 
analgesic buprenorphine (0.1 mg/kg, intramuscularly). The mice were 
sacrificed after 24 h of reperfusion; the hearts were harvested for his-
topathologic analyses. 

2.2. Evaluation of murine myocardial necrosis by fluorescence using two 
probes delivered in vivo 

A fluorescent method for tracking necrosis (developed by others [44, 
45] and further refined by us [42]) was used. Shortly before the end of 
the reperfusion period described above and before tissue harvesting, 
mice were anesthetized, intubated again as described above, and 
injected i.v. with propidium iodide (PI), which enters damaged cells, 
intercalates with DNA and fluoresces, thus identifying necrotic tissue. 
The LAD was then re-occluded and blue fluorescent microspheres (BFM, 

ThermoFisher, PA) were injected through the aortic arch to delineate the 
non-ischemic region of the heart. The mice were sacrificed, the hearts 
harvested and the atria removed. Each ventricle was sectioned into four 
slices (~1 mm thickness) which were weighed and imaged under a 
fluorescent microscope (Olympus, PA) using the red fluorescent channel 
for PI, the blue channel for BFM. 

The percentage of the tissue in a heart which was at risk for necrosis 
(negative for blue fluorescence) and which became necrotic (positive for 
red fluorescence) was determined by computerized planimetry (Image J, 
NIH, Bethesda, MD) and by the following equations: 

Weight of necrotic tissue = (A1 x Wt1) + (A2 x Wt2) + (A3 x Wt3) +
(A4 x Wt4), where A was the percentage of the area of a slice staining for 
necrosis (red fluorescence) measured by planimetry (average of both 
sides of a slice) and Wt was the weight of that slice of ventricle. 

2.2.1. Weight of tissue at risk for necrosis (weight at risk, WAR) =
(R1 x Wt1) + (R2 x Wt2) + (R3 x Wt3) + (R4 x Wt4), where R is the 

percentage of the area of a slice which lacked the blue fluorescence of 
BFM, determined by planimetry (average of both sides of a slice used). In 
all cases, the tissue with red fluorescence was within the boundary of the 
tissue which lacked blue fluorescence. Blue = no blood flow. Red – ne-
crosis tissue. 

Percentage of the weight of a ventricle at risk for necrosis which 
became necrotic = (weight of necrotic tissue/WAR) x 100. 

2.3. Echocardiography 

Echocardiography was performed as previously described [46]. 
Briefly, mice chests were shaved and allowed to rest for at least 1 h 
before echocardiography. Echocardiography, using the Phillips SONOS 
5500 with a 15 MHz linear probe, was performed on conscious mice to 
avoid any cardiodepression produced by anesthesia. Imaging employed 
the M mode short axis view, measuring systolic and diastolic cardiac 
dimensions. Images were digitized for analysis. Left ventricular systolic 
(LVESD), diastolic (LVEDD), septal (SW), and posterior wall (PW) 
thicknesses were measured. Left ventricular fractional shortening (FS) 
was calculated from the following formula: FS (%) = ((LVEDD −
LVESD)/LVEDD)) × 100. The ejection fraction (EF) is calculated from 
the following formula: EF = ((LVEDD2 − LVESD2)/LVEDD2)) × 100. 
Left ventricular mass is calculated from the following formula: LV mass 
= 1.05 ((LVEDD + SW + PW)3 − (LVEDD3)). 

2.4. Cardiac fibrosis analysis 

For analysis of cardiac fibrosis, mice were sacrificed 4 weeks after 1 h 
of heart ischemia produced as described in Material and Methods, 
(Section 1). The cardiac fibrosis present in sections from each of 4 slices/ 
heart obtained as in Materials and Methods, were assessed by the Mas-
son Trichrome stain kit (VWR, PA), according to the manufacturer’s 
instructions. 

2.5. Statistical analysis 

Statistical analyses were performed using IBM SPSS Software version 
20 (IBM Corp., NY). For animal studies, an independent t-test with two 
tails and unequal variances was used to determine the statistical sig-
nificance of differences between the results of experimental and control 
groups. Descriptive data were summarized as mean ± standard error of 
mean. Power analyses were performed using G*Power 3.1 [47] showed 
>99% power for detection of differences in infarct size with 6–8 animals 
per group. 
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3. Results 

3.1. Myocardial necrosis is reduced in C3− /− mice after 60 min of heart 
ischemia followed by 24 h of reperfusion 

Loss of plasma membrane integrity (LPMI) is a hallmark of necrotic 
cell death [5,7]. We have developed an in vivo fluorescent method [41] 
modified from earlier reports [44,45] to track LPMI in necrotic 
myocardial death. The method permits subsequent analysis of fluo-
rescently tagged tissue for other pathological events, a significant 
advantage over the traditional evaluation of myocardial necrosis using 

triphenyl tetrazolium chloride. After 1 h ischemia/24 h reperfusion, 
necrosis in C3− /− mice was significantly reduced compared with WT 
mice (Fig. 1a and b; post hoc power analysis>90% power; similar post hoc 
statistical powers were identified for the other pilot experiments). 

These results indicate that when WT hearts experience regional 
ischemia in a 1 h time period resembling the length of clinical DTBT, 
their cardiomyocytes are directed by C3 towards necrosis during the 
acute 24 h long phase of reperfusion. How C3 regulates this switch is 
unknown. 

Fig. 1. Necrosis is decreased while apoptosis is increased in the hearts of C3− /− mice after IR.  
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3.2. Cardiac fibrosis and dysfunction are reduced in C3− /− mice 4 weeks 
after myocardial IR injury 

After a clinically relevant period of myocardial ischemia, C3− /− mice 
had a significant reduction in necrosis accompanied by an increase in 
apoptosis during the acute phase of reperfusion. Whether such a change 
in cell death type could lead to a different long term outcome in heart 
structure and function is not known. Published work has established that 
following ischemia, a reparative cardiac fibrosis occurs resulting from 
cardiomyocyte death, to replace the void left by dead myocytes [9]. Its 
hallmark is the excessive deposition of extracellular matrix, leading to 
tissue scarring and organ dysfunction. This is either manifested as 
myocardial stiffness (diastolic dysfunction) or may impact the entire left 
ventricle causing dilatation and systolic dysfunction, eventually result-
ing in heart failure [10,48]. The extent of fibrosis is important for 
prognosis of heart failure [49,50]. 

Using C3− /− and WT mice, we examined the long term effect of C3 on 
post-infarction heart failure, as indicated by cardiac fibrosis and heart 
dysfunction. Four weeks after the initial 1 h of ischemia, C3− /− mice had 
significantly less cardiac fibrosis than WT mice (Fig. 1c and d). When 
cardiac function was evaluated by echocardiography at this time, C3− /−

mice showed significantly better LVEDD than WT control mice (Fig. 1 e). 

4. Discussion 

We used a clinically relevant myocardial IRI model (60 min of 
ischemia resembling DTBT time followed by 24 h reperfusion) to 
investigate the mechanisms of cell death involving C3 in the acute phase 
of infarction. In mice genetically deficient in C3 which is the central 
molecule in all complement pathways, myocardial necrosis was signif-
icantly reduced compared with WT mice (Fig. 1a–b). The results imply 
that in WT mice during IR, C3 acts to promote necrosis. 

Our studies showed that 4 weeks after IR injury, C3− /− mice had 
significantly less post-ischemia cardiac fibrosis and improved cardiac 
function (Fig. 1 c-e). These results indicate that the myocardial IR in-
flammatory response in WT mice involving C3 results in increased car-
diac fibrosis and adverse tissue remodeling. Our results were in 
alignment with an earlier report by Weisman et al. that using sCR1 as an 
inhibitor of C3 activation in WT mice significantly reduced IRI in a rat 
model [51]. It is of note that sCR1 was administered to the animals 
before ischemia in Weisman’s study, suggesting that pre-emptive inhi-
bition of C3 may be necessary to protect heart before ischemia occurs. 
Similarly, our model used C3− /− mice which lack C3 before ischemia 
took place. Thus, the effect of C3 on IRI of WT animals may start at the 
ischemia phase (by C3 remaining in the area of ischemia), then exac-
erbate at reperfusion phase when circulation bring more C3 once the 
blood flow is re-established in the ischemic area. Whether C3 acted 
directly at extracellular or intracellular target(s) in IRI was not deter-
mined in this study but could be an interesting line of future studies. 
Nevertheless, our previous studies suggested that intracellular target(s), 
such as non-muscle myosin, may be exposed to natural antibodies during 
the IRI and subsequently activate complement system [43,52,53]. 
Therefore, it is possible that C3 participates in the recognition of intra-
cellular targets being exposed in IRI. 

It is of note that in our study, cardiac function of WT mice had 
sharply deteriorated at 4 weeks after ischemia, which is in agreement 
with others using rodent models of IRI [54–56]. One possible explana-
tion is that cardiac function was initially restored by reperfusion, but 
cardiac fibrosis gradually evolved and reached the threshold at 4 weeks 
after ischemia. Thus, the over-threshold level of cardiac fibrosis over-
weighted the capacity of heart compensation and pronounced the failing 
of cardiac function at 4 weeks. 

A recent study by Torf et al. using a Langendorff heart perfusion 
model found that C3 knockout mouse heart had larger infarct size than 
WT heart [57]. Although it seemed contrary to our findings, the main 
differences are: 1) Langendorff model uses an isolated heart with global 

ischemia which rarely happens in human acute myocardial infarction 
(AMI). In contrast, our in vivo IRI model mimics the human AMI scenario 
of regional ischemia. 2) The reperfusion time in Torf’s study was only 60 
min, while our study examined the long term effects of cardiac fibrosis 
and function (4 weeks). Thus, Torf’s findings may have certain value at 
the first hour immediately after ischemia, our findings imply the long 
term effects which are more resemble to clinical scenario. 

Our results suggest that targeting C3 has the potential to reduce 
significantly post-infarction heart failure. In AMI, shortening ischemia 
by hastening reperfusion of occluded coronary vessels, especially a 
DTBT of ≤90 min for primary percutaneous coronary intervention (~60 
min in the U.S.), results in smaller infarct size and lower mortality 
[39–41,58]. Thus, the research focus has thus shifted from reducing 
mortality to tackling the consequence of survival: post-infarction heart 
failure [59,60]. This process, which has increased globally in the past 3 
decades, places a substantial burden on health-care systems [61,62]. 

The main determinant of post-infarction heart failure is infarct size, 
which results not only from ischemia but from reperfusion injury. 
Currently, clinicians and basic scientists are focusing on therapies to 
reduce the latter [63]. However, to date, large-scale clinical trials, i.e. 
antagonism of the renin-angiotensin- aldosterone system, have provided 
limited evidence of clinical benefit to heart failure and few interventions 
have successfully passed the proof-of-concept stage [12,64]. Our results 
provide new insights into the mechanisms of reperfusion injury, and 
thus may offer potential therapeutic strategies. For instance, targeting 
complement C3 during reperfusion following AMI may significantly 
benefit patients and reduce long term healthcare costs. As several in-
hibitors for complement C3 are being tested in various clinical trials of 
rare diseases [65,66], it is possible that some inhibitors may be effective 
in cardiovascular diseases as well. 

In summary, this study has identified a mechanism during IR 
involving C3 that modulates the nature of cell death relevant to the 
pathological outcome of IR injury. As a long-term consequence of IR 
injury, C3- plays an important role in necrotic cell death which con-
tributes to the cardiac fibrosis that underlies post-infarction heart fail-
ure. The study provides new insights into the mechanisms of IR injury 
and suggests a potential approach for intervention in post-infarction 
heart failure.  

(a) C3− /− and WT mice (n = 6–8/group) were subjected to occlusion 
of the left anterior descending (LAD) artery for 1 h followed by 
reperfusion for 24 h. Next, propidium iodide (PI - enters cells 
through damaged cell membranes and binds DNA in necrotic 
cells) and blue fluorescent microspheres (BFM – present in un- 
occluded blood vessels) (the latter after re-occlusion of the 
LAD) were injected in vivo just prior to heart harvesting to 
delineate the infarcted area, and the area at risk (AAR) for ne-
crosis (i.e., lacking BFM), respectively. After animal sacrifice, 
each ventricle was divided into four slices (top and bottom of 
each slice are adjacent). LPMI-positive necrotic tissue (bright red) 
was visualized immediately under a fluorescent microscope with 
a 2× objective lens. Non-ischemic tissue was defined by the blue 
fluorescence of BFM, the non-fluorescing tissue constituting 
ischemic tissue, the area at risk (AAR) for necrosis. The necrotic 
area was traced with dotted lines as an example.  

(b) The LPMI-positive necrotic area expressed as % of AAR.  
(c) C3− /− mice had less cardiac fibrosis after IR. C3− /− mice and 

control WT mice (n = 4 per group) underwent 1 h myocardial 
ischemia followed by reperfusion. 4 weeks after initial heart 
ischemia, mice were sacrificed and cardiac fibrosis in heart sec-
tions was assessed by the Masson Trichrome stain (VWR, PA). 
Blue arrows indicated the areas of positive staining for fibrosis.  

(d) Fibrotic areas were quantified and expressed as a percentage of 
the total area of heart sections.  

(e) C3− /− mice had better LVEDD after IR. Cardiac functions were 
followed by echocardiography during the 4-week post-ischemia 
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period. *indicates P < 0.05 between the C3− /− and WT groups at 
4 weeks’ post-ischemia. 
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