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Apoptosis or programmed cell death is a tightly regulated process fundamental
for cellular development and elimination of damaged or infected cells during the
maintenance of cellular homeostasis. It is also an important cellular defense mechanism
against viral invasion. In many instances, abnormal regulation of apoptosis has been
associated with a number of diseases, including cancer development. Following
infection of host cells, persistent and oncogenic viruses such as the members of the
Gammaherpesvirus family employ a number of different mechanisms to avoid the host
cell’s “burglar” alarm and to alter the extrinsic and intrinsic apoptotic pathways by
either deregulating the expressions of cellular signaling genes or by encoding the viral
homologs of cellular genes. In this review, we summarize the recent findings on how
gammaherpesviruses inhibit cellular apoptosis via virus-encoded proteins by mediating
modification of numerous signal transduction pathways. We also list the key viral anti-
apoptotic proteins that could be exploited as effective targets for novel antiviral therapies
in order to stimulate apoptosis in different types of cancer cells.
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INTRODUCTION

Cancer and Apoptosis
Cancer progression can be considered as mechanistically complex process with a plethora of
fundamental genetic grounds. Neoplasia, i.e., abnormal growth of cells, involves multiple steps
that occur gradually, starting with primary driver mutations and finally leading to tumorigenesis.
During these transitional changes, cancer cells accumulate several genetic alterations that confer on
the cells, an unwarranted survival and uncontrolled proliferative advantage. During development,
cancer cells also encounter a physiologically ubiquitous cellular process, i.e., apoptosis or
programmed cell death that eliminates the infected, damaged or abnormal cells. Therefore, it is
quintessential for tumor cells to acquire counter-strategies to evade cellular apoptosis that helps
to safeguard the genomic integrity (Fernald and Kurokawa, 2013). Defective and inefficient cell
death, in turn, facilitates cancer development and metastasis and renders the cancer cells resistant
to treatment (Brown and Attardi, 2005).

Hallmarks of Apoptosis
Morphological hallmarks
The cells undergoing apoptosis display typical morphological and biochemical features. The
morphological alterations in apoptosis concerning both the nucleus and the cytoplasm are
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remarkably similar across various cell types and species (Saraste
and Pulkki, 2000). Morphological hallmarks of apoptosis in
the nucleus are chromatin condensation, nuclear fragmentation,
subsequent rounding up of the cell, pyknosis, and retraction of
pseudopodes (Kroemer et al., 2005). The chromatin condensation
initiates at the periphery of the nuclear membrane and
forms a crescent or ring-like structure and continues until it
breaks up inside a cell with an intact membrane, a feature,
defined as karyorrhexis (Majno and Joris, 1995). Morphological
features for late stage of apoptosis include membrane blebbing,
ultrastructural modification of cytoplasmic organelles and a
loss of membrane integrity (Kroemer et al., 2005). Several
studies demonstrated that proteolytic cleavages of a group of
cellular proteins including, actin, spectrin, gelsolin, b-catenin,
PAK2, Gas2, MEKK1 by activated caspases play major role
for accomplishing the morphological changes during apoptosis
(Martin and Green, 1995). Enhanced expression of the caspase
cleaved forms of Gas2 or gelsolin were observed for significant
change in the cell morphology, resembling apoptosis (Kothakota
et al., 1997). Interestingly, experimental evidences showed
calpain proteases (Brown et al., 1997) to be associated with the
alterations in the cytoskeleton structure during apoptosis (Saraste
and Pulkki, 2000).

Biochemical hallmarks
Some of the major biochemical changes that can be observed
in apoptosis include, activation of caspases, DNA and protein
breakdown, membrane changes and recognition by phagocytic
cells (Hengartner, 2000). In early stage of apoptosis, the
expression of phosphatidylserine (PS) is observed in the outer
layers of the cell membrane, which are “flipped out” from the
inner layers. This phenomena permits early recognition and
phagocytosis of dead cells by macrophages without the release
of pro-inflammatory cellular components (Hengartner, 2001).
A characteristic breakdown of DNA by endonucleases then
results in large 50–300 kb fragments. Inter-nucleosomal cleavage
of DNA into oligonucleosomal pieces of 180 to 200 base pairs
has been noticed in the later stage of apoptosis (Vaux and Silke,
2003). In particular, generation of free 3′-hydroxyl termini on
DNA via cleavage of chromatin into single as well as multiple
oligonucleosome-length fragments was considered as one of the
major biochemical hallmarks of apoptosis (Loo, 2011). Although
this characteristic feature of apoptosis is not very specific as
the typical DNA ladder in agarose gel electrophoresis can be
observed in case of necrotic cells as well (McCarthy and Evan,
1998). Another striking feature of apoptosis is the activation of
a group of enzymes belonging to the cysteine protease family
named caspases (Hengartner, 2000). Caspases activation leads
to the cleavage of vital cellular proteins and breakdown of the
nuclear scaffold and cytoskeleton. Additionally, they activate
DNAse, which then promotes the degradation of nuclear DNA
(Lavrik I.N. et al., 2005).

Apoptosis Signal Pathways
It has been well reported that functional activation of caspases
play a crucial role in apoptosis in mammalian system (Fritz et al.,
2006). Caspases can be activated by either of the two known

apoptotic signaling pathways, i.e., intrinsic (mitochondria-
mediated) and extrinsic (death receptor-mediated) pathways.
Both these pathways ultimately converge to a final common
pathway involving the activation of caspases that triggers the
execution of apoptosis of the cell. Interestingly, there is a
third, less understood intrinsic pathway, referred to as intrinsic
endoplasmic reticulum (ER) pathway, which involves ER and
is believed to occur in response to cellular stress (Breckenridge
et al., 2003).

Extrinsic or Receptor-Mediated Pathway
The extrinsic death-receptor pathway is activated upon the
death ligands binding with the death receptors (Ozoren and
El-Deiry, 2003). Variety of death receptors, such as type 1
TNF receptor (TNFR1) and Fas (CD95) receptor, with their
ligands, termed as TNF and Fas ligand (FasL), respectively,
participate in the apoptotic pathway (Hengartner, 2001). These
death receptors possess an intra-cellular death domain that
recruits adapter proteins including, TNF receptor-associated
death domain (TRADD), Fas-associated death domain (FADD),
and caspase-8 (Schneider and Tschopp, 2000). The death ligand
and the death receptor binding results in the formation of a
binding site for adaptor protein, and the total ligand-receptor-
adaptor protein complex is considered as the death-inducing
signaling complex or DISC (Wong, 2011). DISC formation
initiates the assembly and activation of pro-caspase 8, which
promotes apoptosis by cleaving other downstream or executioner
caspases (Kruidering and Evan, 2000). Examples of other best
known death receptors are DR3 (APO-3), DR4 (TNF-related
apoptosis inducing ligand receptor 1 or TRAIL-1), DR5 (TRAIL-
2), DR 6, ectodysplasin A receptor (EDAR), and NGFR (nerve
growth factor receptor; Lavrik I. et al., 2005).

Intrinsic or Mitochondria-mediated Pathway
The term “Intrinsic pathway” refers to an initiation of the
apoptotic pathway within the cell as a result of several
internal stimuli, including, genetic damage, oxidative stress, and
hypoxia (Wong, 2011). The intrinsic pathway occurs due to
the increased mitochondrial permeability and release of pro-
apoptotic molecules, such as cytochrome-c into the cytoplasm
(Danial and Korsmeyer, 2004). This pathway is also examined
by a special group of proteins that belong to the Bcl-2
family, named after the Bcl-2 gene, originally observed at the
chromosomal breakpoint of the translocation of chromosome
18–14 in follicular non-Hodgkin lymphoma (Tsujimoto et al.,
1984). While the anti-apoptotic group of Bcl-2 proteins (Bcl-2,
Bcl-XL, Bcl-W, Bfl-1, and Mcl-1) regulates apoptosis by blocking
the mitochondrial release of cytochrome-c, the pro-apoptotic
proteins (Bax, Bak, Bad, Bcl-Xs, Bid, Bik, Bim, and Hrk) act by
promoting this mitochondrial release of cytochrome-c. The net
balance between the pro- and anti-apoptotic proteins actually
determines the fate of apoptosis (Reed, 1997). Apoptosis inducing
factor (AIF), second mitochondria-derived activator of caspase
(Smac), direct IAP Binding protein with Low pI (DIABLO) and
Omi/high temperature requirement protein A (HtrA2) are some
of the apoptotic factors that are released from the mitochondrial
inter-membrane space into the cytoplasm (Kroemer et al., 2007).
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Cytoplasmic release of cytochrome-c leads to the activation of
caspase-3 via formation of apoptosome complex, that consists
of, cytochrome-c, Apaf-1 and caspase-9 (Kroemer et al., 2007).
Moreover, Smac/DIABLO or Omi/HtrA2 stimulates caspase
activation by binding to inhibitor of apoptosis proteins (IAPs)
which subsequently interferes with the interaction of IAPs and
caspase-3 or -9 (LaCasse et al., 2008).

Intrinsic Endoplasmic Reticulum-Mediated Pathway
The intrinsic ER pathway is considered as the third pathway
for caspase activation and supposed to be involved in caspase-
12-dependent and mitochondria-independent manner (Szegezdi
et al., 2003). When the ER is damaged by cellular stresses, such
as, hypoxia, free radicals or glucose starvation, unfolding of
proteins, reduces protein synthesis and an adaptor protein known
as TNF receptor associated factor 2 (TRAF2) dissociates from
procaspase-12, resulting in the activation of the ER-mediated
pathway (Wong, 2011).

Final Pathway
Both the intrinsic and extrinsic pathways converge to caspase-
3. Thereafter, caspase-3 cleaves the inhibitor of the caspase-
activated deoxyribonuclease, which is responsible for the nuclear
apoptosis (Ghobrial et al., 2005). Additionally, downstream
caspases induce cleavage of protein kinases, cytoskeletal proteins,
DNA repair proteins and inhibitory subunits of endonuclease
family and are known to influence the cellular cytoskeleton
formation, cell-cycle regulation as well as signal transduction
pathways which contribute to the typical morphological changes
during apoptosis (Ghobrial et al., 2005).

Deregulation of Apoptosis in Cancer
Impaired Death Receptor Signal Transduction
Death receptors and their ligands are the critical players in
the extrinsic apoptotic pathways (Plati et al., 2011). These
receptors have a death domain to attract several key molecules
for inducing death signal. However, the death ligands can
also bind to decoy death receptors without these death
domain, as a result of which, the signaling complexes fail
to initiate the signal transduction (Lavrik I. et al., 2005).
Several abnormalities in the death signaling pathways have
been identified, including, down-regulation of the receptor or
impairment of receptor function and reduced level in the death
signal (Wong, 2011). Decreased membrane expression of death
receptors and anomalous expression of decoy receptors have also
been reported to play a major role for evading death signaling
during different malignancies (Fulda, 2010). Several studies have
demonstrated that ligand and death receptor expression during
different stages of cervical cancer were linked to a discrepancy
between apoptosis and cellular proliferation. In particular, studies
by Reesink-Peters et al. (2005) demonstrated that loss of Fas and
dysregulation of FasL, DR4, DR5, and tumor necrosis factor-
related apoptosis-inducing ligand (TRAIL) in the cervical intra-
epithelial neoplasia (Parravicini et al., 2000) are thought to be
responsible for cervical carcinogenesis (Reesink-Peters et al.,
2005).

Enhanced Expression of Anti-apoptotic Proteins
The Bcl-2 family of proteins comprises of the pro-apoptotic
and anti-apoptotic proteins that play an essential role in the
regulation of intrinsic mitochondria-mediated apoptotic pathway
(Gross et al., 1999). Interestingly, Bcl-2, encoded by the Bcl-2 (B-
cell lymphoma 2) gene was the first protein of this family to be
recognized, more than 20 years ago (Tsujimoto et al., 1984). All
the members of the Bcl-2 family proteins are abundantly present
on the outer mitochondrial membrane, are dimers in nature and
responsible for membrane permeability either in the form of an
ion channel or through the formation of pores (Minn et al., 1997).

Reduced Expression of Pro-apoptotic Proteins
The group of pro-apoptotic proteins including, Bid, Bim, Puma,
Noxa, Bad, Bmf, Hrk, and Bik are restricted to the BH3 domain.
Multiple cellular stress responses resulting from DNA damage,
growth factor deficiency, and ER stress, can activate the BH3-
only proteins. Members of this group such as, Bax, Bak, and
Bok/Mtd, contain all four BH3 domains which are also pro-
apoptotic (Wong, 2011). When there is a disturbance in the
balance of anti-apoptotic and pro-apoptotic members of the
Bcl-2 family, apoptotic deregulation is triggered in the affected
cells. Studies by Raffo et al. (1995) showed that overexpression
of Bcl-2 protects prostate cancer cells from apoptosis (Raffo
et al., 1995) whereas, studies by Fulda et al. (2002) demonstrated
that increased expression of Bcl-2 proteins lead to inhibition of
TRAIL-induced apoptosis in neuroblastoma, glioblastoma, and
breast carcinoma cells. Interestingly, overexpression of Bcl-xL
has been reported to confer a multi-drug resistance phenotype
in tumor cells and prevent them from apoptosis (Minn et al.,
1995). Mutations in the Bax gene are also very common in
case of colorectal carcinogenesis with microsatellite instability.
Miquel et al. (2005) concluded that impaired apoptosis resulting
from bax (G)8 frameshift mutations are responsible for growing
resistance of colorectal cancer cells to anticancer treatments.
Moreover, tumor cells of chronic lymphocytic leukaemia (CLL)
showed an anti-apoptotic phenotype with high levels of anti-
apoptotic Bcl-2 protein and low levels of pro-apoptotic Bax
in vivo. Cancer progression in CLL is considered to be due to
the reduced level of apoptosis rather than enhanced proliferation
in vivo (Goolsby et al., 2005). Studies by Pepper et al. (1997)
demonstrated an increased Bcl-2/Bax ratio in B-lymphocytes
in CLL, both in patients and in cultured conditions. The drug
induced apoptosis in these B-lymphocytes was found to be
inversely related to Bcl-2/Bax ratios (Pepper et al., 1997).

Dysregulated p53 Functions
p53 is not only involved in the apoptotic induction but, it
is also a vital player in cell-cycle regulation, differentiation,
developmental process, gene amplification, DNA recombination,
chromosomal segregation, and cellular senescence (Oren and
Rotter, 1999). As a result, p53 is called as the “guardian of the
genome” (Lane, 1992) and most importantly defects in the p53
tumor suppressor gene have been associated with more than 50%
of human malignancies (Sherr and McCormick, 2002). Recent
studies by Avery-Kiejda et al. (2011) showed a subset of target
genes of p53 involved in apoptosis and cell-cycle regulations are
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abnormally expressed in melanoma cells, leading to abnormal
p53 activity and contributing to cellular proliferation. In
vivo mice studies using a N-terminal deletion mutant of
p53 (1122p53) corresponding to 1133p53 showed decreased
survival rate and profound pro-inflammatory phenotype with
reduced apoptosis (Slatter et al., 2011). Additionally, it has
been observed that silencing of p53 mutant, followed by
downregulated expression of p53 mutant resulted in low
colony formation in human cancer cells with induced apoptosis
(Vikhanskaya et al., 2007). In 1997, two members of p53 family
were identified including, p73 (Kaghad et al., 1997) and p63
(Yang et al., 1998). Both p73 and p63 have significant structural
similarity with p53 and are involved in a broad spectrum of
biological activities (Collavin et al., 2010). Interestingly, several
studies have demonstrated that both p63 and p73 are involved
in different cellular response to cancer therapy and both of them
are required for p53-induced apoptosis, suggesting the functional
relationship among p53 family proteins (Chakraborty et al., 2010;
Dotsch et al., 2010).

Downregulated Caspases Activities
The caspases are classified into two groups: (i) those related
to caspase 1 (caspase-4, caspase-5, caspase-13, and caspase-14)
are mostly involved in cytokine processing during inflammatory
processes, and (ii) those that play vital role in apoptotic
process (e.g., caspase-2, caspase-3, caspase-6, caspase-7, caspase-
8, caspase-9, and caspase-10). Moreover, the second group can
be further divided into initiator caspases, which are primarily
responsible for the initiation of the apoptotic pathway (e.g.,
caspase-2, caspase-8, caspase-9, and caspase-10) and effector
caspases (caspase-3, caspase-6, and caspase-7), which are
accountable for the actual cleavage of cellular components during
apoptosis (Fink and Cookson, 2005). Therefore, lower levels of
caspases or deficiency in caspase function may cause reduced
apoptosis or carcinogenesis (Wong, 2011). It was reported that
down-regulation of caspase-9 is a frequent event in patients
with stage II colorectal cancer with poor clinical outcome (Shen
et al., 2010). Studies by Devarajan et al. (2002) demonstrated
that caspases-3 mRNA levels in samples from breast, ovarian,
and cervical tumors were either found undetectable (breast and
cervical tumor sample) or significantly reduced (ovarian tumor
sample). Fong et al. (2006) observed a down regulation of both
capase-8 and caspase-10 in a cDNA differential expression study
and suggested that it may contribute to the pathogenesis of
chorio-carcinoma.

Deregulated Expression of Inhibitor of Apoptosis
Proteins (IAPs)
Dysregulated expression of Inhibitor of apoptosis proteins or
IAPs has been observed in several cancers (LaCasse et al., 2008).
Lopes et al. (2007) observed an irregular expression of the IAP
family in pancreatic cancer cells and demonstrated that such
expression pattern was also responsible for inducing resistance
to cancer chemotherapy. The study concluded that substantial
drug resistance correlated with the expression of cIAP-2 in
pancreatic cells (Lopes et al., 2007). On the contrary, studies
demonstrated that higher IAPs expression are associated with

melanoma, lymphoma and gliomas (Ashhab et al., 2001) and
was responsible for cisplatin and camptothecin resistance (Chen
et al., 1999). Survivin, as potential IAP, is overexpressed in several
cancers (Pennati et al., 2007). Interestingly, Small et al. (2010)
observed that overexpressed survivin in hematopoietic cells were
at an increased risk of hematological malignancies with less
susceptibility to apoptosis in transgenic mice (Small et al., 2010).
Survivin, together with XIAP is overexpressed in non-small cell
lung carcinomas and these tumors were endowed with resistance
against different apoptosis-inducing conditions (Krepela et al.,
2009). A schematic of cellular pathways involved in apoptosis are
shown in Figure 1.

Virus and Cancer
Over past 30 years, it has become remarkably apparent that
several viruses play vital roles in the process of carcinogenesis.
It is an estimated fact that 15–20% of all human malignancies
are associated with viral infections (McLaughlin-Drubin and
Munger, 2008). Oncogenic viruses can replicate inside the
host cell without being detected by the host’s immune
surveillance system and by preventing apoptosis they can
protect the cells from self-destruction (Ewald, 2010). Therefore,
viruses can be essential experimental models to understand
the regulation of major tumor suppressors, identification of
major signaling cascades for genome maintenance, apoptotic
response, and immune surveillance. Human tumor viruses
either belong to RNA virus families including, Retroviridae,
Flaviviridae or to DNA virus families such as-Hepadnaviridae,
Herpesviridae, and Papillomaviridae. Major tumor viruses,
which are linked with a wide range of human malignancies,
are HTLV-1, HPV, HHV-8, EBV, HBV, and HCV. Some
other viruses that play crucial roles in cancer progression
are simian vacuolating virus 40, BK virus, JC virus, human
endogenous retroviruses, human mammary tumor virus, Torque
teno virus (McLaughlin-Drubin and Munger, 2008). Marek’s
disease virus or MDV (also known as Gallid herpesvirus 2)
is considered as an α-herpesvirus, which causes oncogenic
disease in domestic fowl (chickens) by producing T cell
lymphosarcoma (lymphoma), visceral tumors and other clinical
signs such as nerve lesions and immunosuppression (Rong et al.,
2014). Gallid herpesvirus-2 (GaHV-2) genome integrates into
the host genome by homologous recombination and induces
transformation of latently infected cells, by modulating the
expression of several viral and cellular genes (Gennart et al.,
2015).

Gammaherpesvirus and Cancers
Members of the Herpesviridae family, Herpesviruses, are large,
double-stranded DNA viruses with a genome size of 100-
200 kb, broad species tropism, and known to replicate in
the nucleus of the host cell. These viruses are ubiquitous
throughout the animal kingdom and are considered as the
contributors to lymphomagenesis in immunodeficient humans.
Based on their genomic organization, genome sequence and
biological characteristics, herpesviruses are sub-classified as α-,
β-, and γ-herpesviruses. The γ-herpesviruses are lymphotropic
and some of these viruses are capable of undergoing lytic
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FIGURE 1 | Deregulated cellular pathways in apoptosis.

replication in epithelial cells (Klein, 1972). These tumor viruses
establish a lifelong latency in the infected host. Interestingly,
the γ-herpesviruses show similar genome organization as
compared to the members of α- or β-subfamilies (Damania,
2004). The γ-herpesviruses are further divided into two
genera: Lymphocryptoviruses (gamma-1 herpesviruses) and
Rhadinoviruses (gamma-2 herpesviruses). Lymphocryptoviruses
have been identified in higher primates and include Epstein–
Barr virus (EBV) or Human herpesvirus 4 (HHV-4), whereas the
rhadinoviruses are present in a wide range of mammalian species
and these include Herpesvirus saimiri (HVS), Kaposi’s sarcoma-
associated herpesvirus (KSHV), or Human herpesvirus 8 (HHV-
8), Rhesus macaque rhadinovirus (RRV), Equine herpesvirus 2
(EHV-2), and Murine gammaherpesvirus 68 (MHV-68). Nearly,
all the members of the γ-herpesvirus family share a common
property, i.e., the ability to induce neoplasia in natural or
experimental hosts (Figure 2). Among these γ-herpesviruses,
EBV and KSHV are two oncogenic viruses that are linked
to the development of multiple human malignancies in their
natural hosts. EBV has been linked with several human

malignancies, including, Burkitt’s lymphoma, nasopharyngeal
carcinoma (NPC), Hodgkin’s disease and a subset of gastric
cancers (Blacklow et al., 1971; Ablashi et al., 1985; Mueller,
1991; Magrath, 1992; Magrath et al., 1992; Damania et al.,
2000a; Iizasa et al., 2012). Similarly, KSHV has been linked to
Kaposi’s sarcoma (KS), multicentric Castleman’s disease (MCD),
primary effusion lymphoma (PEL) and more recently, KSHV-
associated Inflammatory Cytokine Syndrome (KICS; Chang
et al., 1994; Cesarman et al., 1995; Soulier et al., 1995;
Gessain et al., 1996; Uldrick et al., 2010; Polizzotto et al.,
2012).

Lymphocryptovirus
Lymphocryptoviruses or LCVs are considered as gamma 1-
herpesviruses which are well known for infecting old-world
primates (Dunkel et al., 1972). They exhibit a biphasic life
cycle with a lifelong persistence and are capable of promoting
malignancies (Cho et al., 1999). As a well-studied LCV, Epstein–
Barr virus (EBV) was found only member known to cause
infection in humans (Yajima et al., 2008).
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FIGURE 2 | Members of the gammaherpesvirus family have the ability to drive cell proliferation and tumorigenesis.

Role of Epstein–Barr virus (EBV) antigens in cancer
progression by modulation of apoptotic signaling
EBNA1. Previous studies suggested that direct elimination of
EBV from Burkitt’s lymphoma (BL) cells induces apoptotic event
(Kennedy et al., 2003). Although, most of the experimental
evidences suggested that EBV infection mainly responsible for
inhibiting apoptosis in cellular transformation but in some
cases, EBV infection induces apoptotic response in human
neutrophils and may represent an alternative mechanism by
which EBV suppresses the immune response (Larochelle et al.,
1998). Also, other report showed that EBV could inhibit cord
blood monocytes derived dendritic cells (CBDC) phenotypic
differentiation and induce CBDC apoptosis (Wang et al., 2012).
EBV latent antigen EBNA1 has been anticipated to be involved
in BL cell proliferation and resistance to apoptosis, therefore,
conferring a selective benefit to malignant cells (Fuentes-
Gonzalez et al., 2013). Also, EBNA1 was found to have an
anti-apoptotic effect in BL cells (Kutok and Wang, 2006).
Several studies suggested that EBNA1 is sufficient to support the
neoplastic growth of BL cells in vivo, independent of any other
latent EBV antigens (Yamamoto et al., 2000). Moreover, studies
by Kennedy et al. (2003) demonstrated that overexpression of
EBNA1 mutants reduced cell survival and increased apoptosis
in EBV-positive BL cells but not in EBV-negative B cells.
Interestingly, their work suggested that EBNA1 is important for
suppressing cell death in microenvironments (Kennedy et al.,
2003). Recent report showed that expression of V-val subtype of
EBNA1 in Human Embryonic Kidney cells promotes cell survival
after serum withdrawal and provides the anti-apoptotic ability to
those cells (Chao et al., 2014). In vivo EBNA1 has been confirmed
to lower p53 levels (Cheng et al., 2009). Specifically, expression
of EBNA1 but not a cellular ubiquitin-specific protease (USP7)-
binding mutant of EBNA1 was shown to reduce the accumulation
of p53 and apoptosis in response to DNA damage in U2OS cells
(Saridakis et al., 2005). Interestingly, transcriptional profiling
of Ad/AH carcinoma cells with and without stable EBNA1

expression showed that the presence of EBNA1 resulted in an
increased expression of STAT1, a protein that contributes in
multiple ways to apoptotic and non-apoptotic cell death (Wood
et al., 2007). Other studies suggested that EBNA1 has multiple
effects on the oxidative stress response that could affect apoptosis
and DNA integrity (Frappier, 2012). Recently, Lu et al. (2010)
observed that EBNA1 can contribute to the oncogenic process
by up-regulating the apoptosis suppressor protein, survivin in
EBV-associated B-lymphoma cells (Lu et al., 2010).

EBNA2. EBV nuclear antigen 2 (EBNA2) is the earliest latent-
cycle protein of EBV and is essential for B-cell immortalization,
proliferation and survival as well as chemotaxis (Fu et al.,
2013). Studies by Pegman et al. (2006) demonstrated that in
EBV-negative BL-derived cell lines EBNA2 up-regulates bfl-1
expression by interacting with EBNA2-CBF-1. These molecular
interactions involve receptors of the classical Notch pathway.
EBNA2 also up-regulates other anti-apoptotic proteins such as
bfl-1, Bcl-xL, Bcl-2, and MCL-1 and induces the expression of
pro-apoptotic proteins including, Bim and Bid (Kohlhof et al.,
2009). Recent studies demonstrated that EBNA2 is crucial for
suppressing Bik in EBV-negative B-cell lymphoma-derived cell
lines and therefore, the host-virus interaction can prevent the
pro-apoptotic consequence of transforming growth factor β1
(TGF-β1; Campion et al., 2014). Moreover, EBNA2 was found
to inhibit the Sindbis virus (SV)-induced apoptotic response
through the interaction with an orphan member of the nuclear
hormone receptor superfamily, Nur77 (Lee et al., 2002).

EBNA3A. Genetic studies have revealed that both EBNA3A and
EBNA3C are responsible for efficient immortalization in EBV
infected B cells (Tomkinson et al., 1993). Studies by Cooper
et al. (2003) indicated that EBNA3A overexpression impedes
protection from c-myc-induced apoptosis in lymphoblastoid
cells. Recombinant strategies to delete EBNA3 genes and the
infection of EBV-negative BL cells with these viruses and
challenging them with various cytotoxic drugs demonstrated
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that both EBNA3A and EBNA3C cooperate for both drug
resistance and the down-regulation of the pro-apoptotic Bcl-
2-family member Bim. The regulation of Bim was observed
predominantly at the RNA level, with little evidence of post-
translational stabilization of Bim by EBV (Anderton et al., 2008).
Several evidences strongly suggested that EBNA3A and EBNA3C
together inhibit the initiation of BIM transcripts (Paschos et al.,
2012). Previous study has also shown that heritable epigenetic
modifications initiated by EBNA3A and EBNA3C in the 5′

regulator region of BIM play a vital role in determining the
level of post-transcriptional BIM production expressed in EBV-
infected B cells (Paschos et al., 2009).

EBNA3B. The co-activation activities of EBNA-3A and EBNA-3B
are found to be around the half of EBNA3C (Lin et al., 2002).
Although EBNA-3B is dispensable for B-cell transformation, both
EBNA3A and EBNA-3C are essential (Chen et al., 2005). Among
six latency-associated EBNAs, only EBNA3B is completely
dispensable for B-cell transformation in vitro and could be a
tumor suppressor (White et al., 2012). In contrast to EBNA-
3A and EBNA3C, both of which repress transcriptions of tumor
suppressors, p14ARF, p16INK4A, and chemokine, CXCL10,
EBNA-3B upregulates CXCL10 and has a growth inhibitory role
(Kang and Kieff, 2015). Importantly, EBNA-3B-mutated B-cell
lymphomas were frequently found and evident that EBNA-
3B inactivation drives lymphomagenesis and immune evasion
(White et al., 2012).

EBNA3C. Functional p53 and its downstream effectors are
deregulated by several viral antigens to protect host cells from
p53-dependent apoptosis during cancer progression (Saha et al.,
2010b) EBNA3C was observed to have potential inhibitory effects
on p53-mediated activities (Yi et al., 2009). Several studies
have shown that EBNA-3C can physically interact with p53
via the specific region, 130–190 amino acid residues in the
N-terminal domain which has also been shown to interact with
several other important cellular factors, including SCFSkp2,
pRb, c-Myc, cyclin A, cyclin E, cyclin D1, and RBP-Jκ (Knight
et al., 2004, 2005; Maruo et al., 2009; Saha et al., 2009, 2011).
Studies have demonstrated that EBNA3C recruits MDM2 E3-
ubiquitin ligase activity for augmenting proteasome dependent
degradation of p53 (Saha et al., 2009). Also, EBNA3C can
form a p53-independent stable complex with both ING4 and
ING5 in EBV-transformed LCLs (Saha et al., 2010a). Recently,
it has been reported that EBNA3C strongly binds and stabilizes
ATP-dependent RNA helicase DDX20 or Gemin3 expression
in EBV-transformed cells (Cai et al., 2011). As a result of
EBNA3C-Gemin3 interaction, Gemin3 was found to form a
complex with p53 and this is crucial for inhibiting p53-
dependent transcriptional activity and apoptosis (Cai et al., 2011).
Interestingly, EBNA3C expression was observed to abrogate p73-
mediated apoptotic response in p53-null cells (Sahu et al., 2013).
Recent studies by Saha et al. (2012) demonstrated that EBNA-
3C could directly regulate E2F1 functions to modulate both, cell
cycle and apoptotic activities in EBV-transformed B-lymphoma
cells. Moreover, EBNA3C was found to interact and differentially
regulate the functions of Interferon regulatory factors 4 and 8
in lymphoblastoid cells (LCLs) for apoptotic inhibition (Banerjee

et al., 2013). In addition, EBNA3C regulates apoptosis by altering
the signaling of several cellular kinases including, Pim-1, Aurora
kinase-B (AK-B; Jha et al., 2013a; Banerjee et al., 2014).

EBNA-LP. EBNA-LP is considered as a critical regulator of
EBV-induced B-cell immortalization, based on the studies that
demonstrated less efficiency in the phenotype for recombinant
EBNA-LP mutant viruses (Mannick et al., 1991). EBNA-LP has
also been observed to interact with several cellular proteins,
including oncogenes and tumor suppressors (pRb, p53, p14ARF,
and Fte1/S3a), heat shock proteins (hsp70 and hsp72/hsc73),
cell-cycle regulatory molecules (DNA-PKcs and HA95) and anti-
apoptotic (HAX-1) protein (Szekely et al., 1993; Mannick et al.,
1995; Kawaguchi et al., 2000; Dufva et al., 2001; Han et al., 2001;
Kashuba et al., 2005). Several studies suggested that truncated
form of the EBNA-LP protects some BL cells against caspase-
dependent apoptosis by impeding the functions of protein
phosphatase 2A (Garibal et al., 2007). In a study by Kawaguchi
et al. (2000) using the yeast two-hybrid system, EBNA-LP was
found to interact with HAX-1 and it is plausible that EBNA-
LP affects the activities of HAX-1 in the regulation of apoptosis
during the EBV-induced immortalization process.

LMP1. LMP1 not only up-regulates anti-apoptotic proteins
to provide support for viral replication but also potentiates
apoptosis (Zhang and Huang, 2009). LMP1 stimulates pro-
apoptotic gene PAC1 as well as anti-apoptotic genes such as
Bcl-2A1/Bfl-1 and A20 (Dirmeier et al., 2005). LMP1 mediated
induction of pro-apoptotic genes are likely to be involved
in lymphocyte proliferation (Tibbetts et al., 2003). Studies
have suggested that the immortalization effect of LMP-1 on
B-lymphomas is mediated by the Bcl-2 through a possible
cooperation between Bcl-2 and MCL-1. Lu et al. (1997) suggested
that LMP-1-induced apoptosis is specifically blocked by the
abnormal expression of Bcl-2 or co-expression of LMP-1 and Bcl-
2 in epithelial cells (RHEK-1 cells). Down-regulation of Bcl-2 was
observed by direct silencing of LMP-1 in an EBV-transformed
B-cell line (Noguchi et al., 2001). Several studies also suggested
the role for LMP-1 to induce the expression of Bcl-2 in BL
cell lines in vitro (Finke et al., 1992). Moreover, a positive link
between LMP-1 and Bcl-2 has been observed in acquired immune
deficiency syndrome (AIDS)-related primary brain lymphomas
in vivo as well as in NPC (Camilleri-Broet et al., 1995).
Other studies were strongly supported by the findings that the
expression of bfl-1 suppresses apoptosis stimulated by the amino-
terminal six-transmembrane domain (6TM) of LMP-1 (Pratt
et al., 2012). Studies by Kim J.H. et al. (2012) also demonstrated
that up-regulation of MCL-1 by LMP-1 promotes survival
of rituximab-treated B-cell lymphoma cells. Interestingly, the
down-regulation of MCL-1 expression is inhibited by LMP-1 in
response to apoptotic stimulation (Fu et al., 2013). Interestingly,
overexpression of wild type LMP1 was found to be associated
with a significant increase in CD95-mediated apoptosis (Le
Clorennec et al., 2006). Moreover, several studies suggested
that the ability of LMP1 to activate NF-κB was responsible for
inducing A20 zinc finger protein to give protection from the
cytotoxic effects of TNF-α (Young et al., 1997). Studies by Lu
et al. (1996) indicated that higher level of LMP1 expression was
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responsible for inducing growth arrest and apoptosis for rodent
cell transformation.

LMP2A. EBV latent membrane protein 2A (LMP2A) was
identified in germinal center B cells (Babcock et al., 2000), but its
transcripts were detected in all forms of EBV latency, including,
resting memory B cells, infectious mononucleosis, Hodgkin
lymphoma, BL, and post-transplant lymphoproliferative disorder
(PTLD; Thorley-Lawson and Gross, 2004). Therefore, LMP2A
was considered crucial in EBV-associated diseases and studies
have demonstrated that it has a critical function to rescue
cells from apoptosis by potentially altering the balance of pro-
apoptotic and pro-survival Bcl2 family members, particularly
by mediating the expression of Bcl-xL and Bcl-2 (Swanson-
Mungerson et al., 2010). Importantly, both the PI3K/Akt and
the Raf/ERK MEK/ERK signaling increases NF-κB, which is a
critical mediator of Bcl-xL (Steelman et al., 2004). It has been
reported that LMP2A possibly sustains cell survival by modifying
Bcl-xL and Bcl-2 expression levels in absence of B-cell receptor
signaling (Portis and Longnecker, 2004). Other studies also have
demonstrated that LMP2A can bypass the entire p53 pathway in
lymphomagenesis involving c-MYC (Bieging et al., 2009).

EBERs. The two EBV-encoded small RNAs (EBERs) were
identified as EBER-1 and EBER-2. They are small nuclear
RNAs transcribed by RNA polymerase III and are the most
abundantly expressing EBV transcripts (Rymo, 1979). Several
studies have shown that EBV-mediated inhibition of apoptosis
and up-regulation of the Bcl-2 protein are essential for the
malignant phenotype (Marin et al., 1995). Moreover, previous
reports also provided direct evidence that EBV induces Bcl-2
expression by blocking the activation of the double-stranded
RNA-dependent protein kinase (PKR; Komano et al., 1999).
Interestingly, studies by Wong et al. (2005) suggested that
EBER-induced up-regulation of Bcl-2 expression leads to an
inactivation of PKR and inhibition of p38 MAPK and C-jun
phosphorylation. Additionally, EBER expression may confer an
apoptotic-resistant phenotype in immortalized nasopharyngeal
epithelial cells (Wong et al., 2005).

BARTs. EBV was the first human virus in which the expression of
miRNAs, such as MIR-BamHI A rightward transcripts 5 (BART5)
was identified (Pfeffer et al., 2004). Unlike cellular miRNAs
(Grundhoff et al., 2006), the roles of most EBV miRNAs are
well documented. Previous studies suggested that EBV miRNAs
are central mediators of viral gene expressions (Yin et al.,
2008), however, recent studies demonstrated that MIR-BART5
promotes host cell survival by targeting PUMA expression and
contributes to the establishment of latent infection in NPC
and germinal center B-cells (Choy et al., 2008). MIR-BARTs
may be important in epithelial cells carcinogenesis as they
are abundantly expressed in latently infected epithelial cells as
compared to the B-cells (Cai et al., 2006). Recent study also
suggested the role of EBV-BART microRNAs in targeting the
pro-apoptotic protein, Bim (Marquitz et al., 2011). Most of the
viral miRNAs belong to the herpesviruses, including human
α-herpesviruses such as herpes simplex virus 1 (HSV-1) and HSV-
2, avian α-herpesviruses MDV1 (Marek’s disease virus type 1)

and MDV2 (Marek’s disease virus type 2), β-herpesvirus human
cytomegalovirus (HCMV), and γ-herpesviruses EBV and KSHV
(Gottwein and Cullen, 2008). Interestingly, recent studies by
Xu et al. (2011) demonstrated that MDV1 microRNA miR-M3
suppresses cisplatin-induced apoptosis by targeting SMAD2 of
the TGF-β Signal Pathway.

Rhadinoviruses
Kaposi’s sarcoma-associated herpesvirus (KSHV)
KSHV was discovered in 1994 from the AIDS-associated KS
(Kaposi’s sarcoma) lesions (Chang et al., 1994). KSHV is
detected in all cases of KS that develop in HIV-infected as
well as HIV-negative individuals. In addition, KSHV sequences
are rapidly identified in two other lymphoproliferative and
neoplastic disorders: B-cell lymphoma called primary effusion
lymphoma (PEL), and the a plasmablastic variant of Multicentric
Castleman’s disease (MCD), which contains large plasmablastic
cells characterized by the expanded germinal centers with B-cell
proliferation and vascularization. KSHV is also associated with
several acute inflammatory syndromes (Ganem, 2006). There is
also a report of KSHV-linked germinotropic lymphoproliferative
disorder in HIV-seronegative individual (Du et al., 2002)

Role of KSHV antigens in modulating apoptotic signaling for
cancer progression
LANA. KSHV LANA (Latency-associated nuclear antigen)
encoded by ORF73 is KSHV’s major latency protein and
is constitutively active in KS, MCD, and PEL cells. The
multifunctional nuclear phosphoprotein, LANA is crucial for
KSHV genome maintenance and segregation and plays a key role
in regulating several cellular pathways critical for oncogenesis. In
addition to being guardian of KSHV latency, LANA binds to and
inhibits the cell cycle checkpoint protein and tumor suppressor,
p53 as well as transforms primary rat embryo fibroblast
(Friborg et al., 1999; Radkov et al., 2000; Borah et al., 2004; Si and
Robertson, 2006; Liu et al., 2007). Moreover, LANA interacts with
G1-S checkpoint proteins, pRB and GSK-3 (glycogen synthase
kinase 3), a negative regulator of β-catenin and modulates G1-S
transition (Fujimuro et al., 2003). LANA prolongs the life span
of primary human umbilical vein endothelial cells in culture
and makes them less susceptible to apoptosis (Watanabe et al.,
2003). Like many other cellular proteins, LANA binds to the
phosphorylated DNA-damage response protein, γH2AX and
the cellular replication fork factors, Timeless and Tipin for
LANA-mediated KSHV episome persistence (Dheekollu and
Lieberman, 2011; Dheekollu et al., 2013; Jha et al., 2013b). It
also associates with different host cellular proteins involved
in transcriptional regulation, such as CBP, RING3, activating
transcription factor-4/cyclic AMP response element binding
protein-2 and mSin3A (Platt et al., 1999; Krithivas et al., 2000;
Lim et al., 2001; Verma et al., 2007). These associations have
anti-apoptotic and anti-proliferative effects in various KSHV-
infected cell lines. A recent study showed that LANA promotes
the induction of chromosomal instability through its interaction
with Bub1, one of the important spindle checkpoint proteins
(Sun et al., 2014). Additionally, LANA was found to dysregulate
Bub1 activity leading to aberrant chromosome replication, thus
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promoting oncogenesis (Sun et al., 2014). A 2014 study by Lu
et al. (2014) demonstrated LANA through the interaction with
AK-B, can induce phosphorylation of survivin at T34 residue to
promote KSHV latent DNA replication and prevent apoptosis.
LANA also helps in evading the host’s immune surveillance
system and allows the virus to persist indefinitely in the infected
host (reviewed in Zaldumbide et al., 2007; Kwun et al., 2011;
Uppal et al., 2014). LANA specifically blocks CIITA expression
by suppressing the IRF-4-mediated transcription to disrupt the
expression of MHC II (Cai et al., 2013). Additionally, LANA
down-regulates MHC II expression by disrupting enhanceosome
assembly through its binding with the RFX (Regulatory Factor
X) Complex (Thakker et al., 2015).

v-Cyclin. KSHV ORF72 encoded v-Cyclin, expressed during viral
latency, is the viral homolog of cellular D-type cyclins (Li et al.,
1997). It contributes to the abnormal characteristics of KS spindle
cells and proliferation in PEL cells. Interestingly, expression
of the KSHV v-Cyclin induces cellular apoptosis and B-cell
lymphomas in p53-deficient transgenic mice (Verschuren et al.,
2002). KSHV v-Cyclin is expressed along with KSHV vFLIP from
a bicistronic mRNA and silencing of either of these KSHV latent
protein by shRNA/siRNA has been shown to induce apoptosis
in PEL cells (Guasparri et al., 2004). v-Cyclin shares sequence
and functional homology with cellular cyclin D2 and can bind
and activate the cyclin-dependent kinases, namely CDK6, CDK4,
and CDK2 (Godden-Kent et al., 1997; Radkov et al., 2000; Hume
and Kalejta, 2009; Pekkonen et al., 2014). When in complex
with CDKs, v-Cyclin is able to phosphorylate and inactivate
many substrates linked to CDKs, including, tumor suppressor
protein pRb, cdk inhibitor p27 (Kip) and the anti-apoptotic
protein Bcl-2, thereby deregulating normal cell cycle progression
(Godden-Kent et al., 1997; Ellis et al., 1999; Ojala et al., 2000).
The v-cyclin/CDKs complexes are insensitive to CDK inhibitors
such as p16INK4a, p21CIP1, and p27KIP1, and can stimulate the
cell cycle progression into S-phase (Jarviluoma et al., 2004). In
contrast, the expression of v-Cyclin in cells with elevated levels
of CDK6 triggers cell death independent of p53 and pRb, after
the cells enter into S-phase (Ojala et al., 1999). These evidences
indicate that v-Cyclin is likely to have both growth stimulating
and apoptotic functions in KS tumorigenesis.

vFLIP. KSHV ORF K13 encoded and latency-associated vFLIP
or FADD-like interleukin-1-beta-converting enzyme (FLICE or
caspase-8)-inhibitory proteins, is a viral homolog of cellular
FLIP (Thome et al., 1997). This viral protein from KSHV is
structurally related to death effector domain (DED) and can bind
to the adaptor proteins (TRADD and FADD) of the Fas/TNFR
signaling pathway via their two tandem DEDs to inhibit CD95-
death receptor-induced apoptosis (Thome et al., 1997). Several
studies suggested that vFLIP induces anti-apoptotic transcription
factor NF-κB via binding to IKK α, IKK β, RIP, and the NEMO
complex (Liu et al., 2002; Matta et al., 2003). In support of this
finding, another study showed that KSHV vFLIP induction of
NF-κB activity impairs autophagosome elongation in latently
infected cells (Lee et al., 2009). This showed that the expression
of cellular and viral FLIP (cFLIP and KSHV vFLIP) suppresses
starvation or rapamycin-induced autophagic cell death of KSHV

infected B-lymphocytes, by preventing E3-like enzyme, ATG3
from binding and processing LC3. These reports confirm that
KSHV vFLIP serves as both, an anti-apoptotic as well as an
anti-autophagic viral protein, which is essential for the survival
and transformation of infected cells (Lee et al., 2009). KSHV
vFLIP oncoprotein also induces B-cell trans-differentiation and
potentially contributes to immune dysfunction during tumor
development in mice (Ballon et al., 2011).

Kaposin. KSHV ORF K12 encoded Kaposin, is a latent oncogenic
protein with potential to transform cells in nude mice and in a
fibroblast-transformation assay (Muralidhar et al., 1998; Kliche
et al., 2001). There are three isoforms of Kaposin, named as
A, B, and C (Sadler et al., 1999). An earlier study showed that
Kaposin A, the smallest isoform, directly interacts with cytohesin-
1, a guanine nucleotide exchange factor for ARF GTPases, to
regulate integrin-mediated cellular transformation and activation
of the ERK/MAPK pathway (Kliche et al., 2001). Kaposin B
enhances the stabilization of PROX1 mRNA, the master regulator
of lymphatic endothelial cell differentiation, during lymphatic
reprogramming of vascular endothelial cells by KSHV (Yoo et al.,
2010).

vBcl-2. KSHV ORF16 encodes protein vBcl-2 with homology to
cellular anti-apoptotic protein, Bcl-2, which is characterized by
its ability to modulate cell death by dimerizing with other Bcl-
2 family members, such as Bax and Bak (Cheng et al., 1997).
The vBcl-2 protein is expressed as an early gene during lytic
replication and has been shown to inhibit apoptosis to promote
viral life cycle through the inhibition of pro-apoptotic BH3
domain-containing proteins (Sun et al., 1999; Flanagan and Letai,
2008). In addition to apoptosis, several studies indicate that vBcl-
2 contributes to immune evasion in all gammaherpesviruses via
inhibition of autophagy (Polster et al., 2004). Contrary to the
cellular counterpart, vBcl-2-mediated inhibition of autophagy
involves direct and robust interaction of vBcl-2 protein with
host Beclin I, the main target of vBcl-2 proteins of KSHV
during chronic infection (Liang et al., 2015). Interestingly, Beclin
I-mediated inhibition of autophagy and suppression of apoptosis
by vBcl-2 are considered as important mechanisms that might
contribute to persistent latent infection and the oncogenic
potential of KSHV.

vIRFs. KSHV encodes four vIRFs, namely, vIRF-1, vIRF-2, vIRF-
3, and vIRF-4, that are homologs of the cellular IRF proteins
[interferon (IFN)-regulatory factors], a large family of cellular
transcription factors that drive the expression of type I IFNs
(IFNα and β), which are produced in nearly all cell types to
trigger cell’s innate responses to virus infection by establishing
the “anti-viral state” (reviewed in Jacobs and Damania, 2011).
They are also known to play a key role in the modulation of
cell growth, differentiation and cell death. All KSHV-vIRFs have
been independently identified to subvert cell cycle arrest by
inhibiting p53-mediated apoptosis, either by targeting p53 itself
or by targeting its modulators, such as MDM2, HAUSP, and ATM,
a function that could potentiate vIRF-mediated oncogenesis
(Baresova et al., 2013). Of the four KSHV vIRFs, only vIRF-
1, vIRF-2, and vIRF-3, are shown to effectively inhibit both
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IFN production and signaling in the infected cells (Baresova
et al., 2013). Importantly, both vIRF-1 and vIRF-3 inhibit
p53-induced apoptosis by interacting with the central DNA-
binding domain (DBD) of p53 and ATM kinases, and greatly
reduce the levels of p53 phosphorylation on serine residues S15
(Shin et al., 2006; Baresova et al., 2014). This results in an
increased p53 ubiquitination by MDM2 that predisposes p53
toward proteasome-mediated degradation. Also, vIRF-1 inhibits
the transforming growth factor-beta (TGF-β) signaling through
its targeting of Smad 3 and Smad 4 proteins (Seo et al., 2005).
The vIRF-3 has been identified as an oncogene required for
proliferation and survival of KSHV-infected cultured PEL cells
(Wies et al., 2008). The silencing of vIRF-3 expression by
various RNAi approaches resulted in reduced proliferation and
increased activity of caspase-3 and/or caspase-7. In a recent
study, vIRF-4 but none of the other vIRFs, was shown to interact
with CSL/CBF1 signaling, the major downstream effector of
the Notch signal transduction pathway (Baresova et al., 2013).
Moreover, vIRF-1 and vIRF-2 act as modulators of the immune
system by repressing activation-induced cell death (AICD) via
modulation of TCR/CD3-mediated induction of CD95L (Chow
et al., 2000). Additionally, vIRF1 has similar DNA-binding
domains to IRF-1 and interacts with p300/CREB-binding protein
(CBP) transcription complex, that is required for IRF1- and IRF3-
mediated transcription of type I IFNs (Burysek et al., 1999a). The
vIRF-2 is shown to interact with cellular IRF-1, 2, and 8 as well as
NFκB RelA and p300 (Burysek et al., 1999b). The vIRF-3 interacts
with cellular IRF-5 and inhibits IRF-5-mediated activation of IFN
promoter (Wies et al., 2009). Recently, vIRFs 1 and 2, but not
vIRF3, have been reported to suppress endogenous IFNβ message
and protein expression following TLR3 activation (Jacobs et al.,
2013).

vMIP. KSHV ORK K6, ORF K4, and ORF K4.1 encodes for
three chemokines or macrophage-inhibitory proteins (vMIPs
or vCCLs), homologous to cellular chemokines/MIPs: viral
CC-chemokine ligand-1 (vCCL-1 or vMIP-1), ligand-2 (vCCL-
2/vMIP-2) and ligand-3 (vCCL-3/vMIP-3), respectively (Nicholas
et al., 1997). In fact, vMIP-1 and vMIP-2 are more homologous
to one another than with cellular MIPs, indicating a gene
duplication event during the virus evolution (Moore et al.,
1996). Interestingly, vMIP-1 is a ligand and agonist of host CC-
chemokine receptor (CCR8; Endres et al., 1999), whereas vMIP-3
is shown to be specific agonist for host CCR4 (Stine et al., 2000).
In addition, vMIP-3, when expressed in KS lesions, stimulates
angiogenesis, and selectively chemo attracts TH2-type T cells,
indicating an important role of vMIP-3 in the pathobiology of
KS (Stine et al., 2000). The receptors targeted by vMIP-2 indicate
evasion from a cytotoxic immune response via Th2 polarization
and blocking of leukocyte trafficking.

K1. KSHV K1 is a transmembrane glycoprotein encoded by the
first ORF of the KSHV genome. Initial characterization of K1
protein indicated an early lytic gene expression pattern and
identified a highly conserved and functional immunoreceptor
tyrosine-based activation motif (ITAM) on the short cytoplasmic
tail at its C terminus (Lee et al., 1998a, 2003; Lagunoff et al.,
1999). In B lymphocytes, the phosphorylation of ITAMs by

protein tyrosine kinases is shown to activate various cellular
signal transduction proteins carrying Src homology 2 (SH2)
domains, such as PI-3K (p85)/Akt/mTOR, PLCγ2, Syk, Cbl, Vav,
Lyn, RasGAP (Tomlinson and Damania, 2004; Lee et al., 2005;
Prakash et al., 2005), and to induce NFκB, nuclear factor of
activated T cells (NFAT), Oct-2 and AP-1 (Prakash et al., 2005).
Consequently, K1 expression inhibits proapoptotic proteins and
increases the longevity of KSHV-infected cells. The activation of
these ITAM-based signal transduction events also contributes to
the oncogenic potential of K1 as suggested by tumor formation
in mice by K1-transformed rodent fibroblasts and K1-transgenic
mice (Lee et al., 1998b). In addition, K1 activation of Akt leads
to inactivation of proapoptotic forkhead (FKHR) transcription
factor family that protects cells from FKHR- and Fas-mediated
apoptosis (Tomlinson and Damania, 2004). KSHV K1 protein is
reported to immortalize and extend the life span of endothelial
cells in culture (Wang et al., 2006). The expression of K1 in
endothelial cells results in the up-regulation of secreted VEGF
and MMP-9. In a recent study, Wen and Damania (2010)
identified Hsp90 and ER-associated Hsp40/Erdj3 as cellular
binding partners of K1, essential for its anti-apoptotic potential.

K15. The gene encoding KSHV K15, a putative integral
transmembrane protein, is positioned at the 3’ end of the KSHV
genome (Choi et al., 2000). Two highly divergent forms of K15
have been identified: the predominant (P) and minor (M) forms
(Poole et al., 1999). K15 is weakly expressed in latently infected
PEL cells, but is robustly induced on lytic reactivation with
chemical inducers such as phorbol esters (Choi et al., 2000).
K15 isolates have a complex splicing pattern and yield multiple
K15 proteins containing 4–12 transmembrane spanning domains
and a short cytoplasmic domain (Glenn et al., 1999). The short
cytoplasmic domain of K15 contains potential SH2- and SH3-
binding motifs, a YASIL sequence (necessary for the activation of
NF-κB and Ras/MAPK signaling pathways) and binding sites for
Src family cellular tyrosine kinases and TRAFs 1, 2, and 3 (Glenn
et al., 1999; Brinkmann et al., 2007). K15 is capable of initiating
several cellular signal transduction pathways, such as Ras/MAPK,
JNK/SAPK, and NF-κB (Brinkmann et al., 2003, 2007; Cho
et al., 2008) as well as the NFAT/AP1 transcription factors (Cho
et al., 2008). K15 also induces the expression of multiple cellular
cytokines and chemokines including IL6, IL8, CCL20, CCL2,
CXCL3, IL-1α/β, and Cox2 (Brinkmann et al., 2007; Wang et al.,
2007). Studies by Sharp et al. (2002) identified cellular HAX-
1 (HS associated protein X-1), an anti-apoptotic protein shown
to inhibit Bax-induced apoptosis, as a binding partner to the C
terminus of K15, both in vivo and in vitro, inferring K15 may play
a role in maintaining latency and/or preventing apoptosis (Wong
and Damania, 2006). Like EBV LMP2A, the expression of K15
and K1 led to the survival of BCR-negative human B cells prone
to apoptosis (Steinbruck et al., 2015).

RTA. KSHV RTA (Replication and Transcription Activator),
encoded by ORF50, functions as the master regulator of the
transition from latent-to-lytic replication (Sun et al., 1998, 1999).
RTA plays a pivotal role as both an initiator and regulator
of KSHV lytic DNA replication as the genetic mutation of
RTA leads to impaired lytic reactivation and DNA replication
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(Sun et al., 1998; Xu et al., 2005). KSHV RTA autoactivates
its own promoter and transactivates other important lytic
genes, namely vIL-6 (Deng et al., 2002; Bu et al., 2008),
polyadenylated nuclear RNA (PAN RNA, reviewed in Rossetto
and Pari, 2014), ORF57 (MTA; Lukac et al., 2001; Byun et al.,
2002), K-bZIP (Lukac et al., 2001), vIRF1 (ORF-K9; Ueda
et al., 2002), ORF-K1 (Bowser et al., 2006), small viral capsid
protein (ORF65), ORF56, SOX (ORF37), vOX, and ORF52, by
binding to the lytic gene promoters containing RTA-response
element (Ueda et al., 2002; Song et al., 2003; Fritz et al., 2006).
KSHV LANA is also known to repress lytic reactivation and
RTA-mediated autoactivation (Lan et al., 2004, 2005). Studies
by Nishimura et al. (2003) found that KSHV RTA induced
caspase activation and cell death by apoptosis in uninfected
cells but not in infected cells. These results suggested that
RTA is an apoptosis inducer that is blocked by an anti-
apoptotic pathway in KSHV-infected cells (Nishimura et al.,
2003). A study by Gao et al. (2011) reported that the up-
regulation of the cellular anti-apoptotic Bcl-2 protein by RTA
through its binding with CCN9GG-like RTA resonsive elements
(RREs)/motifs promotes lytic reactivation and enhanced virion
production. These results indicate the existence of a distinct,
apoptosis-triggered, accelerated RTA-independent replication
pathway with clinical significance for the treatment of KSHV-
associated neoplasms (Gao et al., 2011). Interestingly, RTA
encodes an ubiquitin E3 ligase activity that targets multiple
cellular and viral proteins, such as IRF-7, a critical mediator
of type I IFN induction, for proteasome-mediated degradation
(Yang et al., 2008). Since, IFN signaling plays a critical role in
suppressing viral lytic replication, this finding suggests that RTA
may follow an unexpected regulatory strategy for overcoming
the host innate immune defenses during KSHV reactivation.
Another study reported RTA-mediated degradation of the Hey1
repressor protein through the Ubiquitin Proteasome pathway
(Gould et al., 2009). Hey1 degradation disrupts the interaction
between Hey1 and the co-repressor mSin3A. Hey1 suppresses
RTA expression by direct binding to the RTA promoter. RTA
is known to up-regulate its own expression by targeting Hey1
protein for degradation. Taken together, these results strongly
suggest that RTA regulates viral lytic replication by promoting
protein degradation of several cellular repressors. Additionally,
recent studies have identified that RTA displays a SUMO-
targeting ubiquitin ligase (STUbL) type activity, and is capable
of ubiquitylation of SUMO and SUMO conjugates in vitro
and in vivo. Thus, RTA is an ubiquitin ligase that targets
SUMO-containing proteins, such as sumoylated K-bZIP and
promyelocytic leukemia (PML) nuclear bodies (Izumiya et al.,
2013).

K-bZIP. KSHV K-bZIP, also known as lytic replication-
associated protein (RAP) is a basic leucine zipper-containing
protein that is encoded by KSHV K8 (Lin et al., 1999). KSHV
K-bZIP is dispensable for lytic reactivation, however, it is crucial
for virus production in KSHV-infected cells (Kato-Noah et al.,
2007; Rossetto et al., 2007; Lefort and Flamand, 2009; Wang
et al., 2011). K-bZIP physically interacts with and represses
RTA-mediated transactivation of viral promoters and RTA

autoactivation through its basic domain (aa122–189) and a
specific RTA region (aa499–550; Izumiya et al., 2003). K-bZIP
has been shown to bind and up-regulate the cellular transcription
factor CCAAT/enhancer-binding protein-α (C/EBPα) and
p21C1P-1 protein, resulting in G0/G1 cell cycle arrest in lytically
induced cells (Wang et al., 2003). K-bZIP also efficiently binds
to the PRDIII-I region of the IFN-β promoter and prevents the
attachment of activated IRF-3 to the IFN-β promoter sequence,
suggestive of antagonizing effects exerted by KSHV on type I
IFN pathways (Lefort et al., 2007, 2010). Most interestingly, a
recent study identified K-bZIP as a SUMO E3 ligase or SUMO
adaptor with specificity towards SUMO-2/3 (Chang et al., 2010).
In addition, K-bZIP-mediated SUMO-2/3 specific modification
on the KSHV genome post reactivation, are found to negatively
regulate lytic gene expression and viral reactivation (Chang et al.,
2013).

Herpesvirus saimiri (HVS)
Herpesvirus saimiri is an oncogenic gammaherpesvirus that
establishes persistent and replicative infections in different
species of primates and transforms human T cells (reviewed
in Fickenscher and Fleckenstein, 2001). HVS causes a non-
pathogenic, latent infection in its natural hosts, the squirrel
monkey, however, in the New World primates such as the
common marmosets, it results in severe and rapidly progressing
T-cell lymphomas. Furthermore, HVS leads to a lifelong
persistent infection primarily in T-lymphocytes. Like other
members of the rhadinovirus family, HVS has pirated a number
of cellular genes to regulate cell cycle, evade immune surveillance
and to inhibit apoptosis.

Role of HVS antigens in cancer progression by modulation of
apoptotic signaling
Tip (tyrosine kinase-interacting protein) encoded by HVS
subtype C, located downstream of Stp gene, is a transforming
protein important for viral transformation. HVS Tip has been
reported to induce and immortalize infected human T-cells
in vitro (Biesinger et al., 1992). Tip has multiple binding sites
for cellular proteins. Indeed, Jae Jung’s group has reported that
the HVS Tip interaction with p80 and subsequent recruitment of
Lck and TCR/CD3 complexes to lipid rafts markedly inhibits the
T-cell receptor (TCR)-mediated intracellular signal transduction
and CD4 surface expression. Strikingly, these two interactions
are reported to be functionally and genetically separable, i.e., the
interaction of its N-terminal region with p80 is responsible for
TCR down-regulation, whereas, the interaction of its C-terminal
domain with Lck governs the CD4 down-regulation (Park et al.,
2002, 2003; Cho et al., 2004, 2006). In addition, HVS Tip protein
binding to Lck kinase requires SH3 Binding motif (SH3B) and
C-terminal Src-related Kinase Homology (CSKH) element of
Tip (Jung et al., 1995). Recently, the group also reported that
the association of membrane-proximal amphipathic helix with
Tip’s transmembrane (TM) domain is sufficient for localization
to lipid rafts and deformation of cellular membrane, which
in turn directs Tip’s lysosomal trafficking and selective TCR
down-regulation (Min et al., 2008). Interactions between the
phosphorylated peptides of HVS Tip and the Src homology
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2 (SH2) domains of STAT3 and STAT6 facilitate Src kinase-
mediated STAT-activation and T-cell proliferation (Mazumder
et al., 2012). Another group recently reported that the N-terminal
end sequence of Tip associates with and inhibits cellular retromer
activity, thus leading to CD4 down-regulation and efficient T-cell
transformation in an IL-2 independent fashion (Kingston et al.,
2011). Tip can also induce T-cell transformation independent of
IL-2 by constitutively activating the STAT6 transcription factor by
interacting with and phosphorylating STAT6 (Kim Y. et al., 2012).
Tip has been found to activate the serum response element (SRE)
in a Lck and Src-family kinase interaction-dependent fashion,
indicating its potential role in actin-regulated transcription and
transformation of human T cells (Katsch et al., 2012).

Herpesvirus saimiri encodes a potent complement inhibitor,
a structural homolog of complement control proteins, CCPH
that inhibits C4b as well as C3b deposition on the target
cells, exposed to complement, thus allowing HVS to evade the
host complement attack (Singh et al., 2006; Reza et al., 2013).
HVS CCPH effectively inactivates complement by supporting
factor I-mediated inactivation of complement proteins, C3b
and C4b. In a recent study, Reza et al. (2013) performed
substitution mutagenesis of CCPH residues (sCCPH mutants)
and demonstrated that ionic charges within amino acids form
a major component of binding interface between CCPH and its
interacting partners. These charges are reported to be crucial for
CCPH’s interaction in human and viral complement regulators.
In addition, the HVS genome encodes for one or more viral
cytokines to promote survival of the infected cell and escape from
the host immune responses. HVS encodes a viral interleukin,
IL-17, which has been shown to support T-cell proliferation
and uncontrolled cellular growth by up-regulating NF-κB, and
IL-6 expression levels (Yao et al., 1995). HVS-transformed T
cells are known to display an elevated expression of cellular IL-
26, an IL-10-related cytokine that results in STAT1 and STAT3
activation (Hor et al., 2004). Moreover, HVS ORF3 protein, the
viral FGARAT-homologous protein, was recently found to induce
the proteasomal degradation of the cellular ND10 component
Sp100 (Full et al., 2012). A study by Cazalla et al. (2010) showed
that viral U-rich non-coding RNAs down-regulate the expression
of host miRNA (miR-27), which in turn led to an enhanced IFN-
γ levels in transformed T-cells to promote latency (Cazalla et al.,
2010). The group later reported that HVS microRNAs, termed as
miR-HSURs, preferentially modulate the expression of host cell
cycle regulators (WEE1) and antiviral response factors (MHC-1
complex; Guo et al., 2015).

Rhesus macaque rhadinovirus (RRV)
Two separate groups identified RRV from rhesus macaques in
1997 (Desrosiers et al., 1997) and 1999 (Wong et al., 1999)
at the New England Primate Research Center and Oregon
National Primate Research Center, respectively. RRV is a natural
pathogen of rhesus macaques (RS) monkey, persists latently in
B-lymphocytes, and is known to cause B-cell hyperplasia and
persistent lymphadenopathy (Desrosiers et al., 1997; Searles et al.,
1999). Genome sequence analysis of RRV 17557, one of the two
isolated strains of RRV, revealed a high degree of co-linearity
with another rhadinovirus, i.e., KSHV (Searles et al., 1999). The

second isolate of RRV, 26–95 also has high degree of similarity
with both, KSHV and RRV 17557 (Alexander et al., 2000). Studies
focusing on the mechanisms underlying KSHV oncogenesis have
been impeded due to the lack of a proper animal model and poor
replication of the virus in cell culture. In contrast, RRV grows
efficiently in cell culture and produces high titers of virus upon
induction, hence serves as an excellent model for studying both
the in vivo and in vitro KSHV infection.

Role of RRV Antigens in Cancer Progression by
Modulation of Apoptotic Signaling
Damania’s group showed that R1 protein of RRV bears
significant similarity to the K1 protein of KSHV and initiates B
lymphocyte activation through its signal transducing cytoplasmic
domain, thereby formulates its role as an oncoprotein (Damania
et al., 1999, 2000b). RRV, upon co-infection with Simian
Immunodeficiency Virus (Sadagopan et al., 2007) has been
reported to develop lymphoproliferative disorders, similar to
those in AIDS patients, co-infected with KSHV (Wong et al.,
1999). RRV is also known to possess viral interleukin-6, RvIL-
6, which potentially plays a role in RRV pathogenesis by
regulating host-virus interactions and possibly enhancing host
IL-6 signaling (Kaleeba et al., 1999), hence, assisting in B cell
proliferation, both in vivo and in vitro (Kaleeba et al., 1999;
Orzechowska et al., 2008). RRV ORF74 has been reported
to induce tumor formation in mice and up-regulates VEGF
secretion through activation of Erk signaling, resulting in cellular
transformation, similar to that caused by ORF74 of KSHV.
This confirms that these two proteins are homologous and RRV
ORF74 is likely to contribute to RRV-related malignancies in a
similar fashion to the KSHV ORF 74 (Estep et al., 2003). Previous
studies have reported the reduction in macrophage activation
following expression of the protein RRV vCD200, encoded by
RRV ORFR15, in vitro (Langlais et al., 2006). In addition, a recent
study demonstrated the role of RRV vCD200 in modulation of
host immune responses at early times post infection. The RRV
vCD200 was found to inhibit excess virus production at early time
points in order to promote viral infection. These observations
indicate a plausible role of vCD200 in direct inhibition of antigen-
presenting cells, through decline in the levels of CD200 receptor
on dendritic cells (Estep et al., 2014). Also, RRV encodes for eight
vIRF proteins that are viral homologs of the cellular IRFs. These
RRV vIRFs were reported to interfere with the transcriptional
functions of cellular IRFs and led to a reduction in induction of
IFNs post infection. These findings were further supported by
the results that demonstrate an increase in the IFN production
following deletion of the IRFs (Robinson et al., 2012). According
to a recent study, the vIRFs inhibit the IFN gene activation by
interacting with CREB binding protein, CBP, a transcriptional
co-activator and acetyltransferase (Morin et al., 2015). These
observations account for an important role of IRFs in hampering
the host immune response against the virus. In addition, RRV
ORF71 encodes a cellular homolog for FLIP (FLICE, FADD-like
interleukin-1-converting enzyme-inhibitory protein) known as
viral FLIP (vFLIP), during the latent phase of the virus. The vFLIP
protein was found to promote cell survival and inhibit apoptosis
in latently infected cells through autophagosome formation. The
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inhibition in vFLIP protein expression resulted in the loss of
anti-apoptotic property of the cells and concomitant reduction
in autophagy (Ritthipichai et al., 2012).

CONCLUSION

In summary, the study of tumor viruses has been instrumental
to our present knowledge of multiple neoplastic diseases. It is
now clear that several γ-herpesviruses, including, KSHV, EBV,
and HVS express a diverse repertoire of viral genes that control
the cell’s death machinery and contribute to the viral replication
and tumor progression in the infected, immuno-compromised
hosts at opportune times. These viruses have developed diverse
and complex mechanisms to circumvent host-mediated self-
destruction and perturb the cellular control of apoptosis, immune
recognition and autophagy to their advantage via the expression
of unique viral anti-autophagic and anti-apoptotic proteins,
viral homologs of host proteins and activation of a plethora
of cellular signaling proteins to promote viral replication and
lifelong persistence Table 1. As deregulation of cell signaling
pathways is a defining feature of malignantly transformed cells
thus, unraveling these mechanisms will definitely delineate new

strategies to prevent tumor growth as well as identify causative
novel targets suitable for drug development.
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