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Abstract 

Background:  Sudden death in epilepsy (SUDEP) is a rare disease in US, however, they account for 8–17% of deaths 
in people with epilepsy. This disease involves complicated physiological patterns and it is still not clear what are the 
physio-/bio-makers that can be used as an indicator to predict SUDEP so that care providers can intervene and treat 
patients in a timely manner. For this sake, UTHealth School of Biomedical Informatics (SBMI) organized a machine 
learning Hackathon to call for advanced solutions https​://sbmi.uth.edu/hacka​thon/archi​ve/sept1​9.htm.

Methods:  In recent years, deep learning has become state of the art for many domains with large amounts data. 
Although healthcare has accumulated a lot of data, they are often not abundant enough for subpopulation studies 
where deep learning could be beneficial. Taking these limitations into account, we present a framework to apply deep 
learning to the detection of the onset of slow activity after a generalized tonic–clonic seizure, as well as other EEG 
signal detection problems exhibiting data paucity.

Results:  We conducted ten training runs for our full method and seven model variants, statistically demonstrating 
the impact of each technique used in our framework with a high degree of confidence.

Conclusions:  Our findings point toward deep learning being a viable method for detection of the onset of slow 
activity provided approperiate regularization is performed.

Keywords:  Electroencephalogram, Sudden death in epilepsy, Generalized tonic–clonic seizure, Onset of slow activity, 
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Background
Recent advancements deep learning have significantly 
improved performance for classification and detection 
tasks [1, 2]. However, generalization ability is still lim-
ited due to the lack of sufficient high-quality training data 
for many domains. This holds true for many problems 
in the biomedical domain where data is often limited 
(especially for sub-population studies), which constraints 

the capacity of highly powerful supervised deep learn-
ing frameworks [3]. Since deep learning is known for 
requiring a considerable amount of data [4], applying it 
to a problem such as detection of markers (onset of slow 
activity) to predict critical patterns in a rare disease like 
SUDEP is not straightforward.

Method
Our method attempts to build a framework to apply 
recent advancements in deep learning [2, 5–7] to detec-
tion problems such as detection of the onset of slow 
activity after a generalized tonic–clonic seizure, where 
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availability of of training data is limited. We combine a 
variety of preprocessing (Resampling), regularization 
(Anti-aliased temporal downsampling [6], Global tempo-
ral downsampling [8], Global batch-wise z-scoring, Ker-
nel regularization, [9]), and optimization (Batch size [10], 
Loss discount factor) techniques to work around the data 
paucity issue. We also develop a system for real-time vis-
ualization of our models predictions to emphasize which 
parts of the signal contributed most to the decision https​
://www.youtu​be.com/watch​?v=cDuRs​h2pSR​M.

Overview
From a high level, we feed an EEG sequence x into our 
binary classification model y = f (x) , which estimates 
the probability y ≈ P(y|x) that the sequence contains 
the onset of slow activity (i.e., label). The chosen model 
architecture is a residual neural network [11] utilizing 
stacked convolution layers [12], skip connections [11], 
batch normalization [7], downsampling [6], and non-
linear activation functions. We train our model using 
mini-batch stochastic gradient descent (SGD). We imple-
mented our model using Python 3.7 and tensorflow.keras 
[13]. Our full source code is available on Github: https​://
githu​b.com/csvan​ce/deep-onset​-detec​tion.

Data
The original source of the training data D contains vari-
able length sequences composed of recordings from ten 
pairwise offsets of two adjacent EEG electrodes [14]:

The sequences were recorded from 134 different patients, 
each with their own variable length sequence [14]. It fol-
lows that |D| = 134 . The EEG sampling rate Fs is 200 Hz, 
and each timestep tn is labeled y ∈ {0, 1} for the presence 
of slow activity [14]. We create a training set T derived 
from this set in Sequence generation. The validation data-
set V contains |V | = 12345 ten second sequences sam-
pled from 34 patients with the same EEG channels and 
sampling rate [14]. Each sequence is labeled y ∈ {0, 1} . 
The validation set V has a class imbalance for label y, with 
|Vpos| = 3, 219 and |Vneg | = 9, 126.

Inputs / output format
Inputs Detection of the onset of slow activity requires 
detection within the a short time-span in order to 
be clinically useful. A sequence length of 10 sec-
onds was chosen based on this requirement. It fol-
lows that the input sequence to the model contains 
len seqinput = 10r = 2000 timesteps. Each training 
example contains ten sequences of pairwise offsets. 
Considering both the sequence length and number 

{fp1 − f7, f7 − t7, t7 − p7, p7 − o1, fp2 − f8, f8 − t8, t8 − p8, p8 − o2, fz − cz, cz − pz} ∈ F

of channels, the input to our model has the shape 
(len seqinput , |F |) = (2000, 10).

Outputs Our model estimates P(y|x) , which is a scalar 
value ranging between 0 and 1. Hence, the output of our 
model has the shape (1, )

Preprocessing
Sequence generation In order to make the maximum 
utilization of the original training data, we first cre-
ate a set Spos of as many positive sequences with length 
len seqinput = 2000 as possible for an individual patient, 
starting with tf = tonset , and stopping after ti = tonset . 
For memory efficiency, a stride of 5 was used during the 
creation of each sequence in Spos . We then create a dis-
joint set Sneg by randomly sampling at most |Spos| negative 
sequences with replacement from a uniform distribu-
tion containing every possible negative training example 
(sequences with tf < tonset ) from the same patient. This 
process is repeated for each patient, and the final training 
set T contains the union of each Spos and Sneg set.

Resampling Before training, 50% of generated 
sequences were randomly cropped relative to the first 
timestep, resulting in a new sequence seq′input with 
the relationship len seq′input = ulen seqinput , where 
u ∈ [0.9, 1.1] is sampled from a uniform distribu-
tion. seq′input was then resampled to the original length 
len seqinput = 2000 . While this is a commonly used 
image augmentation technique for object detection [15, 
16], it should also be beneficial here since we are inter-

ested in augmenting the temporal relationship between 
frequency and phase rather than the frequency and phase 
itself.

Network architecture
Other researchers have demonstrated success with resid-
ual neural network variants for detecting complicated 
patterns in signals [2]. Thus, we use a similar variation of 
ResNet as a starting point with pre-activation style blocks 
[5] as shown in Fig.  4. Through trial and error, the first 
few convolution layers use a D = 32 dimensional kernel, 
before increasing to 2D and ending with 4D. Increasing 
D = 32 by factors of 2 resulted in overfitting. Likewise, 
reducing D = 32 by factors of 2 resulted in underfit-
ting. With D = 32 , our model has p = 165,664 trainable 
parameters.

Anti-aliased temporal downsampling We explored 
several different methods of temporal downsampling in 
our network architecture, as well as investigating recent 
advancements in reducing aliasing [6]. After deciding on 
other hyper parameters, we trained our network with an 
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anti-aliased version of strided downsampling. We use a 
three point Gaussian low pass kernel with σ ≈ 0.79577 
during downsampling. We use the same σ for each of 
the three downsampling operations to encourage the 
network to learn a feature representation increasingly 
focused on lower frequencies. Each downsampling oper-
ation divides the temporal axis of the sequence by two.

Global temporal downsampling Recent papers in deep 
learning have increasingly relied on global pooling lay-
ers to reduce the number of trainable parameters and 
improve generalization for a variety of problems [8, 11, 
17]. We considered several different global downsam-
pling strategies including global max pooling (GMP), 
global average pooling (GAP) [8], and flattening. GAP 
was excluded because it may not be able to effectively 
handle sequences where only a small percentage contains 
the onset. Flattening significantly increases the number 
of trainable parameters, and may bias towards certain 
parts of the sequence in the training set. GMP provides 
the largest activation value from each channel regardless 
of where it occurred. With these considerations in mind, 
GMP was selected for global temporal downsampling on 
the top of the network.

Online augmentation
During training, online augmentations were employed 
to help the network to learn how to handle differences 
in variance and bias from patient to patient. We employ 
global batch-wise z-scoring, when combined with a small 
stride size during sequence generation, smaller batch 
sizes, and sample-wise shuffling results in the network 
being forced to generalize to a considerable number of 
different scales and biases.

Global batch-wise z-scoring z-scoring was done along 
batch, temporal, and channel axes, normalizing the entire 
batch using a single mean and standard deviation. Let Bn 
be a mini batch of shape 
(|B|, len seqinput , |F |) = (16, 2000, 10) for a batch size of 
16. Each mini batch Bn is randomly sampled without 
replacement from a uniform distribution during the start 
of every training epoch. We calculate the mean µbatch and 
standard deviation σbatch by reducing all three axes to a 
single scalar value. We then apply standard z-scoring as 
follows B′

train =
Btrain−µbatch

σbatch
 . B′

train is then used to calcu-
late the loss during training. When validating our models 
performance, we instead z-score the validation set using 
the training set population mean and standard deviation.

Loss
Since our neural network is a binary classifier, we used 
a binary cross-entropy based cost function to train the 
network.

Kernel regularization In order to encourage the model 
to not overemphasize a small subset of learned features 
which may be biased towards the training set, we used L2 
kernel regularization. � = 0.01 was chosen for the L2 pen-
alty for all convolution kernels using through trial and 
error [9].

Loss discount factor While GMP may help with cases 
where only a small part of the onset is present, some pos-
itive sequences generated using our methodology only 
contain a small number of positive time steps which may 
negatively impact convergence. If more data was avail-
able, we could simply omit ambiguous regions during 
training. Due to data paucity however, another solution 
is needed. We define a cost discounting function α(p) 
where p is defined as the number of positive time steps 
in a sequence divided by the total length of the sequence:

This effectively discounts loss during the first sec-
ond after the onset, starting from complete dis-
count at tonset = tfinal and ending with no discount at 
tonset = tfinal − r , with our discount linearly decreasing 
as tonset → tfinal − r . Since our classes are balanced, we 
chose to discount a proportional amount from all nega-
tive examples in order to avoid bias. Finally, we define our 
cost function as:

Optimization
We optimized our network during training using mini-
batch stochastic gradient descent (SGD).

Batch size We used a mini-batch size of 16 during each 
training step. While a much higher batch size could eas-
ily fit into memory during training, smaller batch sizes 
result in a wider range of scale and bias when utilizing 
batch-wise z-scoring. Smaller batch sizes have also been 
observed to have a regularizing effect on the model when 
training with SGD [10].

Training parameters We selected an initial learning rate 
of ηi = 0.0001 , decaying by a factor of 2 every 15 epochs 
for a total of 75 epochs. Momentum was set to β = 0.9.

Experimental setup While developing our method, we 
observed a high variability of outcome with different ran-
dom seeds. In order to test the reliability of our methods, 
we conducted ten runs using different random seeds with 
our method during training.

Method variants In addition to our full method, we 
applied the same experiment setup to different variants 

α

�

p =
npos

len seqinput

�

=







0.95 p = 0

10p 0 < p ≤ 0.1
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omitting batch-wise z-scoring, L2 kernel regulariza-
tion, and anti-aliased downsampling. For the z-scoring 
variant, we normalize each sequence with its own mean 
and standard deviation during training and validation. 
The L2 variant simply omits the L2 penalty. The method 
without anti-aliased down-sampling performs a strided 
down-sampling before the residual connection, and adds 
a max pooling layer on the residual in order to match 
the sequence lengths. Two additional variants use batch 
sizes of 32 and 64. Finally, we created a baseline variant 
without batch z-scoring, L2 regularization, anti-aliased 
downsampling, and the discount factor. For this variant 
we selected to use a batch size of 64. All variants share 
the same ten random seeds used in the full method for 
comparison.

Metrics Due to class imbalance in the validation set, 
we use receiver operator characteristic area under curve 
(ROC-AUC) to evaluate the accuracy of our model. 
Despite the imbalance, are also interested in the trade 
off between sensitivity and specificity for each of our 
variants. To compute sensitivity and specificity, values of 
ypred > 0.5 are considered true, and values of ypred ≤ 0.5 
are considered false. The same threshold also applies for 
accuracy.

Results
Accuracy over ten training runs is shown in Table  1. 
Table  2 shows the best single validation ROC-AUC of 
each variant. Finally, Table 3 shows the result of 20 addi-
tional training runs for our full method.

Discussion
Average accuracy
Our full model had the highest average ROC–AUC and 
highest and most consistent accuracy out of each of 
our variants. In our variant which omitted batch-wise 
z-scoring, we observe a significant increase in met-
ric variance as well as the lowest average sensitivity 
and ROC–AUC. We hypothesize there is not enough 

variance in scale and bias in the training set without 
this augmentation. The variant without L2 regulariza-
tion struggled with ROC–AUC and specificity, while 
having slightly higher average sensitivity than our full 
method. Even considering the fact that our model only 
has ≈ 165 K trainable parameters, without L2 ker-
nel regularization there is clear evidence that a small 
number of features are overemphasized. Our variant 
without anti aliasing has a higher sensitivity than our 
full method. However, this comes at a significant cost 
in specificity. We hypothesize that this is due to the 
model associating aliasing with the presence of the 
onset, and that anti-aliasing and/or removal of high 
frequency information is important for reducing the 
frequency of false positives. The variant without loss 
discounting was the closest to our best results, trad-
ing off more specificity than was gained in sensitivity. 
In both cases, increasing the batch size from 16 has a 

Table 1  Comparing our full method to methods which omit one technique: ten runs µ± σ

Method varriant ROC–AUC​ Sensitivity Specificity Accuracy

Baseline 0.600± 0.024 0.446± 0.081 0.689± 0.057 0.626± 0.026

Batch size = 64 0.646± 0.027 0.468± 0.064 0.732± 0.042 0.664± 0.022

W/o L2 0.651± 0.018 0.486± 0.064 0.747± 0.049 0.679± 0.028

W/o batch z-score 0.658± 0.034 0.379± 0.060 0.801± 0.055 0.691± 0.034

Batch size = 32 0.689± 0.032 0.500± 0.069 0.759± 0.048 0.692± 0.027

W/o anti-aliasing 0.708± 0.017 0.527± 0.066 0.767± 0.051 0.708± 0.024

W/o discount 0.712± 0.026 0.462± 0.032 0.825± 0.037 0.731± 0.023

Full method 0.725± 0.025 0.448± 0.063 0.850± 0.032 0.746± 0.016

Table 2  Comparing our full method to  methods which 
omit one technique: ten runs best validation

Method variant ROC–AUC​ Sensitivity Specificity Accuracy

Baseline 0.639 0.613 0.562 0.575

W/o batch z-score 0.667 0.202 0.886 0.708

W/o L2 0.680 0.539 0.794 0.727

Batch size = 64 0.696 0.488 0.759 0.689

Batch size = 32 0.725 0.636 0.667 0.659

W/o anti-aliasing 0.728 0.505 0.774 0.704

W/o discount 0.749 0.464 0.832 0.736

Full method 0.768 0.486 0.884 0.781

Table 3  Full method additional training runs: maximum 
ROC–AUC​

Method variant ROC–AUC​ Sensitivity Specificity Accuracy

Full method 0.772 0.606 0.828 0.770
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significant negative impact on ROC–AUC during vali-
dation. Our baseline model predictably had the worst 
results overall.

Maximum accuracy
We observe our full method has highest single epoch 
ROC–AUC of each variant. All of our variants appear to 
be heavily dependent on weight initialization and mini-
batch batch selection during training, with many separate 
training runs needed to achieve highest generalization. 
We hypothesize that this is due to both the paucity of the 
data set and unstable gradients caused by lower batch 
sizes.

In addition to the ten runs for our full method, we con-
ducted approximately twenty additional runs for our full 
method with new random seeds. In Table 3, We show the 
best overall model in terms of ROC-AUC. The model has 
much higher sensitivity without sacrificing a significant 
amount of specificity. We use this model for all following 
discussion and visualization of model behavior.

Explaining model predictions
Salience In order to help explain our models predictions, 
we computed the gradient of y with respect to input 
sequences from the test set and summed the absolute 
value of the gradient for each feature channel together:

For visualization purposes, we normalize salience 
with the timestep containing the maximum value: 
saliencevis(t) =

salience(t)
salience(tmax)

 . In each visualization we see 
only strong, sparse activation contributing to the models 
decision due to the GMP layer at the top of the network.

Example: true positive Arguably the strongest activa-
tion overall appears to happen when almost every chan-
nel simultaneously increases, which can happen several 
times around the onset. We visualize this in Fig. 1, where 
observe strong activation on the rising edge of a global 
increase.

Example: false negative Only some instances of the 
onset of slow activity exhibit strong cross channel cor-
relation, as demonstrated in Fig.  2. While most chan-
nels appear to move simultaneously, there is less positive 
correlation as well as some negative correlation between 
channels. In this particular example, there appears to be 
a wide spread of channel bias and low dynamic range. We 
hypothesis that z-scoring using the population mean and 
standard deviation may not be optimal for all examples, 
and that an adaptive strategy could improve validation 
performance.

Example: false positive Fig.  3 demonstrates that not 
all instances of cross channel correlation are useful for 
predicting the onset by themselves. We hypothesize 

salience(t) =

9
∑

f=0
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Fig. 1  Salience: ytrue = 1, ⌊ypred⌉ = 1 (true positive)
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that a model may need to take into account the tempo-
ral nature of the problem in order to avoid these types 
of false positives.

Conclusions
While our naive baseline model had relatively poor accu-
racy, we demonstrated the impact of many different regu-
larization techniques. It follows that deep learning can 

Fig. 2  Salience: ytrue = 1, ⌊ypred⌉ = 0 (false negative)

Fig. 3  Salience: ytrue = 0, ⌊ypred⌉ = 1 (false positive)
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be an effective tool for signal detection problems with a 
small amount of available training data. By conducting 
our experiment over many different training runs, we 
show the statistical significance of our results. Finally, we 
demonstrated that while our model may be a black box, 
we can make the results easier to interpret with salience 
and effective visualization.

Future work
We recognize that the loss discount factor could be made 
into a continuous function across the entire sequence. 
Currently, examples with a negative label could contain 
the start of the onset due to the the labeling task being 
particularly challenging, but are weighted as heavily 
as non ambiguous examples. In addition, we observed 
examples of false positives which would be relatively easy 
for a human to classify correctly due to drastic changes in 
overall behavior patterns. An improved model would be 
able to recognize these changes over time in addition to 
identifying channel cross correlation.

Abbreviations
EEG: Electroencephalogram; GAP: Global average pooling; GMP: Global max 
pooling; ROC-AUC​: Receiver operator characteristic area under curve; SGD: 
Stochastic gradient descent; SUDEP: Sudden death in epilepsy.
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