
Vance et al. BMC Med Inform Decis Mak 2020, 20(Suppl 12):330
https://doi.org/10.1186/s12911-020-01308-6

RESEARCH

Learning to detect the onset of slow activity
after a generalized tonic–clonic seizure
Carroll Vance1*, Yejin Kim2, Guoqiang Zhang2,3, Samden Lhatoo3, Shiqiang Tao2, Licong Cui3, Xiaojin Li2
and Xiaoqian Jiang2

From SBMI Healthcare Machine Learning Datathon Houston, TX, USA. 14-15 September 2019

Abstract 

Background:  Sudden death in epilepsy (SUDEP) is a rare disease in US, however, they account for 8–17% of deaths
in people with epilepsy. This disease involves complicated physiological patterns and it is still not clear what are the
physio-/bio-makers that can be used as an indicator to predict SUDEP so that care providers can intervene and treat
patients in a timely manner. For this sake, UTHealth School of Biomedical Informatics (SBMI) organized a machine
learning Hackathon to call for advanced solutions https​://sbmi.uth.edu/hacka​thon/archi​ve/sept1​9.htm.

Methods:  In recent years, deep learning has become state of the art for many domains with large amounts data.
Although healthcare has accumulated a lot of data, they are often not abundant enough for subpopulation studies
where deep learning could be beneficial. Taking these limitations into account, we present a framework to apply deep
learning to the detection of the onset of slow activity after a generalized tonic–clonic seizure, as well as other EEG
signal detection problems exhibiting data paucity.

Results:  We conducted ten training runs for our full method and seven model variants, statistically demonstrating
the impact of each technique used in our framework with a high degree of confidence.

Conclusions:  Our findings point toward deep learning being a viable method for detection of the onset of slow
activity provided approperiate regularization is performed.

Keywords:  Electroencephalogram, Sudden death in epilepsy, Generalized tonic–clonic seizure, Onset of slow activity,
Signal detection, Machine learning, Deep learning, Neural network, Convolutional neural network, Data paucity

© The Author(s) 2020. Open Access This article is licensed under a Creative Commons Attribution 4.0 International License, which
permits use, sharing, adaptation, distribution and reproduction in any medium or format, as long as you give appropriate credit to the
original author(s) and the source, provide a link to the Creative Commons licence, and indicate if changes were made. The images or
other third party material in this article are included in the article’s Creative Commons licence, unless indicated otherwise in a credit line
to the material. If material is not included in the article’s Creative Commons licence and your intended use is not permitted by statutory
regulation or exceeds the permitted use, you will need to obtain permission directly from the copyright holder. To view a copy of this
licence, visit http://creat​iveco​mmons​.org/licen​ses/by/4.0/. The Creative Commons Public Domain Dedication waiver (http://creat​iveco​
mmons​.org/publi​cdoma​in/zero/1.0/) applies to the data made available in this article, unless otherwise stated in a credit line to the data.

Background
Recent advancements deep learning have significantly
improved performance for classification and detection
tasks [1, 2]. However, generalization ability is still lim-
ited due to the lack of sufficient high-quality training data
for many domains. This holds true for many problems
in the biomedical domain where data is often limited
(especially for sub-population studies), which constraints

the capacity of highly powerful supervised deep learn-
ing frameworks [3]. Since deep learning is known for
requiring a considerable amount of data [4], applying it
to a problem such as detection of markers (onset of slow
activity) to predict critical patterns in a rare disease like
SUDEP is not straightforward.

Method
Our method attempts to build a framework to apply
recent advancements in deep learning [2, 5–7] to detec-
tion problems such as detection of the onset of slow
activity after a generalized tonic–clonic seizure, where

Open Access

*Correspondence: cs.vance@icloud.com
1 University of Houston, Houston, TX, USA
Full list of author information is available at the end of the article

https://sbmi.uth.edu/hackathon/archive/sept19.htm
http://creativecommons.org/licenses/by/4.0/
http://creativecommons.org/publicdomain/zero/1.0/
http://creativecommons.org/publicdomain/zero/1.0/
http://crossmark.crossref.org/dialog/?doi=10.1186/s12911-020-01308-6&domain=pdf

Page 2 of 8Vance et al. BMC Med Inform Decis Mak 2020, 20(Suppl 12):330

availability of of training data is limited. We combine a
variety of preprocessing (Resampling), regularization
(Anti-aliased temporal downsampling [6], Global tempo-
ral downsampling [8], Global batch-wise z-scoring, Ker-
nel regularization, [9]), and optimization (Batch size [10],
Loss discount factor) techniques to work around the data
paucity issue. We also develop a system for real-time vis-
ualization of our models predictions to emphasize which
parts of the signal contributed most to the decision https​
://www.youtu​be.com/watch​?v=cDuRs​h2pSR​M.

Overview
From a high level, we feed an EEG sequence x into our
binary classification model y = f (x) , which estimates
the probability y ≈ P(y|x) that the sequence contains
the onset of slow activity (i.e., label). The chosen model
architecture is a residual neural network [11] utilizing
stacked convolution layers [12], skip connections [11],
batch normalization [7], downsampling [6], and non-
linear activation functions. We train our model using
mini-batch stochastic gradient descent (SGD). We imple-
mented our model using Python 3.7 and tensorflow.keras
[13]. Our full source code is available on Github: https​://
githu​b.com/csvan​ce/deep-onset​-detec​tion.

Data
The original source of the training data D contains vari-
able length sequences composed of recordings from ten
pairwise offsets of two adjacent EEG electrodes [14]:

The sequences were recorded from 134 different patients,
each with their own variable length sequence [14]. It fol-
lows that |D| = 134 . The EEG sampling rate Fs is 200 Hz,
and each timestep tn is labeled y ∈ {0, 1} for the presence
of slow activity [14]. We create a training set T derived
from this set in Sequence generation. The validation data-
set V contains |V | = 12345 ten second sequences sam-
pled from 34 patients with the same EEG channels and
sampling rate [14]. Each sequence is labeled y ∈ {0, 1} .
The validation set V has a class imbalance for label y, with
|Vpos| = 3, 219 and |Vneg | = 9, 126.

Inputs / output format
Inputs Detection of the onset of slow activity requires
detection within the a short time-span in order to
be clinically useful. A sequence length of 10 sec-
onds was chosen based on this requirement. It fol-
lows that the input sequence to the model contains
len seqinput = 10r = 2000 timesteps. Each training
example contains ten sequences of pairwise offsets.
Considering both the sequence length and number

{fp1 − f7, f7 − t7, t7 − p7, p7 − o1, fp2 − f8, f8 − t8, t8 − p8, p8 − o2, fz − cz, cz − pz} ∈ F

of channels, the input to our model has the shape
(len seqinput , |F |) = (2000, 10).

Outputs Our model estimates P(y|x) , which is a scalar
value ranging between 0 and 1. Hence, the output of our
model has the shape (1,)

Preprocessing
Sequence generation In order to make the maximum
utilization of the original training data, we first cre-
ate a set Spos of as many positive sequences with length
len seqinput = 2000 as possible for an individual patient,
starting with tf = tonset , and stopping after ti = tonset .
For memory efficiency, a stride of 5 was used during the
creation of each sequence in Spos . We then create a dis-
joint set Sneg by randomly sampling at most |Spos| negative
sequences with replacement from a uniform distribu-
tion containing every possible negative training example
(sequences with tf < tonset ) from the same patient. This
process is repeated for each patient, and the final training
set T contains the union of each Spos and Sneg set.

Resampling Before training, 50% of generated
sequences were randomly cropped relative to the first
timestep, resulting in a new sequence seq′input with
the relationship len seq′input = ulen seqinput , where
u ∈ [0.9, 1.1] is sampled from a uniform distribu-
tion. seq′input was then resampled to the original length
len seqinput = 2000 . While this is a commonly used
image augmentation technique for object detection [15,
16], it should also be beneficial here since we are inter-

ested in augmenting the temporal relationship between
frequency and phase rather than the frequency and phase
itself.

Network architecture
Other researchers have demonstrated success with resid-
ual neural network variants for detecting complicated
patterns in signals [2]. Thus, we use a similar variation of
ResNet as a starting point with pre-activation style blocks
[5] as shown in Fig. 4. Through trial and error, the first
few convolution layers use a D = 32 dimensional kernel,
before increasing to 2D and ending with 4D. Increasing
D = 32 by factors of 2 resulted in overfitting. Likewise,
reducing D = 32 by factors of 2 resulted in underfit-
ting. With D = 32 , our model has p = 165,664 trainable
parameters.

Anti-aliased temporal downsampling We explored
several different methods of temporal downsampling in
our network architecture, as well as investigating recent
advancements in reducing aliasing [6]. After deciding on
other hyper parameters, we trained our network with an

https://www.youtube.com/watch?v=cDuRsh2pSRM
https://www.youtube.com/watch?v=cDuRsh2pSRM
https://github.com/csvance/deep-onset-detection
https://github.com/csvance/deep-onset-detection

Page 3 of 8Vance et al. BMC Med Inform Decis Mak 2020, 20(Suppl 12):330

anti-aliased version of strided downsampling. We use a
three point Gaussian low pass kernel with σ ≈ 0.79577
during downsampling. We use the same σ for each of
the three downsampling operations to encourage the
network to learn a feature representation increasingly
focused on lower frequencies. Each downsampling oper-
ation divides the temporal axis of the sequence by two.

Global temporal downsampling Recent papers in deep
learning have increasingly relied on global pooling lay-
ers to reduce the number of trainable parameters and
improve generalization for a variety of problems [8, 11,
17]. We considered several different global downsam-
pling strategies including global max pooling (GMP),
global average pooling (GAP) [8], and flattening. GAP
was excluded because it may not be able to effectively
handle sequences where only a small percentage contains
the onset. Flattening significantly increases the number
of trainable parameters, and may bias towards certain
parts of the sequence in the training set. GMP provides
the largest activation value from each channel regardless
of where it occurred. With these considerations in mind,
GMP was selected for global temporal downsampling on
the top of the network.

Online augmentation
During training, online augmentations were employed
to help the network to learn how to handle differences
in variance and bias from patient to patient. We employ
global batch-wise z-scoring, when combined with a small
stride size during sequence generation, smaller batch
sizes, and sample-wise shuffling results in the network
being forced to generalize to a considerable number of
different scales and biases.

Global batch-wise z-scoring z-scoring was done along
batch, temporal, and channel axes, normalizing the entire
batch using a single mean and standard deviation. Let Bn
be a mini batch of shape
(|B|, len seqinput , |F |) = (16, 2000, 10) for a batch size of
16. Each mini batch Bn is randomly sampled without
replacement from a uniform distribution during the start
of every training epoch. We calculate the mean µbatch and
standard deviation σbatch by reducing all three axes to a
single scalar value. We then apply standard z-scoring as
follows B′

train =
Btrain−µbatch

σbatch
 . B′

train is then used to calcu-
late the loss during training. When validating our models
performance, we instead z-score the validation set using
the training set population mean and standard deviation.

Loss
Since our neural network is a binary classifier, we used
a binary cross-entropy based cost function to train the
network.

Kernel regularization In order to encourage the model
to not overemphasize a small subset of learned features
which may be biased towards the training set, we used L2
kernel regularization. � = 0.01 was chosen for the L2 pen-
alty for all convolution kernels using through trial and
error [9].

Loss discount factor While GMP may help with cases
where only a small part of the onset is present, some pos-
itive sequences generated using our methodology only
contain a small number of positive time steps which may
negatively impact convergence. If more data was avail-
able, we could simply omit ambiguous regions during
training. Due to data paucity however, another solution
is needed. We define a cost discounting function α(p)
where p is defined as the number of positive time steps
in a sequence divided by the total length of the sequence:

This effectively discounts loss during the first sec-
ond after the onset, starting from complete dis-
count at tonset = tfinal and ending with no discount at
tonset = tfinal − r , with our discount linearly decreasing
as tonset → tfinal − r . Since our classes are balanced, we
chose to discount a proportional amount from all nega-
tive examples in order to avoid bias. Finally, we define our
cost function as:

Optimization
We optimized our network during training using mini-
batch stochastic gradient descent (SGD).

Batch size We used a mini-batch size of 16 during each
training step. While a much higher batch size could eas-
ily fit into memory during training, smaller batch sizes
result in a wider range of scale and bias when utilizing
batch-wise z-scoring. Smaller batch sizes have also been
observed to have a regularizing effect on the model when
training with SGD [10].

Training parameters We selected an initial learning rate
of ηi = 0.0001 , decaying by a factor of 2 every 15 epochs
for a total of 75 epochs. Momentum was set to β = 0.9.

Experimental setup While developing our method, we
observed a high variability of outcome with different ran-
dom seeds. In order to test the reliability of our methods,
we conducted ten runs using different random seeds with
our method during training.

Method variants In addition to our full method, we
applied the same experiment setup to different variants

α

�

p =
npos

len seqinput

�

=







0.95 p = 0

10p 0 < p ≤ 0.1

1 0.1 < p

loss(ytrue, ypred) = α · bce(ytrue, ypred)+ �

p
∑

i=1

β2

Page 4 of 8Vance et al. BMC Med Inform Decis Mak 2020, 20(Suppl 12):330

omitting batch-wise z-scoring, L2 kernel regulariza-
tion, and anti-aliased downsampling. For the z-scoring
variant, we normalize each sequence with its own mean
and standard deviation during training and validation.
The L2 variant simply omits the L2 penalty. The method
without anti-aliased down-sampling performs a strided
down-sampling before the residual connection, and adds
a max pooling layer on the residual in order to match
the sequence lengths. Two additional variants use batch
sizes of 32 and 64. Finally, we created a baseline variant
without batch z-scoring, L2 regularization, anti-aliased
downsampling, and the discount factor. For this variant
we selected to use a batch size of 64. All variants share
the same ten random seeds used in the full method for
comparison.

Metrics Due to class imbalance in the validation set,
we use receiver operator characteristic area under curve
(ROC-AUC) to evaluate the accuracy of our model.
Despite the imbalance, are also interested in the trade
off between sensitivity and specificity for each of our
variants. To compute sensitivity and specificity, values of
ypred > 0.5 are considered true, and values of ypred ≤ 0.5
are considered false. The same threshold also applies for
accuracy.

Results
Accuracy over ten training runs is shown in Table 1.
Table 2 shows the best single validation ROC-AUC of
each variant. Finally, Table 3 shows the result of 20 addi-
tional training runs for our full method.

Discussion
Average accuracy
Our full model had the highest average ROC–AUC and
highest and most consistent accuracy out of each of
our variants. In our variant which omitted batch-wise
z-scoring, we observe a significant increase in met-
ric variance as well as the lowest average sensitivity
and ROC–AUC. We hypothesize there is not enough

variance in scale and bias in the training set without
this augmentation. The variant without L2 regulariza-
tion struggled with ROC–AUC and specificity, while
having slightly higher average sensitivity than our full
method. Even considering the fact that our model only
has ≈ 165 K trainable parameters, without L2 ker-
nel regularization there is clear evidence that a small
number of features are overemphasized. Our variant
without anti aliasing has a higher sensitivity than our
full method. However, this comes at a significant cost
in specificity. We hypothesize that this is due to the
model associating aliasing with the presence of the
onset, and that anti-aliasing and/or removal of high
frequency information is important for reducing the
frequency of false positives. The variant without loss
discounting was the closest to our best results, trad-
ing off more specificity than was gained in sensitivity.
In both cases, increasing the batch size from 16 has a

Table 1  Comparing our full method to methods which omit one technique: ten runs µ± σ

Method varriant ROC–AUC​ Sensitivity Specificity Accuracy

Baseline 0.600± 0.024 0.446± 0.081 0.689± 0.057 0.626± 0.026

Batch size = 64 0.646± 0.027 0.468± 0.064 0.732± 0.042 0.664± 0.022

W/o L2 0.651± 0.018 0.486± 0.064 0.747± 0.049 0.679± 0.028

W/o batch z-score 0.658± 0.034 0.379± 0.060 0.801± 0.055 0.691± 0.034

Batch size = 32 0.689± 0.032 0.500± 0.069 0.759± 0.048 0.692± 0.027

W/o anti-aliasing 0.708± 0.017 0.527± 0.066 0.767± 0.051 0.708± 0.024

W/o discount 0.712± 0.026 0.462± 0.032 0.825± 0.037 0.731± 0.023

Full method 0.725± 0.025 0.448± 0.063 0.850± 0.032 0.746± 0.016

Table 2  Comparing our full method to methods which
omit one technique: ten runs best validation

Method variant ROC–AUC​ Sensitivity Specificity Accuracy

Baseline 0.639 0.613 0.562 0.575

W/o batch z-score 0.667 0.202 0.886 0.708

W/o L2 0.680 0.539 0.794 0.727

Batch size = 64 0.696 0.488 0.759 0.689

Batch size = 32 0.725 0.636 0.667 0.659

W/o anti-aliasing 0.728 0.505 0.774 0.704

W/o discount 0.749 0.464 0.832 0.736

Full method 0.768 0.486 0.884 0.781

Table 3  Full method additional training runs: maximum
ROC–AUC​

Method variant ROC–AUC​ Sensitivity Specificity Accuracy

Full method 0.772 0.606 0.828 0.770

Page 5 of 8Vance et al. BMC Med Inform Decis Mak 2020, 20(Suppl 12):330

significant negative impact on ROC–AUC during vali-
dation. Our baseline model predictably had the worst
results overall.

Maximum accuracy
We observe our full method has highest single epoch
ROC–AUC of each variant. All of our variants appear to
be heavily dependent on weight initialization and mini-
batch batch selection during training, with many separate
training runs needed to achieve highest generalization.
We hypothesize that this is due to both the paucity of the
data set and unstable gradients caused by lower batch
sizes.

In addition to the ten runs for our full method, we con-
ducted approximately twenty additional runs for our full
method with new random seeds. In Table 3, We show the
best overall model in terms of ROC-AUC. The model has
much higher sensitivity without sacrificing a significant
amount of specificity. We use this model for all following
discussion and visualization of model behavior.

Explaining model predictions
Salience In order to help explain our models predictions,
we computed the gradient of y with respect to input
sequences from the test set and summed the absolute
value of the gradient for each feature channel together:

For visualization purposes, we normalize salience
with the timestep containing the maximum value:
saliencevis(t) =

salience(t)
salience(tmax)

 . In each visualization we see
only strong, sparse activation contributing to the models
decision due to the GMP layer at the top of the network.

Example: true positive Arguably the strongest activa-
tion overall appears to happen when almost every chan-
nel simultaneously increases, which can happen several
times around the onset. We visualize this in Fig. 1, where
observe strong activation on the rising edge of a global
increase.

Example: false negative Only some instances of the
onset of slow activity exhibit strong cross channel cor-
relation, as demonstrated in Fig. 2. While most chan-
nels appear to move simultaneously, there is less positive
correlation as well as some negative correlation between
channels. In this particular example, there appears to be
a wide spread of channel bias and low dynamic range. We
hypothesis that z-scoring using the population mean and
standard deviation may not be optimal for all examples,
and that an adaptive strategy could improve validation
performance.

Example: false positive Fig. 3 demonstrates that not
all instances of cross channel correlation are useful for
predicting the onset by themselves. We hypothesize

salience(t) =

9
∑

f=0

∣

∣

∣

∣

∣

∂y

∂seqt,f

∣

∣

∣

∣

∣

Fig. 1  Salience: ytrue = 1, ⌊ypred⌉ = 1 (true positive)

Page 6 of 8Vance et al. BMC Med Inform Decis Mak 2020, 20(Suppl 12):330

that a model may need to take into account the tempo-
ral nature of the problem in order to avoid these types
of false positives.

Conclusions
While our naive baseline model had relatively poor accu-
racy, we demonstrated the impact of many different regu-
larization techniques. It follows that deep learning can

Fig. 2  Salience: ytrue = 1, ⌊ypred⌉ = 0 (false negative)

Fig. 3  Salience: ytrue = 0, ⌊ypred⌉ = 1 (false positive)

Page 7 of 8Vance et al. BMC Med Inform Decis Mak 2020, 20(Suppl 12):330

be an effective tool for signal detection problems with a
small amount of available training data. By conducting
our experiment over many different training runs, we
show the statistical significance of our results. Finally, we
demonstrated that while our model may be a black box,
we can make the results easier to interpret with salience
and effective visualization.

Future work
We recognize that the loss discount factor could be made
into a continuous function across the entire sequence.
Currently, examples with a negative label could contain
the start of the onset due to the the labeling task being
particularly challenging, but are weighted as heavily
as non ambiguous examples. In addition, we observed
examples of false positives which would be relatively easy
for a human to classify correctly due to drastic changes in
overall behavior patterns. An improved model would be
able to recognize these changes over time in addition to
identifying channel cross correlation.

Abbreviations
EEG: Electroencephalogram; GAP: Global average pooling; GMP: Global max
pooling; ROC-AUC​: Receiver operator characteristic area under curve; SGD:
Stochastic gradient descent; SUDEP: Sudden death in epilepsy.

Acknowledgements
We would like to thank Marijane de Tranaltes, Judy Young, David Ha, Luyao
Chen, Queen Chambliss, Marcos Hernandez, Angela Wilkes, and everyone else
involved in organizing the the SMBI Healthcare Machine Learning Hackathon.

About this supplement
This article has been published as part of BMC Medical Informatics and Decision
Making Volume 20 Supplement 12, 2020: Slow Onset Detection in Epilepsy. The
full contents of the supplement are available online at https​://bmcme​dinfo​
rmdec​ismak​.biome​dcent​ral.com/artic​les/suppl​ement​s/volum​e-20-suppl​
ement​-12.

Authors’ contributions
CV developed methodology; SL, GZ, ST, LC, and XL, provided data; YK and XJ
provided guidance and feedback. All authors have read and approve the final
manuscript.

Funding
This challenge is supported by the startup grant from UTHealth for the Center
for Secure Artificial Intelligence For hEalthcare (SAFE) and Elimu Inc. Data for
this challenge is provided with support from the Center for SUDEP Research
(NINDS U01NS090408 and U01NS090405). Publication costs are funded by
XJ’s discretionary funding from UTHealth. The funding bodies had no roles in
the design of the study, analysis, and interpretation of data and in writing the
manuscript.

Availability of data and materials
The data include protected health information, thus are not publicly available.

Ethics approval and consent to participate
This study was approved by the Institutional Review Board of University of
Texas Health Science Center at Houston (HSC-MS-19-0045).

Consent for publication
Not applicable

Fig. 4  Our network has 12 convolutional layers, each of which is
followed by batch normalization and a rectified linear unit. Residual
connections are used to improve gradient propagation throughout
the network

https://bmcmedinformdecismak.biomedcentral.com/articles/supplements/volume-20-supplement-12
https://bmcmedinformdecismak.biomedcentral.com/articles/supplements/volume-20-supplement-12
https://bmcmedinformdecismak.biomedcentral.com/articles/supplements/volume-20-supplement-12

Page 8 of 8Vance et al. BMC Med Inform Decis Mak 2020, 20(Suppl 12):330

•

fast, convenient online submission

 •

thorough peer review by experienced researchers in your field

•

rapid publication on acceptance

•

support for research data, including large and complex data types

•

gold Open Access which fosters wider collaboration and increased citations

maximum visibility for your research: over 100M website views per year •

 At BMC, research is always in progress.

Learn more biomedcentral.com/submissions

Ready to submit your researchReady to submit your research ? Choose BMC and benefit from: ? Choose BMC and benefit from:

Competing interests
The authors declare that they have no competing interests.

Author details
1 University of Houston, Houston, TX, USA. 2 School of Biomedical Informat-
ics, UT Health, 7000 Fannin St Suite 600, Houston, TX, USA. 3 Department
of Neurology, McGovern Medical School, UT Health, 6430 Fannin St, Houston,
TX, USA.

Published: 24 December 2020

References
	1.	 Krizhevsky A, Sutskever I, Hinton GE. Imagenet classification with deep

convolutional neural networks. In: Proceedings of the 25th international
conference on neural information processing systems—volume 1.
NIPS’12. Red Hook: Curran Associates Inc.; 2012. p. 1097–105.

	2.	 Rajpurkar P, Hannun AY, Haghpanahi M, Bourn C, Ng AY. Cardiologist-
level arrhythmia detection with convolutional neural networks. CoRR
abs/1707.01836 (2017). arxiv​:1707.01836​.

	3.	 Ching T, Himmelstein DS, Beaulieu-Jones BK, Kalinin AA, Do BT, Way GP,
Ferrero E, Agapow P-M, Zietz M, Hoffman MM, Xie W, Rosen GL, Lengerich
BJ, Israeli J, Lanchantin J, Woloszynek S, Carpenter AE, Shrikumar A,
Xu J, Cofer EM, Lavender CA, Turaga SC, Alexandari AM, Lu Z, Harris
DJ, DeCaprio D, Qi Y, Kundaje A, Peng Y, Wiley LK, Segler MHS, Boca
SM, Swamidass SJ, Huang A, Gitter A, Greene CS. Opportunities and
obstacles for deep learning in biology and medicine. J R Soc Interface.
2018;15(141):20170387. https​://doi.org/10.1098/rsif.2017.0387.

	4.	 Marcus G. Deep learning: a critical appraisal. CoRR abs/1801.00631 2018.
arxiv​:1801.00631​.

	5.	 He K, Zhang X, Ren S, Sun J. Identity mappings in deep residual networks.
CoRR abs/1603.05027 2016. arxiv​:1603.05027​.

	6.	 Zhang R. Making convolutional networks shift-invariant again. CoRR
abs/1904.11486 2019. arxiv​:1904.11486​.

	7.	 Ioffe S, Szegedy C. Batch normalization: accelerating deep network
training by reducing internal covariate shift. CoRR abs/1502.03167 2015.
arxiv​:1502.03167​.

	8.	 Lin M, Chen Q, Yan S. Network in network. CoRR abs/1312.4400 2013.
	9.	 Schmidhuber J. Deep learning in neural networks: an overview. CoRR

abs/1404.7828 2014. arxiv​:1404.7828.
	10.	 Breuel TM. The effects of hyperparameters on SGD training of neural

networks. CoRR abs/1508.02788 2015. arxiv​:1508.02788​
	11.	 He K, Zhang X, Ren S, Sun J. Deep residual learning for image recognition.

CoRR abs/1512.03385 2015. arxiv​:1512.03385​
	12.	 LeCun Y, Haffner P, Bottou L, Bengio Y. Object recognition with gradient-

based learning. In: Forsyth DA, et al., editors. Shape, contour and group-
ing in computer vision. Heidelberg: Springer; 1999. p. 319.

	13.	 Chollet F, et al. Keras. https​://keras​.io. Accessed on 2020-09-20 2015.
	14.	 Jiang X, Kim Y. SBMI Healthcare Machine Learning Hackathon. School of

Biomedical Informatics. Accessed on 2020-09-20 2019. https​://sbmi.uth.
edu/hacka​thon/archi​ve/sept1​9.htm.

	15.	 Zhao Z, Zheng P, Xu S, Wu X. Object detection with deep learning: a
review. CoRR abs/1807.05511 2018. arxiv​:1807.05511​.

	16.	 Shorten C, Khoshgoftaar TM. A survey on image data augmentation for
deep learning. J Big Data. 2019;6(1):60. https​://doi.org/10.1186/s4053​
7-019-0197-0.

	17.	 Lathuilière S, Mesejo P, Alameda-Pineda X, Horaud R. A comprehen-
sive analysis of deep regression. CoRR abs/1803.08450 2018. arxiv​
:1803.08450​.

Publisher’s note
Springer Nature remains neutral with regard to jurisdictional claims in pub-
lished maps and institutional affiliations.

http://arxiv.org/abs/1707.01836
https://doi.org/10.1098/rsif.2017.0387
http://arxiv.org/abs/1801.00631
http://arxiv.org/abs/1603.05027
http://arxiv.org/abs/1904.11486
http://arxiv.org/abs/1502.03167
http://arxiv.org/abs/1404.7828
http://arxiv.org/abs/1508.02788
http://arxiv.org/abs/1512.03385
https://keras.io
https://sbmi.uth.edu/hackathon/archive/sept19.htm
https://sbmi.uth.edu/hackathon/archive/sept19.htm
http://arxiv.org/abs/1807.05511
https://doi.org/10.1186/s40537-019-0197-0
https://doi.org/10.1186/s40537-019-0197-0
http://arxiv.org/abs/1803.08450
http://arxiv.org/abs/1803.08450

	Learning to detect the onset of slow activity after a generalized tonic–clonic seizure
	Abstract
	Background:
	Methods:
	Results:
	Conclusions:

	Background
	Method
	Overview
	Data
	Inputs output format
	Preprocessing
	Network architecture
	Online augmentation
	Loss
	Optimization

	Results
	Discussion
	Average accuracy
	Maximum accuracy
	Explaining model predictions

	Conclusions
	Future work

	Acknowledgements
	References

