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Abstract: Traditional flame retardants often contain halogens and produce toxic gases when burned.
Hence, in this study, low-cost, environmentally friendly compounds that act as fire retardants are
investigated. These materials often contain nanoparticles, from which TiO2 and SiO2 are the most
promising. In this work, pedunculate oak wood specimens were modified with sodium silicate
(Na2SiO3, i.e., water glass) and TiO2, SiO2, and ZnO nanoparticles using the vacuum-pressure
technique. Changes in the samples and fire characteristics of modified wood were studied via
thermal analysis (TA), infrared spectroscopy (FTIR), and scanning electron microscopy, coupled with
energy-dispersive X-ray spectroscopy (SEM-EDX). The results of TA showed the most significant
wood decomposition at a temperature of 350 ◦C, with a non-significant influence of the nanoparticles.
A dominant effect of sodium silicate was observed in the main weight-loss step, resulting in a drop in
decomposition temperature within the temperature range of 36–44 ◦C. More intensive decomposition
of wood treated with water glass and nanoparticles led to a faster release of non-combustible gases,
which slowed down the combustion process. The results demonstrated that wood modifications
using sodium silicate and nanoparticle systems have potentially enhanced flame retardant properties.

Keywords: Quercus robur; nanoparticles; water glass; thermal analysis; flame retardants

1. Introduction

Wood is a natural material widely used for the construction of buildings and for
the production of various building elements, furniture, and goods. It is also ecological,
comfortable, and aesthetically pleasing; however, its use in building construction is limited
and strictly regulated by fire and environmental safety rules because it is highly flammable.
Therefore, to obtain fire-safe wood structures, fireproof materials need to be used. The
fire protection agents applied to wooden structures contain ammonium phosphates or
sulfates, chlorides, oxides, borates and other metal salts, boric acid, and halogen-containing
flame retardants [1,2]. Many of these chemicals and their combustion products are highly
toxic; therefore, new flame retardants are being sought out. Promising retarders from both
environmental and economic points of view include nanomaterials [1,3].

Various nanomaterials with different application methods have been used to improve
the fire resistance of wood. In the past, aluminium, boron, and halogens (e.g., bromine) and,
more recently, phosphorus and nitrogen have been shown to be effective fire retardants in
wood. Upon combustion, the halogenated compounds release toxic and/or highly corrosive
gases, which are harmful to both humans and the environment. Halogenated flame
retardants are therefore being phased out and replaced with halogen-free alternatives [4–8].
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Nanocomposites constitute a new development in fire retardancy [9]. With the advent
of nanotechnology in the past few decades, the prospects of nano scale fillers in polymer-
based composites within flame retardancy applications have progressed rapidly. Although
nanofillers do not inherently show excellent fire retardance, the incorporation of a low
amount in polymer composites tends to provide drastic improvements in the thermal
stability, smoke release amount, peak heat release rate, and speed at which flames spread
throughout the nanocomposites. However, their efficiency is still insufficient in providing
adequate fire retardancy when used alone in coatings. Therefore, their combination with
other conventional fire retardant systems can give superior properties to the substrate.
Nanocomposite-based coatings have been reported as a promising system that protects the
oxidation of a char structure, once formed, and thus reinforces the fire-resistant properties
of coatings [5,10–12]. Nanoparticles can form a coating on the surface of a material to inhibit
the release of combustible gas and smoke, isolate oxygen from outside, and to prevent heat
transfer. The combustible gas concentration can be diluted by the non-combustible gas
produced by pyrolysis of the nanoparticles; the combustion chain reaction is suppressed
by highly reactive free radicals produced by pyrolysis of the nanoparticles [13,14].

Zinc oxide nanoparticles have attracted the attention of researchers due to properties
such as their biocompatibility, good chemical stability, and high absorption performance;
in addition, they can serve as a heat-protective barrier for pine wood samples treated
with the water suspension of ZnO [15]. Similarly, nano ZnO particles in the dispersion
of potassium methyl siliconate shows a good level of fire retardancy comparable with a
commercial flame retardant [16]. Rao et al. [17] found that a small amount of zinc oxide
nanoparticles significantly increased the limited oxygen index values of the intumescent
flame-retardant coating of plywood. The addition of ZnO nanoparticles could change
the thermal degradation behaviours of coatings with increasing char residue percentages
at high temperatures [17]. The impregnation of wood with Al2O3 and SiO2 leads to an
increase in the char formation and lower thermal conductivity of the surface, as shown in
the results from thermal analyses [18].

When comparing the effects of an aqueous dispersion of SiO2, TiO2, and ZrO2, SiO2
dispersion was the most effective in improving the fire properties of pine veneers [19]. In a
study by Li et al. [20], titanium dioxide in association with a conventional intumescent flame
retardant system that contains ammonium polyphosphate/pentaerythritol/melamine
(APP–PER–MEL) was introduced to silicone-acrylate coatings. From the results obtained,
its significant effect on char formation and the reduction in the spread of flames on a
plywood plate were evident.

Garskaite et al. [21] reported the reinforcement of sapwood of Scots pine using aqueous
formulations of sodium metasilicate and nano-TiO2 via a vacuum-pressure technique. Their
results showed that the fixation of nano-TiO2 on the wood surface using an aqueous sodium
silicate solution has potential in modeling low-cost and less fire-hazardous materials.
Recently, Taghiyari et al. [22] found significant improvements in the fire properties of silver
fir wood modified with nano-sepiolite. Erceg et al. [23] proposed two procedures for the
synthesis of calcium phosphate composites with TiO2 nanoplates and nanowires with
great potential for biomedical application; however, fire retardancy may be another area of
their application. The hydrothermal method was used to modify a wood surface due to
the deposition of TiO2/ZnO coatings at a relatively low temperature, and, as a result, the
treated wood had an improved fire resistance, and the one-pot hydrothermal method was
a feasible method used to fabricate non-flammable wood materials [24].

The growth of anatase TiO2 coating on a wood surface through the hydrolysis of
tetrabutyl orthotitanate (TBOT) in different conditions, using a controlled hydrothermal
method at low temperatures was reported [25]. The TiO2 coating effectively acts as a
protective layer to prolong the duration of wood combustion and prevents harmful gases
from spreading [26].

In recent years, nanoparticles such as titanium dioxide, silicon dioxide, and zinc
oxide in intumescent flame retardant coatings have attracted much interest. Despite the
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progress made in research, many issues regarding the combination of retardants, the
concentrations of substances used, methods of application, etc. are still unresolved. In
addition, a comparison of the effect of these nanoparticles on wood flame retardancy under
the same conditions is lacking.

The aim of this work was to assess three types of nanoparticles and sodium silicate to
improve the fire resistance of oak wood.

2. Materials and Methods
2.1. Wood Treatment

Pedunculate oak (Quercus robur L.) specimens with dimensions of 10 × 40 × 50 mm
(tangential (T) × radial (R) × longitudinal (L)) were cut from a stem harvested in central
Slovakia. The specimens were conditioned in a climate chamber (20 ± 2 ◦C, 65 ± 3% relative
humidity (RH)) for 21 days. The specimens were weighed before and after the conditioning,
and the moisture content (MC) of these samples was estimated to be approximately 12%
based on dry weight. The samples were divided into eight groups (untreated control;
treated with 20% aqueous solution of sodium silicate (water glass, WG); treated with 3%
dispersion of nanoparticles—TiO2, SiO2, and ZnO in water; and treated with 3% dispersion
of nanoparticles—TiO2, SiO2, and ZnO in 20% aqueous solution of water glass (WG)). The
nanoparticles were provided by Merck (Darmstadt, Germany): TiO2, purity ≥ 99.5%, size
21 nm; SiO2, purity ≥ 99.5%, size 5–15 nm; and ZnO, purity ≥ 97.0%, size < 100 nm.

Solutions of nanoparticles at a concentration of 3% were prepared for the impregnation
procedure. For this purpose, the required weight of nanoparticles was dispersed in distilled
water/20% solution of water glass using an ultrasonic dispenser. The wood samples were
treated using the vacuum-pressure process; first, the specimens were kept in a vacuum
(–5 kPa) for 2 h and then for 1 h at the pressure of 800 kPa. Afterwards, the treated
samples were dried at room temperature to constant weight and then conditioned in a
climate chamber (20 ± 2 ◦C, 65 ± 3% RH) for 7 days. The reference and modified samples
were then mechanically disintegrated and milled to particle sizes of 200–300 µm using a
POLYMIX PX-MFC 90D laboratory mill (Kinematica, Malters, Switzerland) and dried (4 h
at 103 ± 2 ◦C).

2.2. Samples Analyses
2.2.1. Thermal Analysis

Thermal analysis (TG—thermogravimetry, DTG—differential thermogravimetry, and
DSC—differential scanning calorimetry) was performed on the powder wood samples
using a STA F3 Jupiter thermal analyzer (Netzsch, Selb, Germany) in the temperature
interval from 25 to 600 ◦C. The measurements were carried out under nitrogen atmosphere
for wood samples with weights of 12.5 ± 0.1 mg in corundum (Al2O3) crucibles. The
heating rate applied was 10 ◦C/min for all measurements.

2.2.2. Infrared Spectroscopy

ATR-FTIR spectra of the homogeneously mixed wood powders of the untreated
and modified samples were recorded using the Nicolet iS10 FT-IR spectrometer (Thermo
Fisher Scientific, Waltham, MA, USA), equipped with Smart iTR using an attenuated
total reflectance (ATR) sampling accessory attached to a diamond crystal. The spectra
were collected in 32 scans at 4 cm−1 resolution over the range of 4000 to 650 cm−1. The
data obtained were analyzed using OMNIC 9.0 software. Four replicates per sample
were performed.

2.2.3. Scanning Electron Microscopy–X-ray Spectroscopy Observations

The wood sections were mounted on specimen stubs, sputter-coated with gold (layer
thickness of 150 nm) in the Sputter Coater K650X (Quorum Technologies, Ashford, UK)
in an argon atmosphere, and examined using high-vacuum scanning electron microscopy
coupled with energy-dispersive X-ray spectroscopy (SEM-EDX). SEM-EDX observations
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of the earlywood vessels were performed using a JEOL JSM-6390LV instrument (JEOL,
Tokyo, Japan), operating at 20 kV and a working distance of 15 mm, equipped with an EDX
spectroscope INCAx-act (Oxford Instruments, Abingdon, UK). The elemental composition
of the nanoparticles and water glass was assessed on the radial and tangential cell wall
surfaces of three specimens per treatment, with 3–6 measurements per specimen.

3. Results and Discussion
3.1. Thermal Analysis

Thermal analysis proved that the weight loss (5%, TG curve, not shown) of unmodified
oak wood starts at temperatures below 100 ◦C (max. at 54 ◦C, DTG curve) due to the
removal of absorbed water. The second weight-loss step was detected at a temperature of
290 ◦C (shoulder on TG curve). The most significant wood decomposition was observed at
350 ◦C (Figure 1).
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Figure 1. Differential thermal gravimetry (DTG) curves of the samples treated with 3% dispersion of
nanoparticles (1—Oak wood, green; 2—SiO2, red; 3—TiO2, blue; 4—ZnO, black).

According to Sebio-Puñal et al. [27], the peak at 350 ◦C can be easily assigned to
cellulose and the shoulder at 290 ◦C can be assigned to holocellulose. The weight loss
with a maximum decrease at 290 ◦C is in good agreement with the non-glucosic saccharide
content in oak wood [28]; therefore, this peak can be attributed primarily to hemicellulose
decomposition. The decompositions of hemicellulose, cellulose, and lignin take place in
a relatively narrow range of temperatures, partially overlapping. The complex structure
of lignin leads to degradation in a wide temperature range, which overlaps those of
hemicellulose and cellulose; specifically, oak lignin degrades over a broad temperature
scale [27,29,30]. Whole wood starts to thermally degrade at about 250 ◦C, caused by
various reactions (dehydration, decarboxylation, decarbonylation, depolymerization, etc.)
to produce carbon dioxide, carbon monoxide, water acetaldehyde, propenal, methanol,
acetic acid, other volatile compounds, and tar and char residues [21,31]. To improve the
flammability properties of oak wood, the environmentally friendly modifier sodium silicate
(water glass) in combination with various nanoparticles were used. Figure 2 presents the
comparison of the main decomposition peaks of the samples treated with 3% dispersion of
nanoparticles in a 20% aqueous solution of WG.
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Figures 1 and 2 show that nanoparticles have only negligible effects, and the changes
in thermal behaviour were influenced mainly by WG (Table 1). A similar observation was
reported by Garskaite et al. [21] in Scots pine wood treated with sodium silicate and TiO2
nanoparticles. The dominant effect of WG was observed in the main weight-loss step. The
drop in the temperature decomposition was approx. 36–44 ◦C compared with samples
treated without WG, with a non-significant impact of the nanoparticles (Figures 1 and 2,
Table 1). Furthermore, the residues at a temperature of 600 ◦C were higher by approx.
8–12% for the samples treated with WG solution + nanoparticles compared with those
treated with water + nanoparticles (Table 1). Alkali solutions strongly change the structures
of wood components and accelerate their decomposition at elevated temperatures [32,33].
Thermogravimetry (TG) coupled with the Fourier transform infrared spectroscopy (FTIR)
showed that the presence of WG increases the ratio of CO2 band to the carboxylic (C=O)
band. The reduced intensities of the carboxylic groups in the treated wood spectra indicated
possible extraction of the aliphatic compound during the alkali treatment. Some chemical
reactions between TiO2 and the amorphous Na-O-Si gel upon heating were observed [21].
More intensive decomposition of wood treated with WG, and nanoparticles leads to a faster
release of non-combustible gases, which slows down the combustion process. From this
point of view, ZnO has the greatest influence among the nanoparticles investigated. This
effect was also indicated by a reduction in enthalpy (Table 2). The impact of sodium silicate
and various compounds for flame retardancy was investigated to find low-cost and less
toxic flame retardants. Their retarding effect was evaluated [21,34–36] also by measuring
the limiting oxygen index (LOI), and a good correlation between thermal analyses and LOI
values was found.



Nanomaterials 2021, 11, 3405 6 of 13

Table 1. Thermal degradation temperatures and residue at 600 ◦C from TG and DTG analyses.

Sample T1 (◦C) T2 (◦C) Residue at 600 ◦C (%)

Oak wood 290.0 350.4 18.3
Oak wood + WG – 306.5 25.8
Oak wood + TiO2 294.0 348.5 17.5

Oak wood + WG + TiO2 262.1 310.7 26.0
Oak wood + SiO2 294.0 354.5 16.2

Oak wood + WG + SiO2 – 318.2 25.3
Oak wood + ZnO 293.0 348.6 17.2

Oak wood + WG + ZnO 219.0 305.3 28.4

Table 2. Peak temperatures and enthalpy obtained from DSC curves.

Sample T1 (◦C) ∆H (J/g) T2 (◦C) ∆H (J/g)

Oak wood 352.5 60.1 440.3 57.9
Oak wood + WG – – 406.9 13.7
Oak wood + TiO2 351.5 59.6 450.8 78.1

Oak wood + WG + TiO2 364.0 7.8 – –
Oak wood + SiO2 358.4 53.1 409.4 59.8

Oak wood + WG + SiO2 374.7 7.1 442.6 10.3
Oak wood + ZnO 351.1 69.2 434.5 52.7

Oak wood + WG + ZnO 357.6 –1.3 – –

3.2. Infrared Spectroscopy

The FTIR spectra were measured on the wood surface before (denoted as “Oak wood”)
and after the application of an aqueous solution of sodium silicate (WG) mixed with three
types of nanoparticles (TiO2, SiO2, and ZnO, denoted as “Oak wood + WG + nanoparti-
cles”). Given that the changes in the spectra were almost the same for each of the mixtures
used, we decided to evaluate them together. As can be seen (Figures 3–5), band changes
in the range of 3100 to 3600 cm−1 are negligible. This wide band is assigned to O−H
vibrations in cellulose, hemicellulose, and lignin structures [37]. An exception is the surface
treated with an aqueous solution of ZnO + WG. The growth in the band with a peak at
3380 cm−1 can, in this case, be influenced by the presence of a wide band characteristic
of ZnO, as well as the possible presence of water molecules absorbed on the surface of
ZnO nanocrystalline powder [21,38]. The interval between 2950 and 2850 cm−1 (symmetric
and asymmetric C−H stretching vibrations in aliphatic compounds) [39] shows similar
behaviors. In the area from the 1800 to 800 cm−1 bands assigned to stretching and defor-
mation vibrations of all wood components (fingerprint region), more significant changes in
absorbances were recorded.
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A decrease in band absorbance on 1735 cm−1 (C=O stretching in unconjugated car-
bonyl groups) of more than 35% (Figures 3–5) was observed on the treated samples,
indicating changes in several functional groups in lignin and hemicelluloses (carbonyls,
aldehydes, ketones, and carboxylic acids) [40,41]. This decrease may be due to changes in
the polysaccharides due to the action of an alkaline Na2SiO3 solution. Alkaline treatment
of wood promotes the deacetylation of hemicelluloses and has an effect on the degradation
of xylans [42]. A separation of xylans and glucomannans is also found in wood [21]. The
band around 1600 cm−1 (C=C stretching conjugated with an aromatic ring in lignin) is
practically unchanged. An exception is a sample treated with a solution containing ZnO
nanoparticles, where an increase in absorbance of about 25% was observed. This may
be due to overlap with the relatively wide band present in the ZnO spectrum (Zn−O
stretching vibrations in crystalic structures) [43,44]. The band absorbance near 1500 cm−1

(C=C stretching conjugated with aromatic ring in lignin) decreased by around 20%. This
mainly indicates a decrease in the number of methoxyl groups, confirming the decrease in
lignin content [45,46].

The bands also decreased at 1460 cm−1 (asymmetric CH3 bending in methoxyl groups
in lignin), 1370 cm−1 (symmetric and asymmetric CH3 bending), 1320 cm−1 (C−O vibration
in syringyl derivatives), and 1235 cm−1 (C−O stretching vibration in xylan and syringyl
ring), which are associated with lignin and hemicelluloses [47–50]. Their decrease supports
the assumption that lignin degradation is caused by the presence of an alkaline environment
(the pH of the water glass solution used in the experiment was more than 10). In contrast
to previous trends, a slight increase in the 1030 cm−1 band (C−O deformation vibrations in
cellulose) was observed (Figure 3, Figure 4, and Figure 5). Since this band does not occur
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in the spectra of the nanoparticles used, the increase is probably supported by a partial
overlap and superposition with the band characteristic of water glass (Si−O stretching
vibrations) [51]. The band at 897 cm−1 is associated with C−O−C stretching vibrations at
glycosidic linkage in cellulose [52]. Absorbance on this band shows a permanent decrease,
which confirms the degradation of cellulose.

3.3. Scanning Electron Microscopy–X-ray Spectroscopy Observations

In untreated control wood samples, the vessel walls were found to be free of any
deposits and cell wall debris. The vessel-ray pits showed both large and small apertures
(Figure 6A). On the contrary, massive layers were observed on vessel wall surfaces when
wood was treated with the WG solution. Non-continuous, deeply cracked deposits contain-
ing sodium silicate partially covered the cell wall surfaces and pit apertures (Figure 6B).
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When TiO2 nanoparticles were applied alone, they formed very thin, non-continuous
layers of apparently small particles. The particles penetrated into the pits and were
deposited on the pit borders and inside the pit apertures (Figure 7A). The addition of WG
in combination with TiO2 nanoparticles caused the formation of extremely large aggregates
attached to the vessel wall surface (Figure 7B).
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accompanied with the representative EDX spectra showing the elemental composition (bottom
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SiO2 nanoparticles did not form a continuous layer but rather clumps consisting of
relatively larger particles. Smaller particles again penetrated into the pit apertures, but
due to the large size of some clumps, some pits were fully covered with SiO2 nanoparticles
(Figure 8A). When the WG solution was applied in combination with SiO2 nanoparticles,
mostly roundish aggregate deposits were observed (Figure 8B). ZnO nanoparticles were
deposited on the vessel wall surface as a relatively thin continuous layer. Except for some
small cracks, a smooth layer covered the cell wall surface and pits (Figure 9A). On the
contrary, the addition of WG in combination with ZnO nanoparticles caused the formation
of very large aggregates consisting of small nanoparticles covering the surface of vessel-ray
pits (Figure 9B). The elemental composition of both the examined nanoparticles and the
WG solution was confirmed by the EDX analysis, as shown in the images at the bottom of
Figures 6–9.
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4. Conclusions

Three types of nanoparticles (TiO2, SiO2, and ZnO) and sodium silicate were inves-
tigated to improve the fire resistance of oak wood. Thermal analyses show the most
considerable wood decomposition at a temperature of 350 ◦C with a non-significant influ-
ence of the nanoparticles. On the other hand, the presence of sodium silicate resulted in a
rapid drop in the decomposition temperature. Faster decomposition of wood treated with
sodium silicate and nanoparticles led to a faster release of non-combustible gases, which
slowed down the combustion process. From this point of view, ZnO has the greatest influ-
ence among the nanoparticles investigated. This effect was also indicated by a reduction
in enthalpy. The results demonstrated that wood modifications using sodium silicate and
nanoparticle systems have potentially enhanced flame retardant properties.
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50. Kubovský, I.; Oberhofnerová, E.; Kačík, F.; Pánek, M. Surface changes of selected hardwoods due to weather conditions. Forests

2018, 9, 557. [CrossRef]
51. Pfeffer, A.; Mai, C.; Militz, H. Weathering characteristics of wood treated with water glass, siloxane or DMDHEU. Eur. J. Wood

Prod. 2012, 70, 165–176. [CrossRef]
52. Ciolacu, D.; Ciolacu, F.; Popa, V. Amorphous cellulose-structure and characterization. Cell. Chem. Technol. 2011, 45, 13–21.

http://doi.org/10.1016/S0141-3910(03)00051-X
http://doi.org/10.1016/j.molstruc.2010.12.004
http://doi.org/10.1590/1980-5373-mr-2017-0936
http://doi.org/10.1016/j.carbpol.2014.08.040
http://www.ncbi.nlm.nih.gov/pubmed/25439887
http://doi.org/10.5772/intechopen.71208
http://doi.org/10.15376/biores.4.1.49-71
http://doi.org/10.3390/ma5101910
http://doi.org/10.3390/f9090557
http://doi.org/10.1007/s00107-011-0520-8

	Introduction 
	Materials and Methods 
	Wood Treatment 
	Samples Analyses 
	Thermal Analysis 
	Infrared Spectroscopy 
	Scanning Electron Microscopy–X-ray Spectroscopy Observations 


	Results and Discussion 
	Thermal Analysis 
	Infrared Spectroscopy 
	Scanning Electron Microscopy–X-ray Spectroscopy Observations 

	Conclusions 
	References

