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Background: As the incidence of overuse injuries to the medial elbow in overhead athletes continues to rise, recent evidence
suggests a link between these injuries and alterations in biomechanics produced by athlete fatigue. Previous studies have eval-
uated the effect of fatigue on elbow injuries using a wide array of fatigue protocols/athletic tasks, and, as a consequence, the
results have been heterogeneous.

Purpose: To determine whether there is a uniform alteration in neuromuscular function or biomechanics as the overhead athlete
fatigues. Furthermore, this study sought to determine whether player fatigue should be accounted for in ulnar collateral ligament
(UCL) injury prevention programs.

Study Design: Systematic review.

Methods: A systematic review of the literature using PubMed and MEDLINE databases was performed. Keywords included fatigue,
upper extremity, baseball, pitcher, throwing, and muscle activity. Inclusion criteria consisted of original research articles in the English
language involving healthy athletes, use of fatigue protocols, and the evaluation of at least 1 upper limb biomechanical variable.

Results: A total of 35 studies involving 644 athletes (90 females, 554 males; mean age, 20.2 years) met the inclusion criteria. General
fatigue protocols were used in 2 investigations, peripheral protocols were used in all 35 studies, and 5 different athletic tasks were
studied (simulated baseball game, overhead throwing, high-effort swimming, simulated tennis game, and overheadserving). There was
a uniform decrease in muscle force production and proprioception in athletes after completing a fatigue protocol. However, there was
no consistency among studies when evaluating other important upper limb biomechanical factors. The fatigue protocols did not
consistently produce statistically significant changes in elbow torque, pitching biomechanics, or ball velocity.

Conclusion: A uniform decrease in muscle force production and proprioception was found after fatigue protocols; however, a
majority of fatigue protocols published in the current literature are inconsistently measured and produce heterogeneous results.
Therefore, currently, no recommendations can be made for changes in UCL injury prevention training programs to account for
potential effects of fatigue. The effect of muscle force production and proprioception on upper extremity injuries should be
evaluated in future studies.
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Injuries sustained by the overhead throwing athlete have
been evaluated extensively.{ In particular, the rise of ulnar
collateral ligament (UCL) injuries in baseball pitchers con-
tinues to gain interest.11 Chronic overuse and repetitive

stresses on the medial elbow are thought to contribute to
UCL injury in pitchers.2,22,23,62 Although guidelines on rest
and pitch counts have been implemented in an attempt to
decrease overuse injuries, the risk factors for these injuries
are often multifactorial.7,15,18,50

The contribution of fatigue to musculoskeletal injuries
has been studied previously.3,19,45,47 Muscle fatigue is
defined as any exercise-induced reduction in the ability of
a muscle to produce maximal force or power.17 Muscle
fatigue can be caused by central factors (brain or spinal
cord) or peripheral factors (muscle or peripheral nervous
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system). It is hypothesized that fatigued muscles absorb
less energy before meeting the amount of stretch required
to cause ruptures in ligaments and other structures. Gen-
eral fatigue protocols have been developed in an attempt to
mimic real game or match situations to cause a global
reduction in voluntary muscle activity throughout the
body. On the other hand, peripheral fatigue protocols cause
reductions in force generation in the muscle distal to the
neuromuscular junction and do not include changes to over-
all muscular control.3

Recent studies19,24,47,50 have found that pitchers may
experience alterations in biomechanics and increased risk
of injury when pitching in the fatigued state. These studies
have demonstrated a decline in performance and an
increase in overuse symptoms, including decreased pitch
velocity, altered pitching biomechanics, increased pain, and
altered muscle activation patterns.19,47 Conversely, earlier
investigators48,49 have suggested no difference in pitching
mechanics or muscle activation during a simulated game.
These prior studies have included a wide variety of fatigue
protocols and tested athletic tasks, making a comparison of
the findings inherently difficult. Because previous studies
have produced heterogeneous results, it is important to
determine the precise effect of fatigue on overuse injury
risk in overhead athletes to potentially decrease the inci-
dence of injury in this at-risk athletic population.

The purpose of this systematic review was to determine
whether there is a uniform alteration in neuromuscular
function or biomechanics as the overhead athlete fatigues.
Furthermore, this review attempted to determine whether
player fatigue should be accounted for in pitching guidelines
to decrease elbow injuries. We hypothesized that previous
studies would not show a uniform change in neuromuscular
function or biomechanics as an athlete fatigues.

METHODS

Research Framework

PRISMA (Preferred Reporting Items for Systematic
Reviews and Meta-Analyses) guidelines were followed dur-
ing the search and review phases of this study.36

Information Sources and Study Selection

A systematic review of the PubMed database and the Med-
line database via Ovid was performed in March 2018.

Results were limited to articles in English published
between January 1, 2000, and December 31, 2017. The fol-
lowing search string was constructed for the PubMed
search: (throw OR pitch OR baseball OR softball) AND
(upper extremity OR arm OR elbow OR shoulder) AND
(fatigue OR muscle activity OR neuromuscular). For the
Medline search, Medical Subject Headings were used when
available. Reference lists from all primary articles were
checked by 3 authors (T.R.J., J.S.T., S.A.) to further
retrieve articles that may not have been captured by the
database.

Eligibility Criteria

All eligible articles were published in a peer-reviewed jour-
nal in the English language. The primary search resulted
in 259 articles. All articles were reviewed and included if
they met the following criteria: (1) English language; (2)
normal, healthy participants; (3) a fatigue protocol; (4) eval-
uation of at least 1 upper limb biomechanical variable; and
(5) the effect of fatigue studied immediately after comple-
tion of the outlined protocol (Figure 1).

Data Extraction and Synthesis

The extracted data included age, sex, weight, height,
fatigue protocol, measures of fatigue, athletic task, mus-
cles tested, and kinematics tested. Effects on ball velocity,
upper limb biomechanics, muscle activation, and recovery
after fatigue were also assessed. Articles were reviewed by
all authors, and agreement was reached regarding
the data extracted. Because of the heterogeneous
methodology used in all of the articles, a meta-analysis
was not performed. Thus, statistics were primarily
descriptive, and each study was analyzed qualitatively.
Weighted analysis was performed after participants were
pooled across included studies.

Risk of Bias

Owing to the heterogeneity of the studies, the Methodolog-
ical Index for Non-Randomized Studies (MINORS) instru-
ment was used to rate the quality of the investigations.56

The MINORS criteria include a 24-point scale for compar-
ative studies and a 16-point scale for noncomparative stud-
ies. The MINORS score is reported as a percentage of the
total available points.63
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RESULTS

Study Selection and Study Bias

The systematic review yielded 269 potential articles, of
which 35 met the inclusion criteria for this study. Of the
35 studies, 30 were noncomparative and 5 were compara-
tive studies. The mean MINORS score for noncomparative
studies was 64.3% (range, 50%-81.3%), while the mean
MINORS score for comparative investigations was 68.3%
(range, 67%-71%).

Study Characteristics

A total of 644 participants were included in the studies, of
which 554 were male and 90 were female participants. The
mean age of the study population was 20.1 years. Ten stud-
ies (28.6%) involved youth (<18 years) athletes.# Thirteen

studies were performed on baseball players,** 4 on tennis
players,33,43,52,54 2 on swimmers,14,44 and 2 on softball
players.12,55 The remainder of the investigations evalu-
ated some form of exercise that was not sport-specific
(Table 1).

Records iden�fied through 
database searching

(n = 288)
Sc

re
en

in
g

In
cl

ud
ed

El
ig

ib
ili

ty
Id

en
�fi

ca
�o

n
Addi�onal records iden�fied 

through other sources
(n = 21)

Records a�er duplicates removed
(n = 284)

Records screened
(n = 284)

Records excluded
(n = 15)

Full-text ar�cles assessed 
for eligibility

(n = 269 )

Full-text ar�cles excluded, 
with reasons

Non-healthy par�cipants 
(n = 31)

Non-specific fa�gue 
protocol (n = 189)

No evalua�on of upper limb 
biomechanical variable

(n = 6)
Non-immediate evalua�on 

of effect (n = 8)

Studies included in 
qualita�ve synthesis

(n = 35)

Figure 1. PRISMA (Preferred Reporting Items for Systematic Reviews and Meta-Analyses) flowchart illustration of study inclusion
and exclusion criteria.

TABLE 1
Study Characteristics

Number of included studies 35
Total number of participants 644
Total number of males, n (%) 554 (86)
Total number of females, n (%) 90 (14)
Mean sample size (range) 18.4 (8-73)
Mean age, y (range) 20.1 (15-25)
Primarily youth athletes, n (% of overall studies) 10 (28.6)
Primarily adult athletes, n (% of overall studies) 25 (71.4)

#References 7, 12, 19, 25, 44, 48, 49, 51, 55, 61. **References 9, 10, 18, 34, 35, 39, 41, 42, 47-49, 51, 61.
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Fatigue Protocols

All studies included a peripheral fatigue protocol involv-
ing an upper limb task. Two studies also utilized a gen-
eral fatigue protocol as one of the experimental arms,
both utilizing a running or a core fatigue protocol.24,53

Peripheral fatigue protocols involved either a sport-
specific athletic task such as throwing, swimming, or
tennis shots or involved structured exercises with
weights. Three primary measures were used to measure
adequate athlete fatigue in exercise tasks: the Borg Rat-
ing of Perceived Exertion scale, inability to complete fur-
ther repetitions of task, or target percentage drops in
maximum voluntary isometric contraction (MVIC) via
electromyography (EMG) or torque via dynamometer.
Seven studies measured athlete fatigue using the Borg
Rating of Perceived Exertion scale.5,14,26,37,43,51,59 The
mean fatigue rating was 6.53 before and 15.44 after
fatigue protocols.

Upper Limb Athletic Tasks

Eight studies on baseball players and 2 on softball players
attempted to mimic in-game fatigue patterns through the
use of heterogeneous simulated or real games as a fatigue
protocol.†† No study sought to determine a specific point
when fatigue was commenced. The remaining 3 studies
on baseball players utilized repetitive throwing that did not
emulate in-game scenarios.24,58,61 The 2 studies on swim-
ming fatigued participants through high-effort swimming
of varying distances.14,44 Of the tennis studies, 1 emulated
a simulated game environment,43 while the other 2
involved repetitive overhead serves.52,54 A total of 16 pro-
tocols utilized weighted exercise: 5 examined shoulder
fatigue,8,29,32,37,53 6 primarily elbow fatigue,4-6,30,47,61 and
4 involved both joints.13,26,28,31

Study Outcome Measures

Eighteen studies used EMG to examine changes in
muscle activation patterns.‡‡ Fourteen studies used a
3-dimensional motion capture to examine joint kinematics,§§

and 15 used MVIC measurements before and after fatigue
protocol.kk Measures of muscle force production (torque)
before and after fatigue protocol were also conducted in
13 of the investigations with the use of a dynamometer.{{

In these studies, comparisons of outcomes before and after
fatigue protocols were calculated via t test or analysis of
variance.

Ball Velocity

Ball velocity was a primary outcome in 13 studies; 2 of
the studies were performed on tennis players,43,54 1 on

fast-pitch softball pitchers,12 and the remainder on baseball
pitchers.## The 2 investigations on tennis players found a
significant drop in serve speed as the athlete progressed
through a simulated game.43,54 Among pitchers, there were
varying results regarding changes in ball speed after
fatigue protocols. Three studies showed insignificant
decreases in ball speed (<2 mph),19,20,25 2 studies did not
find a significant drop in velocity after a simulated
game,48,49 and the remainder of the studies on baseball
players did show significant decreases in ball velocity as
athletes progressed through the simulated games
(Figure 2). There was a mean decrease in ball velocity of
2.9% after fatigue protocols.

Upper Limb Biomechanics

Fourteen studies analyzed biomechanics via a 3-
dimensional video motion capture.§§ There was inconsis-
tency regarding reported differences in pitching
biomechanics before and after fatigue protocols. Two
studies reported no differences in joint angles (shoulder,
elbow, and hip) before and after simulated games.48,61

Among the remainder of the investigations, there were
no consistent reports of differences in elbow or hip kine-
matics before and after fatigue protocols (Table 2). Three
studies demonstrated increased scapular upward rota-
tion with fatigue.8,32,37 One study found a significant
decrease in the angle between the forearm and ground
at ball release, also known as arm slot.47 In this study,
however, there were no differences found in shoulder
rotation or arm speed as pitchers fatigued.

Six studies assessed proprioception and position sense
following fatigue protocols.6,24,29,44,58,59 While specific pro-
tocols differed, each investigation essentially required par-
ticipants to re-create a joint position after upper extremity
fatigue. In each of the 6 studies, there were significant
changes in acuity of joint angle reproduction, with overall

Figure 2. Effects of fatigue on ball velocity and muscle torque.
Each dot indicates results for athletic tasks either for the
entire cohort or for each subgroup when comparisons were
performed (such as different task or fatigue protocol) within a
study. (A) Ball velocity, 12 task analyses in 12 studies. (B)
Muscle torque, 13 task analyses in 13 studies.

††References 12, 19, 20, 25, 27, 47, 48, 49, 51, 55.
‡‡References 4-6, 8, 13, 21, 25, 26, 29, 31-33, 43, 48, 49, 54, 57, 61.
§§References 20, 26-28, 32, 37, 41, 44, 48, 51, 52, 58, 59, 61.
kkReferences 4-6, 13, 21, 25, 26, 29, 31-33, 43, 48, 49, 54.
{{References 5, 12-14, 26, 28, 30, 32, 44, 47, 51, 53, 55. ##References 19, 20, 24, 25, 27, 47, 48, 49, 51, 58.
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diminished proprioceptive accuracy. One investigation
noted this change to be of higher magnitude in the domi-
nant versus nondominant arm.44

Muscle force production, as measured by dynamometer
before and after fatigue protocols, was assessed in 14 stu-
dies.a While the tested musculature varied between studies,
all included protocols demonstrated statistically significant
drops in muscle torque with fatigue. One of these studies
was conducted on adolescent pitchers and found that pitch-
ing a simulated game resulted in significantly decreased
torque generation at both the shoulder and elbow joint mus-
culature.51 Another study examining the effects of the bench
press on elbow joint forces reported that bench pressing
leads to lower torque and higher joint forces acting at the
elbow after fatigue.28 Five studies measured the torque of
elbow flexors before and after fatigue protocol and found a
mean 23.69% drop in force production in the fatigued
state.5,12,28,30,51 Three studies additionally examined a
change in torque at the elbow extensors, pronator, and supi-
nators and found decreases in force production of 23.8%,
25.8%, and 24.0% after fatigue protocols, respectively.12,28,51

Only 1 study examined medial elbow torque after a pitching
fatigue protocol and found a significant increase in elbow
torque (0.84 N�m) per inning as athletes fatigued.47

Muscle Activation

EMG was utilized to measure muscle activation in 18 of the
included studies.b The effect of fatigue protocols on

activation varied significantly between investigations.
Four investigations looked specifically at EMG changes in
throwers. Statistically significant decreases in activity
were observed in the biceps brachii, triceps brachii, bra-
chioradialis, flexor carpi radialis, flexor carpi ulnaris, flexor
digitorum superficialis, extensor digitorum, extensor carpi
radialis longus, extensor carpi radialis brevis, supinator,
and pronator (Figure 3).61

Recovery

Six studies examined recovery after fatigue proto-
col.5,14,51,52,55,59 A study performed on swimmers swimming
above their average speed found that torque production
was able to return to prefatigue values after 2.5 minutes.14

After eccentric elbow flexor exercise, individuals still exhib-
ited significantly decreased maximum force production
after 2 hours, and objective joint stiffness, as measured by
range of motion with a goniometer, had worsened in the
same period.5 Softball players pitching at a multiday tour-
nament were unable to recover to their prefatigue strength
between each of their games, and their strength generation
significantly decreased as they pitched in more games.55 In
youth baseball players, deficits in shoulder force production
remained after 2 days of rest.51

DISCUSSION

This study found that fatigue protocols currently published in
the literature produce a decrease in muscle force production
and proprioception after the completion of a fatigue protocol.
However, there is wide variation in the study protocols and
athletic tasks evaluated in the literature, which produced
inconsistent results when evaluating other upper limb
biomechanical factors. There were no consistent data that
demonstrated the type of fatigue protocol (general vs periph-
eral) or athletic task (simulated game vs repetitive throwing)
and uniformly produced statistically significant changes in
pitching biomechanics. Therefore, currently no recommenda-
tionscanbemade for changes in UCL injury prevention train-
ing programs to account for potential effects of fatigue.

The 35 included studies demonstrated heterogeneous
methods with regard to fatigue protocols and primary out-
comes. Owing to this fact, a meta-analysis could not be
performed. All studies used muscular fatigue to indicate
an endpoint for the protocol. The measures of fatigue
included the Borg Rating of Perceived Exertion scale,
inability to complete further repetitions of task, or target
percentage drops in MVIC via EMG or torque via dyna-
mometer. These protocols relied on either a set number of
repetitions (eg, throws) or dynamic testing of muscle
fatigue using an instrument indicating muscle fatigue
(eg, velocity or MVIC via EMG). For example, Gandhi
et al25 measured fatigue after a simulated game of approx-
imately 90 pitches in 25 baseball players using EMG test-
ing and found that fastball velocity significantly dropped
from 65 to 63 mph and MVIC significantly dropped by 7%.
In adolescents, prolonged pitching also led to a drop in
performance, as measured by ball velocity and subjective

TABLE 2
Effect of Fatigue Protocol on Upper Limb Biomechanics

Statistically Significant Effects
After Fatigue (Number of Studies)

No Significant
Change Increased Decreased

Elbow angles
Flexion 6 1 3
Extension 4 0 1
Abduction 0 0 0
Internal rotation 0 0 0

Elbow moments
Flexion 1 0 0
Extension 1 0 0

Shoulder angles
Flexion 1 0 1
Extension 1 0 1
Abduction 2 0 2
Adduction 2 0
External rotation 3 3 2
Internal rotation 1 0 1

Joint reproducible acuity
Glenohumeral 0 0 4
Elbow 0 0 2
Wrist 0 0 2

aReferences 4-6, 13, 21, 25, 26, 29, 31-33, 48, 49, 54.
bReferences 4-6, 8, 13, 21, 25, 26, 29, 31, 32, 33, 43, 48, 49, 54, 57, 61.
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muscle fatigue. However, although participants had
increased subjective pain and tiredness throughout the
course of the simulated games, there was insufficient evi-
dence to suggest pain as an indicator for impending
injury.19,51 The effect of fatigue was also noted in tennis
players, as a simulated game led to drops in serve velocity
and decreases in MVIC in dominant forearm muscula-
ture.54 Fatigue protocols utilizing a simulated game fail
to account for variations in player-to-player endurance.
Additionally, these protocols do not account for sex-based
variations, as it has been determined that females fatigue
with variation compared with men. Alterations experi-
enced by a pitcher succumbing to fatigue can have protec-
tive and detrimental effects. While a decreased fastball
velocity would have a protective effect on elbow stress,
decreased muscle activity about the elbow would decrease
the secondary support provided by the musculature. Over-
all, it appears that fatigue protocols had a varying effect on
in-game performance; however, further investigation is
necessary to define the precise contribution of fatigue to
injury in the throwing arm.

Altered proprioception or joint position sense appears to
cause players to be less aware or protective of their extrem-
ities. In the present systematic review, all 6 studies that
examined proprioception found that there were significant
changes in acuity of joint angle reproduction, with dimin-
ished proprioceptive accuracy overall after fatigue protocol.
In a cross-sectional study of 17 collegiate pitchers, Manske
et al39 found that dominant elbows demonstrated signifi-
cant losses of active joint reproduction after throwing, par-
ticularly at the 35% and 80% angles; this was not
demonstrated in the nondominant elbows. Only 1 of the
35 included studies directly measured torque experienced
by the medial elbow. In this study of 11 pitchers using a
specialized mobile sensor, Okoroha et al47 found that
medial elbow torque increased (0.84 N�m per each inning
pitched; P < .01; effect size, 0.08) while pitch velocity

decreased (0.28 mph per inning; P < .01; effect size, 0.27)
as the pitcher fatigued. It is thought that fatigue leads to
increased joint reactive forces and sensorimotor system def-
icits, resulting in the inability of the pitcher to maintain
ideal throwing mechanics and causing greater UCL stress
and higher propensity for injury.16,39 However, more stud-
ies must be done to determine the direct effect of fatigue on
valgus moments about the elbow.

Overhead throwing athletes generate up to 120 N�m of
valgus torque about the elbow.22 While the UCL has been
regarded as the primary stabilizer of valgus stress in the
elbow, cadaveric studies have shown that it can only resist
approximately 34 N�m of torque.1 In a cadaveric study of
attenuated UCLs evaluating muscle torque specifically,
Udall et al60 showed that the flexor digitorum superficialis
(FDS), pronator teres, and flexor carpi ulnaris are all active
stabilizers of the elbow to valgus stress, with the FDS mus-
cle being the largest contributor. In the present study, all
included protocols that evaluated muscle fatigue demon-
strated statistically significant drops in produced muscle
torque with fatigue. In the UCL-intact elbow, the flexor-
pronator muscles play a role in stabilizing the UCL and
protecting the ligament from stress.60 As athletes fatigue
their flexor-pronator mass muscles with repeated throw-
ing, they will have decreased ability to protect the intact
UCL through dynamic stabilization, which may place them
at risk for injury.

Results in a majority of the studies were reported as
mean ± SD without mention of participants who were at
heightened risk stratification for injury. Few studies
reported the clinically relevant changes for their tested bio-
mechanical factors, which can be useful in risk stratifica-
tion. Objective measures such as EMG, strength testing,
and dynamometers are useful in identification; however,
the injury threshold for each muscle has not been fully
elucidated. There was no uniformity between investiga-
tions in reporting which muscles were affected most by

Figure 3. Effects of fatigue on electromyography activity. There were no uniform effects of fatigue on electromyography muscle
activation patterns. Each dot indicates the result for athletic tasks either for the entire cohort or for each subgroup when compar-
isons were performed (such as fatigue protocol or different tasks) within a study. Biceps brachii (BB), 6 task analyses in 18 studies;
triceps brachii (TB), 7 task analyses in 18 studies; brachioradialis (BRD), 2 task analyses in 18 studies; flexor carpi radialis (FCR), 5
task analyses in 18 studies; flexor carpi ulnaris (FCU), 1 task analysis in 18 studies; flexor digitorum superficialis (FDS), 1 task
analysis in 18 studies; extensor digitorum (ED), 1 task analysis in 18 studies; extensor carpi radialism logus (ECRL), 4 task analyses
in 18 studies; extensor carpi radialis brevis (ECRB), 2 task analyses in 18 studies; supinator (SUP), 1 task analysis in 18 studies; and
pronator (PROT), 1 task analysis in 18 studies.
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fatigue, limiting the ability to recommend targeted
strengthening of any particular muscle group. In a similar
study investigating lower extremity fatigue and anterior
cruciate ligament injury, Barber-Westin and Noyes3

suggested the use of equivalence testing, where a signifi-
cant difference between the 2 test conditions (pre- and
postfatigue) can be more clearly elucidated.

Previous studies have hypothesized that the effect of
fatigue on lower extremity muscles is dependent on
whether an athlete undergoes a peripheral versus a central
fatigue protocol.45 Barber-Westin and Noyes3 further
recommended known fatigue measures such as heart rate
as a standard in subsequent fatigue measures. While these
measures would certainly be helpful when measuring lower
extremity fatigue, they have limited applicability in upper
extremity fatigue, as athletes may not have significant ele-
vations of traditional general fatigue markers such as heart
rate during upper extremity fatigue. Instead, it may be
better to focus on specific measures of peripheral fatigue
(eg, EMG and strength decrement) in future studies.

A limitation of this systematic review is that only 5
(14.3%) of the included studies performed a prospective
power analysis. Several studies included minimally clinical
important differences for the variable in which they were
investigating. For instance, Skillington et al55 examined
fatigue using a visual analog scale (VAS) among 16 softball
pitchers using a minimally clinical important difference of
2. However, several scales were used in subjective determi-
nation of fatigue (eg, VAS and Borg Rating of Perceived
Exertion scale), which makes it difficult to compare the
magnitude of change and difference between studies.
Although muscle weakness/fatigue in the lower extremity
has been found to produce differential landing mechanics
and increased risk of ACL injury, the exact role of muscle
stabilization in UCL injury as well as further clarification
between fatigue rating scales are needed in future studies.

CONCLUSION

A uniform decrease in muscle force production and propri-
oception was found after fatigue protocols; however, a
majority of fatigue protocols published in the current liter-
ature are inconsistently measured and produce heteroge-
neous results. Therefore, currently no recommendations
can be made for changes in UCL injury prevention training
programs to account for potential effects of fatigue. A more
uniform analysis is required to properly evaluate the rela-
tionship between fatigue and UCL injury, including refine-
ment of methods of analysis and fatigue protocols.
Additionally, the effect of muscle force production and pro-
prioception on upper extremity injuries should be evalu-
ated in future studies.
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