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Fast physical repetitive patterns 
generation for masking 
in time‑delay reservoir computing
Apostolos Argyris1*, Janek Schwind1,2 & Ingo Fischer1 

Albeit the conceptual simplicity of hardware reservoir computing, the various implementation 
schemes that have been proposed so far still face versatile challenges. The conceptually simplest 
implementation uses a time delay approach, where one replaces the ensemble of nonlinear nodes with 
a unique nonlinear node connected to a delayed feedback loop. This simplification comes at a price in 
other parts of the implementation; repetitive temporal masking sequences are required to map the 
input information onto the diverse states of the time delay reservoir. These sequences are commonly 
introduced by arbitrary waveform generators which is an expensive approach when exploring ultra-
fast processing speeds. Here we propose the physical generation of clock-free, sub-nanosecond 
repetitive patterns, with increased intra-pattern diversity and their use as masking sequences. To 
that end, we investigate numerically a semiconductor laser with a short optical feedback cavity, a 
well-studied dynamical system that provides a wide diversity of emitted signals. We focus on those 
operating conditions that lead to a periodic signal generation, with multiple harmonic frequency 
tones and sub-nanosecond limit cycle dynamics. By tuning the strength of the different frequency 
tones in the microwave domain, we access a variety of repetitive patterns and sample them in order to 
obtain the desired masking sequences. Eventually, we apply them in a time delay reservoir computing 
approach and test them in a nonlinear time-series prediction task. In a performance comparison 
with masking sequences that originate from random values, we find that only minor compromises 
are made while significantly reducing the instrumentation requirements of the time delay reservoir 
computing system.

Reservoir computing (RC) has been a popular computing paradigm with simplified recurrent neural network 
architectures1–3. In the various attempts to convert this paradigm into a hardware computing system, several 
approaches and additional simplifications have been proposed4–7. Among them, time delayed reservoir comput-
ing (TDRC) is a time-multiplexing approach of a nonlinear neuron coupled to a delayed feedback loop that intro-
duces the recurrency8–12. The virtual nodes that are defined along the time delay provide the high-dimensional 
states for computing. But in order to obtain the diversity on the virtual nodes’ responses over an input signal, a 
masking process is applied at the input of the TDRC. This process is traditionally implemented by introducing 
a random sequence of values, each one of them assigned to a virtual node of the reservoir13–20. In principle, the 
diversity of the values within the sequence must be high, in order to exploit as much as possible the available 
dimensionality of the created state space. The masking sequence is then repeated for every time delay of the 
reservoir, so that every virtual node has the same connectivity with the input signal that is processed. A common 
way to introduce these repetitive sequences in a hardware TDRC system is by using arbitrary waveform genera-
tors; one can upload a sequence of predetermined values and generate the corresponding electrical signals with 
a desired repetition rate. An alternative approach that eliminates the necessity of expensive instrumentation is 
to generate temporal patterns from physical systems with (a) high inter-pattern diversity and (b) repeated in 
time. However, generating such patterns at sub-nanosecond rates is not a straightforward task. There were sev-
eral reports in the past that used electronic circuits, radio-frequency photonics and laser-based systems, either 
to generate ultra-stable repetitive sinusoidal emission (microwave oscillators)21–23 or to generate non-repetitive 
broadband emission (chaotic oscillators)24, 25. But the generated signals from all these systems comply with only 
one of the two desired requirements; single-frequency emission could only generate a low-diversity sequence, 
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while chaotic emission cannot seed a repetitive pattern and thus could be only used as a physical source of uncor-
related values uploaded in an arbitrary waveform generator17.

Here we propose a very simple system which is able to generate repetitive temporal patterns with increased 
diversity and is based on a semiconductor laser with delayed optical feedback (SL-OF) (Fig. 1). This system has 
been well-explored in the last decades in terms of fundamental dynamical properties10, 26–32, demonstrating 
single-frequency33–37, pulsating38, 39 or chaotic40–43 emission. We explore specifically those operating conditions 
that result in limit cycle dynamical emission, which contains multiple harmonic frequency tones in the spectral 
emission profile. By tuning the relative power of these frequency tones in the microwave domain via attenuation 
and amplification, we generate repetitive patterns with various intra-pattern structures. In order to set an evalu-
ation criterion regarding this diversity, we employ a permutation entropy metric that relates large variations of 
neighbouring samples of the pattern with high metric values. Finally, by sampling these patterns at ultra-fast 
rates, we generate a set of physically generated, clock-free masking sequences and test them in a TDRC one-
step-ahead prediction task.

Results
SL with short‑cavity feedback dynamics.  Semiconductor lasers with optical feedback exhibit a variety 
of dynamical responses, depending on their physical parameters and operating conditions10, 26–32. Limit cycle 
dynamics can be easily obtained in many parameter configurations of this system. The parameter space in which 
they can be observed is greatly expanded when considering short optical cavities of sub-nanosecond time delay. 
They may originate from single-frequency period one (P1) dynamics, but also from multiple narrow-linewidth 
frequency harmonic tones that appear in the microwave spectrum44. The latter originate from the multiple ech-
oes of the external cavity and do not appear necessarily at the inverse delay time ( 1/τ ), but they are affected by 
the dynamical operation of the laser and its relaxation frequency38, 45. Shorter feedback cavities impose a larger 
spectral distance among the frequency tones. Moreover, high biasing laser current shifts the relaxation oscilla-
tion frequency to higher values, providing gain to frequency harmonics in a wider spectrum. From the numeri-
cal model of the Lang-Kobayashi equations for the SL-OF system (Methods) and in presence of laser noise, we 
evaluate the emitted output regarding several spectral attributes, versus the optical feedback ratio rc and phase 
φc . In Fig. 2 we show the number of frequency tones that are observed in the frequency domain after photode-
tection (Methods) and within a bandwidth of 50 GHz. Only those peaks with power spectral density above −80

dBm are considered, emulating a reasonable power sensitivity floor for signal detection. Zero peaks indicates an 
emitted signal with frequency components which are below −80dBm (Fig. 2, point (a), φc = 0.6 and rc = 0.14 ). 
By slightly increasing the feedback ratio for the same φc more frequency tones gain considerable power (Fig. 2, 
points (b)–(d)). The transition between the zones where we observe 0 and 11 frequency tones is related to the 
gain that these tones get under the feedback strength and phase conditions and within the operating dynami-
cal state of the SL-OF system. The interaction between the laser emission and the re-injected optical field is 
strongly dependent on the phase conditions. One can observe abrupt phase matching transitions that offer gain 
amplification to a wide spectral region at once—and thus the 11 peaks appear almost at the same time—or phase 
matching transitions that offer a gradual gain increase versus frequency—and thus more tones appear gradu-
ally towards the full deployment of the 11-tone spectrum. The parameter space where we obtain 11 frequency 
tones within the investigated bandwidth (Fig. 2, point (e)) is rather large and is due to the combination of the 
high biasing current of the SL, the strong optical feedback and the short external cavity. Specifically, the relaxa-
tion oscillation frequency of the SL is high enough to provide gain to all observed peaks, while the limit-cycle 
dynamical operation is favoured by the short external cavity round-trip time. Even stronger feedback conditions 
( rc> 0.17) combined with adjusted feedback phase may lead to more complex dynamical behavior38, 45, including 
period doubling (P2) dynamics (Fig. 2, point (f)) or coherence collapse with broadband chaotic emission (Fig. 2, 

Figure 1.   SL-OF system with external cavity round-trip time τ for generation of fast repetitive patterns with 
tunable intra-pattern structures. A set of microwave attenuators and amplifiers acting at different spectral 
regimes is used to tune the spectral profile and consequently the temporal pattern of the emitted signal.
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points (g),(h)). Both last cases result in a larger number of frequency peaks (>11) in our mapping, represented 
by grey color in Fig. 2.

Here our focus is on the dynamical response of the system with 11 multi-tone frequencies (Fig. 2, point (e)). 
Even though there is a large parameter tolerance to obtain this kind of emission, the attributes of the frequency 
tones are not the same. It has been shown in the past that tuning of the first (fundamental) frequency tone can 
be easily obtained by changing the feedback time delay τ46. But even for a fixed time delay τ , additional tuning 
can be obtained by changing the feedback conditions. This has been observed in SL-OF systems in the past with 
regular pulse packages45, where the emerging distinct spectral tones were not defined solely by the solitary laser 
characteristics or the external cavity round-trip time, but also by the structure of the phase space and the cor-
responding unstable manifolds that governed the system dynamics. In our case, this is shown in Fig. 3, where 
the frequency of the first tone may be tuned between 4.2 and 4.6 GHz (Fig. 3, a). Moreover, for the investigated 
parameter space, we have calculated the ratio between the frequencies of the second and the first tones (Fig. 3b) 
and we conclude that the frequency tones are not always equally spaced. Equidistant frequency tones is a neces-
sary condition for this system to obtain repetitive patterns in the time domain. Of course, there is a more general 
condition under which we can obtain repetitive patterns that include multiple frequency tones in their spectrum: 
the great common divisor of all frequencies that appear in a pattern—if it exists—will define a periodic pattern 
and will give the fundamental frequency of the periodicity. However, the SL-OF system that we investigate here 
defines where the high-contrast frequency tones will appear in the spectrum. The frequency difference between 

Figure 2.   Left: Number of frequency peaks that are observed in the 50 GHz microwave spectrum of the emitted 
signal, versus the optical feedback ratio rc and phase φc of the SL-OF system. Right: Microwave spectral profiles 
for the different parameter conditions (a)–(h). The resolution for the parameters rc and φc is 10−4 and 10−2 
respectively.

Figure 3.   (a) Microwave frequency of the first tone and (b) microwave frequency ratio between the second and 
the first tone, versus the optical feedback ratio rc and phase φc of the SL-OF system. The white overlying lines in 
(b) highlight those conditions that satisfy an integer relation equal to 2, with an accuracy of 10−4 . The resolution 
for the parameters rc and φc is 10−4 and 10−2 respectively.



4

Vol:.(1234567890)

Scientific Reports |         (2021) 11:6701  | https://doi.org/10.1038/s41598-021-86150-0

www.nature.com/scientificreports/

neighbouring tones is always around the value of the frequency of the first tone. This is why we focus on the 
equidistance criterion and target on a periodic pattern that has as fundamental frequency the frequency of the 
first tone. Moreover, this guarantees the shortest possible duration of the repetitive pattern.

As shown in Fig. 3b (white highlight), there are several feedback conditions for which the frequency ratio 
between the second and the first tone has an integer value. For those conditions, we verify that this integer rela-
tion is also preserved between the higher frequency harmonics and the first one. Even though these highlighted 
regions appear quite narrow in the presented mapping, we estimate that these can be obtained experimentally 
in a stable operation. For example, focusing on the vicinity of a specific feedback parameter set ( rc = 0.136 and 
φc = 0.9 ) that we will work with in this study, the equidistance criterion is preserved for 0.1343 < rc < 0.1391 and 
for 0.88 < φc < 0.94 . The range of this parameter space is rather wide, even when considering an experimental 
implementation of this system. The feedback ratio can be tuned experimentally with large accuracy, orders of 
magnitude lower that the actual value. On the other hand, phase stability is always an issue in phase-dependent 
optical systems which are sensitive to environmental conditions. In a controlled experimental environment, the 
required feedback phase stability can be enhanced by active phase control mechanisms, which could in principle 
provide phase accuracy of less than 0.1 radians and fulfil the phase stability requirements.

Generation of repetitive signals of increased diversity.  From the previous SL-OF system mapping, 
we select a set of feedback parameters ( rc = 0.136 and φc = 0.9 ) (Fig. 2, point (e)) that lead to the following 
signal emission (Fig. 4): a quasi-sinusoidal repetitive pattern (Fig. 4a), which originates from limit cycle dynam-
ics (Fig. 4b) and includes 11 equidistant frequency tones within a 50-GHz bandwidth (Fig. 4c). The repetition 
frequency of the emitted signal is fe = 4.4248 GHz, equal to the frequency of the first tone. This defines a 
repetitive temporal pattern of duration τe = 226 ps. In this configuration, the relative power of the frequency 
tones gradually decreases as the frequency of the harmonics increases (Fig. 4c). This spectral signature leads to 
a quasi-sinusoidal pattern, with small diversity between adjacent samples (Fig. 4a). An easy way to increase this 
diversity is to tune the contribution of each frequency component, by using a combination of microwave attenu-
ators and band-pass amplifiers. Here we study an even much simpler case, that requires only a limited number 
of components for implementation. We split the 50 GHz spectral emission into three frequency regimes: in the 
first regime, that covers the first 5 frequency tones up to 25 GHz, we apply microwave attenuation. In the second 
and the third regime, that each one includes 3 tones of higher frequencies, we apply microwave amplification 
(Fig. 4c). For experimental considerations there is a huge variety of microwave attenuators and amplifiers that 
offer attenuation or band-pass amplification gain, at the aforementioned frequency regimes. 

Low frequency tones contribute to the generation of slowly varying intra-pattern oscillations. Thus, we con-
sider an attenuation of 40dB for the first stage ( G1 = −40 dB) and suppress the most powerful, lower frequency 
tones. In parallel, we apply a variable amplification gain at the second ( G2 ) and the third ( G3 ) stage, in order to 
strengthen the contribution of the medium and high frequency tones and thus the high frequency intra-pattern 
oscillations. For the different amplification conditions of these two stages, we use a permutation entropy metric47 
to evaluate the intra-pattern diversity of the generated temporal patterns. Specifically, we employ the increment 
permutation entropy PEinc48, a modified estimator that takes additionally into consideration the absolute distance 
between two consecutive samples’ values (Methods). This metric can only partially describe the variability of a 
pattern in its total duration, since by definition it evaluates the diversity of values in the local neighbourhood of 
each sample. However, as we show in the next subsection, it correlates significantly with the TDRC performance. 
Small PEinc values relate to more regular patterns. Contrarily, larger PEinc values relate to more diverse, noisy and 
random patterns. Its calculation is shown in Fig. 5 (left), versus the different amplification conditions ( G2,G3 ). 
From this, we can identify that high values of increment entropy are obtained for high gain of at least one of the 
amplification stages. The highest value PEinc = 6 is obtained for G2 = 0 dB and G3 = 56 dB (pattern A). Other 
high entropy conditions ( PEinc ≥ 5.8 ) may be obtained from almost identical (pattern B) or distinct (patterns 
C,D) temporal patterns. Lower entropy conditions (pattern E, with PEinc = 4 ) come along a smaller intra-
pattern variability. The temporal patterns of the illustrated cases A-E are shown in Fig. 5 (right), in a persistence 
plot. These plots validate that there is no drift in the periodicity, after 50000 pattern repetitions. The maximum 
temporal jitter of the generated patterns is measured to be less than 0.1% of the pattern duration and originates 

Figure 4.   Repetitive temporal pattern emission (a) from a SL-OF system under a limit cycle dynamical 
operation (b) that originates from multiple equidistant microwave frequency tones (c). The operating conditions 
refer to point (e) of Figure 2. In (c) definition of the three microwave frequency regimes where we apply 
different attenuation / amplification conditions.
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from the laser source noise. However, until now we have not considered any noise effects from the amplifica-
tion stages. In a realistic scenario, such amplification stages will introduce noise; the typical noise figure (NF) 
of such components lies between 1 and 3 dB, at the frequency bands of our interest. The presence of amplifica-
tion noise in the process of pattern generation is expected to have some impact on the quality of the repetitive 
patterns. Thus, at the next stage, we introduce an additive noise term in the pattern amplification process. The 
amplitude of this term is such that degrades the signal to noise ratio of the generated pattern by the NF value. 
In Fig. 6 we show the impact of introducing amplification noise to the generation process of patterns A–E. Even 
for the case of NF=3dB, the degradation of the pattern consistency is not visible from the persistence plots of 
the patterns (Fig. 6, left). But in order to quantify the noise effect, we calculate the mean standard deviation of 
each pattern from these persistence plots, for different NF levels (Fig. 6, right). From this graph, we conclude 
that the amplification noise has only a small impact on the consistency of the generating patterns, even for the 
case of NF=3 dB. This minor discrepancy might be important for applications that require pattern repetition of 
high fidelity, such as the TDRC.

Masking patterns for time delay RC.  In the continuation, we investigate how such physically gener-
ated patterns can be applied to TDRC for prediction tasks. We also study how the amplification noise, which 
enters at the generation stage of these patterns, affects the TDRC performance. The information processed by 
the TDRC is mapped into an expanded state space defined by the number of virtual nodes ( Vn ) of the reservoir. 
This mapping is implemented by multiplying each piece of input information with a repetitive masking sequence 
M, within the time duration T defined by the feedback loop. Each value of M is assigned to one virtual node 
( dim(M) = Vn ) and is kept fixed throughout the computation. The operation of the TDRC and the implemen-
tation of the linear classifier at the output layer are described in Methods. The computational task in which we 
evaluate the generated masking sequences is a Santa Fe timeseries one-step-ahead prediction, also presented 
in Methods. This task has been commonly used to characterize the prediction capabilities of various reservoir 
computing platforms17, 49–51.

The typical procedure when using arbitrary waveform generators for masking in experimental TDRC imple-
mentations is a sample-and-hold operation, where the mask value is retained for a time interval equal to the 
virtual node temporal spacing. In our approach, the physical generation of the repetitive patterns provides an 
analogue signal, with a bandwidth defined by the frequency tones and a physical duration ( τe = 226 ps). This 
gives the flexibility to incorporate the masking sequence into a TDRC implementation in two different ways; 
either as a direct analogue signal or by defining a sampling rate for the pattern and following the sample-and-hold 

Figure 5.   Left: Increment entropy PEinc of the repetitive patterns obtained for different amplification gain 
conditions in the second and the third spectral regime. Center: Normalized temporal persistence plots with 
100 pattern repetitions for the initially emitted pattern by the SL-OF system and for the obtained patterns 
after electrical attenuation / amplification (cases A–E). In patterns A and B, fast oscillations are dictated by 
the stronger frequency components of the third amplification stage. In pattern C, the strongest frequency 
components of the second amplification stage result in a slower oscillating pattern. In pattern D, the strong 
amplification of both stages results in also faster oscillations but with suppressed peaks. In pattern E, moderate 
gain leads to only a limited variation of the initial pattern. The patterns are taken randomly from timeseries with 
50000 consecutive patterns, including the first and the last one. The starting sample of each repetitive pattern is 
the one with the highest normalized amplitude. Right: Power spectral density of the corresponding patterns in a 
50 GHz spectral range, as they are obtained from the physical system.
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operation. In both cases, the mask sequence will be a microwave signal that will be mixed with the input data, 
independently of whether the TDRC refers to an electrical or an optical hardware implementation. In this study 
we choose to apply the masking sequences M to the TDRC, after sampling the physical patterns obtained from 
the SL-OF system. Within the very short pattern duration τe , the number of samples that we can obtain - with 
large diversity between them—is limited. Thus, we sample the specific pattern duration with 50 values—since 
the masking sequence dimension is dim(M) = 50—and apply it to a reservoir with Vn = 50 virtual nodes. The 
sampling temporal distance with be then τe / dim(M) = 4.52 ps, a value that can be monitored today by ultra-fast 
real-time oscilloscopes. However, in reservoir computing, the size of the reservoir is critical for the computational 
performance, especially in systems that include noise. Then, the question that arises is how can we use such 
repetitive patterns with short duration and address larger reservoirs ( Vn > 50 ). We circumvent this by using 
multiple patterns to obtain the desired masking sequence length (see also Supplementary material). For example, 
in order to address a reservoir with Vn = 400 = 50χ , we use χ = 8 repetitions of the physically sampled patterns, 
so that the sampling distance (χτe ) / dim(M) = 4.52 ps is preserved. By following this approach, we evaluate the 
different masking sequences, for different reservoir sizes, in the TDRC timeseries prediction task. Specifically, 
we consider the originally obtained pattern from the SL-OF system and the five patterns A-E after amplification, 
as they are shown in Figs. 5 and 6, in absence ( NF = 0 dB) or presence ( NF = 1 dB, NF = 2 dB and NF = 3 dB) 
of amplification noise. For these patterns and noise conditions, we calculate the normalized mean square error 
(NMSE, see Methods) of the prediction performance in Fig. 7. We also compare their performance with the best 
one obtained when considering 1000 arbitrarily selected random masks, with dimension dim(M) = Vn and with 
values drawn from a uniform normalized distribution.

The performance we obtain with the random mask (Fig. 7, orange stars) sets the floor on the lowest predic-
tion error we can obtain. A random mask with large diversity ensures that the input information is processed 
while exploiting the highest possible dimensionality of the reservoir. Even with a reservoir size of Vn = 100 , the 
obtained NMSE reaches its minimum value, around 0.01. First, we compare this performance with the case of 
a masking sequence that originates from the originally obtained pattern from the SL-OF system (Fig. 5, right), 
in absence of any frequency tone tuning. In the illustration of the patterns in this figure, the starting sample of 
the repetitive pattern is the one with the highest normalized amplitude. For the TDRC task evaluation and for 
all the mask patterns originating from the SL-OF system, we iterate all possible shifts of the sampled mask pat-
tern and we record the lowest error. For Vn = 50 , the NMSE obtained with a masking sequence from the initial 
SL-OF pattern does not get lower than 0.077, while improves to 0.055 by increasing the reservoir size to Vn = 400 
(Fig. 7, left violet triangles). However, when considering masking sequences that originate from the patterns A–E 
(Fig. 5, right), the NMSE lies at a significantly lower level, compared to the initial pattern. In absence of ampli-
fication noise (Fig. 7a), the patterns with high PEinc values result in lower NMSE. The lowest NMSE is obtained 
for Vn = 400 for a masking sequence from pattern C and is equal to 0.0162. On the contrary, pattern E, which is 
characterized by a low PEinc value, is always lacking in performance. When we consider the amplification noise 
in the pattern generation process (Fig. 7b–d), its impact on small-sized reservoirs becomes more significant than 
the diversity of the masking sequence. As expected, the higher the NF is the stronger becomes its impact on the 

Figure 6.   Temporal persistence plots of 100 instances of the repetitive patterns A–E, when the amplification 
stages suffer from NF=3 dB (left) and mean standard deviation of the persistence plots for different levels of NF 
(right). The temporal persistence plots are obtained from timeseries with a total duration of 50,000 patterns, 
including the first and the last one.
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NMSE performance. For example, in the case of NF = 3 dB and Vn = 50 (Fig. 7d), the error obtained from the 
pattern E, which is less affected by noise (Fig. 6, right), is equal to the one obtained by the initial pattern. The rest 
of the patterns (A–D) which are more affected by amplification noise result in higher computing error. However, 
the impact of noise can be dramatically suppressed by increasing the reservoir size. For Vn = 400 , the NMSE we 
obtain is as low as 0.0168 when considering pattern C and is almost equal to the case where amplification noise 
is not considered. Thus we conclude that for large reservoirs, which are more robust to the noise of the system, 
an increased masking sequence diversity leads to improved computing performance.

Discussion
Although random masks result in a lower computing error compared to the ones originating from the SL-OF 
system, there are several arguments for overestimating their difference in performance. First, the amplification 
approach we selected in the presented study of the SL-OF system was towards a minimalistic design; the 11 
frequency tones from the SL-OF system were clustered in three frequency bands. In an extended design, the 
amplitude of each frequency tone could be individually tuned. Such a consideration expands the pool of avail-
able patterns, in terms of intra-pattern diversity and thus a possibility to further optimize the performance of 
the computation. Second, in a real system implementation, the values defined random masking sequences must 
be transformed into actual electrical signals, via arbitrary waveform generators. This transformation can be 
only executed with finite precision in amplitude and time (jitter), while unavoidably affected by electrical noise 
sources. Eventually, the NMSE value obtained from a physical random mask signal is expected to be higher than 
the calculated value of 0.01. Third, the matching condition between the repetition period of the mask τe and the 
time delay of the reservoir T imposes a constraint regarding the reservoir size that we can address with a multi-
tone frequency pattern. In order to apply the masking sequence to a reservoir with Vn = 400 virtual nodes, we 
have repeated the same pattern χ = 8 times. Thus, many virtual nodes become correlated due to this pattern 
repetition and the extended degrees of freedom offered by the large reservoir cannot be completely exploited, 
as in the case of the random mask. The consideration of an even denser sampling of the patterns would not be 
realistic for practical implementations. However, by increasing the feedback delay time of the SL-OF system while 
preserving the generation of repetitive patterns, one could obtain longer masking sequences that match with 
the delay of larger reservoirs. The fact that we observe lower NMSE values for larger reservoirs in the proposed 
configuration (Fig. 7) is due to the better noise robustness of the system.

Moreover, it becomes also clear from this study that selecting an appropriate statistical metric to character-
ize a masking pattern and associate it to the computing performance of the TDRC is not straightforward. This 
appears rather reasonable since the computation performance depends also on the information that is processed. 

Figure 7.   NMSE performance of the Santa-Fe timeseries one-step-ahead prediction benchmark task with 
TDRC, when using the sampled different patterns (A–E) that originate from the SL-OF system as masking 
sequences. The performance is evaluated versus the reservoir size Vn and under different amplification noise 
conditions: (a) NF = 0 dB, (b) NF = 1 dB, (c) NF = 2 dB and (d) NF = 3 dB. The NMSE performance is 
compared to the one that uses as masking sequence the sampled initial pattern generated from the SL-OF 
system (left violet triangles). It is also compared to the one that uses as mask an algorithmic random sequence 
(orange stars).
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However, the increment entropy used here to quantify the diversity of the generated patterns—even though com-
puted for neighbouring samples—is found to be significantly correlated to the task performance. The reason is 
that the TDRC is operated in a transient regime, so only the neighbouring virtual nodes are strongly connected 
through inertia. Thus, obtaining a large diversity for the neighbouring virtual nodes’ responses is much more 
important compared to the diversity among distant virtual nodes which are not coupled through inertia. Still, the 
TDRC dependence on the processing data itself, makes this metric not sufficient to implement a pre-selection 
of the absolute best masking pattern. For example, pattern A, which was identified from Fig. 5 with the highest 
increment entropy ( PEinc=6), is not always the one from which the obtained mask sequence offers the lowest 
computing error. But the use of this metric is very useful to discard patterns with low PEinc values - e.g. pattern 
E in Fig. 5, with PEinc=4, or initial pattern in Fig. 5, with PEinc=2—that result in higher computing error (see 
also Supplementary Fig. S4).

While TDRC topologies offer a significant reduction of complexity in the implementation of recurrent neural 
networks, they are limited in terms of computational speed, imposed by the time-delay of the reservoir. Thus, 
for masking sequences of duration τe that apply to a TDRC with dim(M) = 50 virtual nodes, the computational 
speed that can process real-time the information with a rate Sb is given by Sb = fe = 1/τe . A consideration to 
speed up the computation is the reduction of the number of virtual nodes, but with degrading the performance 
of the computing task. Overall, the repetitive patterns obtained from the SL-OF system offer an attractive and 
simple solution for the real-time, physical implementation of the masking procedure, with minimal compromises 
in terms of the TDRC capabilities. The pattern periodicity can be easily tuned via the feedback cavity length and 
the feedback parameters, while a plethora of internal pattern structures can be selected by tuning the strength 
of the individual frequency components. Besides the methodology we proposed here, this tuning can be imple-
mented also by using of microwave linear filters that have appropriate spectral profiles. One could also consider 
to tune the frequency components in the optical domain by introducing an optical linear transformation (e.g. by 
employing the chromatic dispersion introduced by a fibre) and avoid any optoelectronic conversion. However, 
in these last considerations, the variety of patterns we one can obtain will be limited.

Methods
Lang–Kobayashi model for SL with optical feedback.  We numerically model the SL-OF system with 
the Lang-Kobayashi rate equations26 by selecting the appropriate laser operating conditions. The slowly varying 
electrical field amplitude E(t) that corresponds to the optical emission of the response laser is calculated using 
the following equations:

The external cavity round-trip time is set at only τ = 200 ps and the SL biasing current at I = 2.36 · Ith (where 
the threshold current is Ith = 15.37 mA). We consider typical values for the rest parameters of the SL: linewidth 
enhancement factor α = 3 , gain coefficient gn = 1.2 · 10−5 ns−1 , gain saturation coefficient s = 5 · 10−7 , carrier 
number at transparency N0 = 1.5 · 108 , laser round-trip time tin = 10 ps, carrier lifetime ts = 2 ns and photon 
lifetime tph = 2 ps. The optical angular frequency ω0 is computed from the SL’s emission wavelength at 1550 nm 
and q is the electron charge. ξ0 is a white Gaussian noise term with strength D = 3 ns−2 . This value reflects a 
rather low-noise laser. For a more detailed discussion on the impact of laser noise on the emitted signal proper-
ties, see Supplementary material. For the conversion of the amplitude of the electrical field to optical power29, 
we used typical values for the external and internal quantum efficiency of the laser (0.3 and 0.8 respectively). 
The emitted optical signal from the SL-OF system is converted to an electrical signal through photodetection. 
We consider photodetector responsivity of 1 A/W and no photodetection noise. In order to address a very fine 
temporal resolution of the generated patterns, the Lang-Kobayashi model is solved with a time step of 0.01 ps, 
with the 4th order Runge-Kutta approximation.

Increment entropy.  To calculate the increment entropy of the different patterns, we use the definition of48, 
which originates from the original permutation entropy definition47. From a pattern P of length L that is normal-
ized in amplitude within an interval [0, 1], we form a vector with the increment values Pi(lu) = P(lu)− P(lu + 1) , 
with lu ∈ [1, L− 1] . Then, we use a sliding window of size {m ∈ N} < L in order to create (L−m) vectors 
vk = [Pi(k),Pi(k + (m− 1))] , k ∈ [1, (L−m)] of Pi . Each vk is mapped into an ordinal pattern wk consisting of 
2m letters. The first m letters of the ordinal pattern correspond to the sign of each element of vk.

The rest letters from m+ 1 to 2m get their values from the change of the amplitude of each element in vk , as 
obtained in relation to the maximum amplitude Vmax of vk , by using R quantization steps for each changing 
direction—positive or negative—to describe the amplitude change:

(1)Ė(t) =1

2
(1− jα)[G(t)− t−1

ph ] · E(t)+
rc

tin
· E(t − τ)ej(ω0τ+ϕc) +

√
Dξ0

(2)Ṅ(t) = I

q
− N(t)

ts
− G(t) · |E|2

(3)G(t) =gn · [1+ s|E(t)|2]−1 · [N(t)− N0]

(4)wk(qk) =
{

1 vk(qk) > 0

0 vk(qk) = 0

−1 vk(qk) < 0
, qk ∈ [1,m]
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Thus, there are (2R + 1)m possible unique ordinal patterns wn : R possible values for the positive change, R pos-
sible values for the negative change, and one additional value for the zero change. The increment permutation 
entropy results in:

where:

is the relative frequency that indicates how often an ordinal pattern wn appears, with Q(wn) being the absolute 
frequency of its appearance. For the computation of Fig. 5, we used a four-level quantization ( R = 4 ), an ordinal 
pattern length of m = 3 , a time delay equal to 1 (neighbouring samples). We have considered also cases where the 
ordinal pattern length m is larger (up to m = 7 ), with qualitatively identical results (see Supplementary material).

Operation of the TDRC.  In the TDRC approach, the reservoir network is constructed by a single nonlinear 
node and a feedback loop. It consists of:

(a)	 An input layer, which inserts the information into the reservoir. In our case the input is a vector Y which 
consists of discrete values. The connection of each piece of information with the nonlinear nodes of the 
reservoir is performed under fixed input weights. In time-delayed systems, where the input information is 
time-multiplexed along the delay of the system, these weights are assigned as a repetitive pattern sequence 
for every time delay. This pattern is the masking sequence (M).

(b)	 The reservoir, which is a nonlinear, dynamic and high-dimensional, but otherwise completely generic, net-
work that remains unaltered at any time. The reservoir network consists of Vn virtual nodes, with Vn = T/θ , 
where θ is their equidistant time separation and T is the time delay of the reservoir’s feedback loop. The 
diversity of states is introduced by the masking sequence M that is repeated every time delay cycle T. Thus, 
the information to be processed J is multiplied with the masking sequence of dimension dim(M) = Vn 
before being inserted in the time-delayed reservoir. J changes its value every time-delay of the reservoir T, 
which is also matched with the generated masking pattern duration ( T = τe ). For those cases that consider 
not one but χ patterns repetitions ( χ > 1 , χ ∈ N1 ) to form the masking sequence, the above condition 
changes to: T = χτe . M changes its value every virtual node time separation. The recurrent connectivity 
via the feedback loop allows the virtual nodes to interact with their states in the past introducing fading 
memory. Furthermore, neighbouring virtual nodes are additionally coupled through inertia, determined 
by the response time of the nonlinear node.

(c)	 The output layer, where the optimal readout weights Wout are obtained by a linear regression algorithm and 
the use of an appropriate training data set, for the optimal execution of the computing task.

Here we consider a generic TDRC numerical model with a tanh nonlinear function, a leaking rate lr and 
two scaling parameters s1 and s2 , for the time-delayed and the masked input signal, respectively. The temporal 
response of the reservoir is solved in time steps of θ and is given by:

where J(t) is a sample and hold representation of the input Y, with J(t) changing value every T. M changes every 
θ and repeats every T, while X is stored every θ for post-processing (see Supplementary material). We apply a 
scaled Tikhonov regularization to implement the classifier. We define a data subset of n samples of the input 
signal vector Y and for each sample we obtain the corresponding nonlinear transformation from the reservoir’s 
response X in Vn dimensions. Similarly, a second data subset of n samples of the input signal vector Y and its 
corresponding nonlinear transformation X is used to test the classifier’s performance. Since our task is one-
step-ahead prediction, we use n− 1 responses of X to predict equal number of sample values of the input vector 
Y, but shifted by one sample. This means that we consider the training ( Xtrain ) or testing ( Xtest ) responses of 
the samples 1 to n− 1 , in order to correlate them with the training ( Ytrain ) or testing ( Ytest ) input vector of the 
samples 2 to n. From the reservoir responses of the training data subset ( Xtrain ) we build the matrix MX , with 
dim(MX) = {n− 1,Vn}.

(5)wk(qk) =
⌈
(|vk(qk)|

R

Vmax
)

⌉
, qk ∈ [m+ 1, 2m]

(6)PEinc(R,m) =
(2R+1)m∑

n=1

p(wn)log2(p(wn)),

(7)p(wn) =
Q(wn)

L−m

(8)X(t) = lr · X(t − θ)+ (1− lr) · tanh [s1 · X(t − T)+ s2 ·M(t) · J(t)]

(9)MX =




X1,1
train X2,1

train . . . Xn−1,1
train

X1,2
train X2,2

train . . . Xn−1,2
train

.

.

.

X1,Vn
train X2,Vn

train . . . Xn−1,Vn
train



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The weight coefficients in the � vector with dim(�) = Vn , are calculated from the matrix MX after row-nor-
malization with unit variance and zero mean, denoted as M̂X . Ytrain is also centered to zero mean value. k is the 
regularization parameter set to 10−5 and � is the identity matrix.

To restore original data scale, after the normalization applied to MX , we calculate the normalized weights Wi
out 

of the classifier for each virtual node of index i:

where �i are the elements of vector � and σXi
train

 is the standard deviation of each row vector of the initial matrix 
MX . The prediction values Ỹtest to the initial input vector Ytest are computed by:

The bias term b0 is calculated by introducing the mean value µYtrain of the input training vector Ytrain and the 
mean value µXi

train
 of each row vector of the initial matrix MX:

The overall task performance is evaluated via the normalized mean squared error (NMSE) between the predicted 
( ̃Ytest ) and the target ( Ytest ) vectors of the testing subset with n− 1 samples:

Santa Fe timeseries prediction benchmark task.  The Santa Fe prediction task is based on experimen-
tal data as measured from a chaotic NH3 laser system. The task is to predict a subsequent data value from the pre-
vious ones (timeseries “A” in52). The TDRC model for this task is optimized with parameters: lr = 0.4 , s1 = 0.6 
and s2 = 0.45 . In our evaluation task, the training set has a size between 600 and 3000 samples, while the testing 
set has a fixed size of 1000 samples. The two data sets are separated by 500 samples, in order to eliminate any 
correlation between the training and testing data sets. The reason for not using a fixed training set size in our 
classifier is to avoid any bias in cases that require larger training sets for optimized performance.

Data Availability
The datasets generated during and/or analysed during the current study are available from the corresponding 
author on reasonable request.
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