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Abstract: The Wnt/β-catenin signaling pathway plays a crucial role in early embryonic develop-
ment. Wnt/β-catenin signaling is a major regulator of cell proliferation and keeps embryonic stem
cells (ESCs) in the pluripotent state. Dysregulation of Wnt signaling in the early developmental
stages causes several hereditary diseases that lead to embryonic abnormalities. Several other sig-
naling molecules are directly or indirectly activated in response to Wnt/β-catenin stimulation. The
crosstalk of these signaling factors either synergizes or opposes the transcriptional activation of
β-catenin/Tcf4-mediated target gene expression. Recently, the crosstalk between the peroxisome
proliferator-activated receptor delta (PPARδ), which belongs to the steroid superfamily, and Wnt/β-
catenin signaling has been reported to take place during several aspects of embryonic development.
However, numerous questions need to be answered regarding the function and regulation of PPARδ
in coordination with the Wnt/β-catenin pathway. Here, we have summarized the functional ac-
tivation of the PPARδ in co-ordination with the Wnt/β-catenin pathway during the regulation of
several aspects of embryonic development, stem cell regulation and maintenance, as well as during
the progression of several metabolic disorders.
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1. Introduction

The mammalian pre-implantation period is one of the critical and unique phases
during early embryonic developmental processes. A transition from single-cell zygote to
the blastocysts stage involves a series of crucial events that lead to the initiation of cell
lineage specification and differentiation into the inner cell mass (ICM) and trophectoderm
(TE) [1,2]. These intricate developmental processes are regulated by the activation of
several intracellular signaling cascades. Among these pathways, Wnt signaling is an
evolutionarily conserved pathway and has been well-known to play an essential role
during all stages of vertebrate embryogenesis. Wnt signaling has been primarily divided
into two types, namely canonical and non-canonical pathways. The involvement of Wnt
signaling is well-characterized in multiple cellular processes, such as cellular proliferation,
differentiation, the establishment of cell polarity, regulation of stem cell renewal during
embryogenesis, and tissue homeostasis [3,4]. Wnt participates in all of these intricate
processes either directly or by a crosstalk with other signaling pathways. The peroxisome
proliferative activated receptor delta (PPARδ) of the nuclear superfamily receptor, which
primarily regulates the lipid metabolism, also plays a crucial role during embryogenesis
in conjunction with Wnt/β-catenin signaling [5,6]. The dysregulation of these signaling
pathways causes congenital malformations such as cancer, osteoporosis, and different
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metabolic disorders [4,7]. The focus of this review is Wnt/β-catenin mediated PPAR delta
signaling during the developmental processes.

The canonical Wnt pathway is called a β-catenin dependent pathway. It depends
upon the subsequent accumulation of the activated β-catenin level in the cytoplasm. In
the presence of the canonical Wnt ligand, a multi-protein complex (Wnt/Fzd/Lrp6) is
formed at the membrane that triggers the downstream signaling. This complex directs
the β-catenin destruction complex (Gsk3/APC/Axin) to the membrane and leads to the
stabilization of β-catenin levels in the cytosol [3,8]. The accumulated β-catenin is translo-
cated to the nucleus, where it makes a transcriptional co-activator complex with DNA
binding protein T cell factor/lymphoid enhancer factor (TCF/LEF) and modulates the
activity of several Wnt target genes [3,9]. The expressions of these genes are cell type and
lineage dependent, and include genes responsible for the regulation of developmental
processes, cell cycle regulation, and cell proliferation [8,10]. The emerging role of PPARδ
has been reported during the pre-implantation period of embryonic development, cancer,
and several metabolic disorders in response to β-catenin/TCF4 signaling [5,11]. PPAR
family members, such as PPARα, PPARγ, and PPARδ, are activated by a multitude of
agents. In these three PPARs, PPARγ and PPARδ are particularly activated in response
to prostaglandins (PGs) [12]. The production and feedback of PGs are dependent on
the activity of the Cycloxygenase enzyme (Cox1 and Cox2), which contains the response
element-binding region for PPARs [12,13]. Importantly, the Cox2 promoter binding site
was revealed to be present on the TCF/LEF transcription binding protein. Therefore, the
activation of the Wnt/β-catenin pathway directly influences the expression of Cox2 to
impact several aspects of development and reproduction [14]. These observations led
us to highlight the currently known association of PPARδ either directly or indirectly
with the Wnt/β-catenin pathway for the regulation of several important processes during
development and differentiation, as illustrated in (Figure 1).

Figure 1. Canonical Wnt signaling activation induces the peroxisome proliferative activated receptor
delta (PPARδ) expression. PPARδ synergizes with the β-catenin transcriptional activation complex in
the nucleus and boosts the expression of several Wnt responsive genes.
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2. Impact of Wnt/β-Catenin Signaling and PPARδ Activation on Cell Lineage
Specification and Pluripotency during Early Embryonic Development

A spatially defined and well-controlled Wnt signaling pathway orchestrates normal
embryonic development. This process is initiated at fertilization and is continued until
the formation of a complete organism [1,15]. To reach the two committed cell lineages,
embryonic development undergoes two successive differentiations [16,17]. The multipli-
cation of these cells leads to the first differentiation at the morula stage and consequently
establishes the ICM and TE layer. The second wave of cell differentiation distinguishes
the ICM into a pluripotent epiblast (Epi) and an extraembryonic tissue primitive endo-
derm (PrE) [2]. Further expansion and outgrowths of the ICM to support the in vitro
maintenance of the embryonic stem cell (ESC) culture depend on the expression of core
pluripotency factors [10,18]. The Wnt/β-catenin pathway plays a pivotal role in main-
taining the pluripotency both in vivo and in vitro in human and mouse ESC cultures. The
pluripotency of ESCs is maintained by the expression of Yamanaka factors such as Oct4,
Nanog, Sox2, and Klf4 [10,19–21]. The β-catenin interacts with Oct4 and c-Myc and en-
hances their expression in a Tcf-dependent manner [18,22]. Several in vivo and in vitro
studies showed that the presence of Oct4 and c-Myc expression is crucial during the pre-
implantation period of embryonic development, maintenance of cell proliferation, and ICM
identity [5,23]. Recently, a study on mouse and bovine embryonic development reported
that increased Wnt/β-catenin signaling is also manifested by the up-regulated expression
of the PPARδ gene in both the ICM and TE cell population [5,6]. The PPARδ expression
maintains the higher cell index ratio by sustaining the proliferative signaling in response to
β-catenin/Tcf4 signaling [11]. In vitro studies of mouse and bovine embryos showed that
Wnt3 stimulation simultaneously increases the PPARδ and c-Myc expression in ICM and
trophoblast stem cells (TSCs) and supports the progressive proliferation event during early
development [5,6]. These pieces of evidence highlight the functional importance of PPARδ
expression during embryonic development and the maintenance of ESCs’ pluripotent state
in coordination with the Wnt/β-catenin pathway.

The early developmental processes are governed by the regulated processes of cellular
proliferation, pluripotency maintenance, cell migration, and differentiation [1,7,10]. In vitro
ESC studies demonstrated the essential requirement of Wnt signaling to regulate all of these
processes. Constitutive expression of Wnt signaling with the help of β-catenin and Gsk3i
(glycogen synthase kinase inhibitor; CHIR99021) efficiently restores the undifferentiated
state of ESCs [18,19]. In our recent study, we observed that enhanced propagation of Wnt
signaling with the addition of 6-Bio (Gsk3i) increases the ICM cell proliferation index and
leads to better quality and yield of bovine blastocysts [6]. The cellular proliferation and
the quality of the developing embryos were aberrantly affected upon the addition of the
PPARδ specific inhibitor GSK3787. Interestingly, the Wnt over-activated condition reversed
this effect and rescued the PPARδ expression [6]. PPARδ is constitutively expressed in
the nucleus. Activation of Wnt brings PPARδ and β-catenin into proximity, where they
potentially make a complex with activated β-catenin upon Wnt stimulation and regulate
embryonic development [6]. However, direct physical interaction of PPARδ with β-catenin
via chromatin loop formation has also been reported during vascular endothelial growth
factor (VEGF) gene transcription in colon cancer [24]. The formation of a transcriptional
activator complex between Tcf/Lef/β-catenin/PPARδ promotes the Wnt target gene’s
expression [24]. Interestingly, direct Wnt target genes, such as CyclinD1 and c-Myc expres-
sion, which are influenced by the β-catenin/Tcf transcriptional activation complex, are
also enhanced synergistically upon PPARδ activation [6]. These observations suggest that
PPARδ has a strong functional association with Wnt/β-catenin signaling. Furthermore,
PPARδ strongly couples with c-Myc expression in the ICM as well as in TS cells during the
elevated Wnt condition [5,6]. These findings define the correlation between Wnt/β-catenin
signaling and PPARδ activation. The connection of Wnt/β-catenin signaling and PPARδ
regulates the cell proliferation ability and pluripotent potential of ICM in the early stages
of embryonic development.
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3. The Role of Wnt/β-Catenin Signaling and PPARδ Activation in Implantation
Potential and Invasion

The role of Wnt signaling in governing pre-implantation development is somewhat
controversial. However, β-catenin was detected from the 2-cell stage to the blastocyst
stage of mouse embryos, suggesting that Wnt/β-catenin signaling has a functional role in
driving the early processes of embryogenesis [15]. The development of an embryo until the
implantation of a competent blastocyst is key for the successful outcome of the pregnancy.
The participation of Wnt signaling and PPARδ activation in the promotion of blastocyst
implantation potential has been demonstrated in several species during in vitro embryonic
development [25,26]. Recently, it was documented that in vitro-produced bovine blastocyst
implantation potential is enhanced via Wnt/β-catenin-mediated PPARδ activation, which
explains the synergistic actions of PPARδ with Wnt signaling [6]. In the TS cell culture
model for implantation, the presence of activated β-catenin in the TE cells is responsible
for the promotion of the migratory abilities of the TE cells via the up-regulation of c-Myc
and PPARδ expression [5]. It is important to highlight that β-catenin also functions as a
cell–cell adhesion protein that regulates cell migration during embryonic development
and metastasis in carcinomas [27,28]. Therefore, the high level of β-catenin accumulation
in the TE cells increases the cell migration and invasion capacity of the cells [5]. Cell
migration and differentiation are essential processes during early embryogenesis [28].
Moreover, the elevated expression of PPARδ increases the cell invasiveness and progression
of metastasis [11]. PPARδ expression is strongly co-localized with β-catenin in the early
phases of development [6], suggesting that it may influence the adhesive and migratory
properties of the TE cells associated with β-catenin. The mechanism through which the
up-regulated PPARδ expression in response to the activated Wnt condition regulates the
adhesive and migratory properties of epithelial TE cells needs further investigation. It
will be interesting to see whether elevated PPARδ expression can modulate the functions
of the β-catenin adhesions junctional protein complex so as to reveal its wider impact on
development and differentiation.

4. Wnt Signaling and PPARδ Role in Trophoblast Differentiation and Placentation

The development of placenta and maintenance of its integrity is another crucial
aspect of normal embryonic development and successful pregnancy outcome. Numerous
reports highlighted the critical involvement of the Wnt/β-catenin signaling pathway
as well as the significance of PPARδ functions during trophoblast differentiation and
placentation [29–31]. The Wnt and PPARs family performs several coordinated functions
to regulate various developmental processes, but the understanding of the link between
Wnt and PPARδ-mediated regulatory processes has been lagging behind. The focus of this
review is to furnish specific information and provide potential hints about the synergistic
role of Wnt/β-catenin and PPARδ signaling in orchestrating the essential features of
embryonic development.

Placenta originate from the outermost trophectoderm layer of a blastocyst that dif-
ferentiated into several trophoblast cell types [31,32]. Differentiation and proliferation of
the trophoblast during the initial stages of blastocyst implantation and invasion yielded a
multitude of primary and secondary giant cells. These trophoblast giant cells participate
in a number of regulatory and secretory processes crucial for the development of both
fetal and maternal placental compartments as well as the remodeling of maternal uterine
stromal lining [32]. During these sequential steps of placental development, the presence
of Wnt signaling is critically important. Several mice knockout studies provided evidence
that Wnt/β-catenin signaling is indispensable for early placentation [33]. The development
of embryonic stem cells in response to Wnt3a leads to the formation and differentiation of
trophoblast giant cells by the induction of lymphoid enhancer factor-1 (LEF-1)-dependent
caudal type homeobox transcription factor 2 (CDX2) expression [34]. PPARδ, which is
a β-catenin target gene, is also an important mediator of trophoblast differentiation and
placentation [35]. Notably, the activation of PPARδ accelerates the giant cell differentiation
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in vitro. Furthermore, the homozygous deletion of PPARδ-/- in mice inhibited trophoblast
differentiation towards the giant cells that substantially impact placental development [35].
Deficiency of the PPARδ gene caused severe placental defects by hindering the placen-
tal tissue from undergoing proper morphogenesis and resulted in frequent embryonic
lethality at stages E9.5 to E10.5 in mice [36]. Placental development involves a complex
tissue remodeling process, supported by branching morphogenesis, chorio-allantoic fu-
sion, labyrinth development, and placental angiogenesis [32]. Genetic loss-of-function
studies of Wnt pathway components and PPARδ showed that striking similarities exist
in the placentation development defects. For example, deletion of the Wnt transcription
factor both for TCF-1 and LEF-1 in mice caused a defect in labyrinth formation due to a
failure of chorionic-allantoic fusion [33,34]. Knock-out of the Wnt receptor FZD5 caused
mortality of mice embryos at E10 due to less vascularized placentae [33]. Likewise, the
homozygous null mutant of PPARδ embryos failed to survive beyond E10 due to defects in
the labyrinthine trophoblast compaction and reduced vascularization of placentae [31,36].
PPARδ induces the expression of vascular endothelial growth factor A (VEGFA), a key
regulator of vasculogenesis, and promotes vascular permeability. Importantly, PPARδ
activates the transcription of VEGFA via β-catenin-mediated chromatin regulation [24].
PPARδ induces the vascularization function during placenta development and might rely
on β-catenin-mediated gene transcription regulation; alternatively, this effect may be cell-
context-specific and needs further elucidation. This evidence indicates that Wnt/β-catenin
signaling and PPARδ have been critically implicated during trophoblast differentiation and
development of placental integrity. PPARδ, which in response to Wnt-activated conditions
performs several synergistic functions in coordination with β-catenin to regulate prolifera-
tion and differentiation events during embryonic development [5,6,35], likely provokes the
notion that the Wnt/β-catenin pathway might exert some of its effect via PPARδ activation
during placentation. In order to suggest a possible mechanism and to delineate a specific
interaction of PPARδ expression with the Wnt/β-catenin pathway, further studies are
required to explore the requirement of PPARδ activation in response to Wnt stimulation
during placentation.

5. Wnt/β-Catenin and PPARδ Signaling Regulate Cell Proliferation Events during
Embryonic Stem Cell Maintenance

Stem cells are characterized by self-renewal by maintaining the pluripotency and the
proliferation potential of the progenitor cells [37]. This phenomenon is essential during
normal tissue homeostasis and developmental processes [8]. The β-catenin-dependent Wnt
signaling pathway is one of the major regulators of ESC maintenance and adult mammalian
tissue homeostasis [18,38]. In addition to the Wnt/β-catenin pathway, another important
factor for the regulation of the self-renewal characteristic is the leukemia inhibitory factor
(LIF). Several studies reported crosstalk between LIF and Wnt/β-catenin signaling [10]. A
downstream target of LIF signaling is the signal transducer and activator transcription 3
(STAT3) protein, which is activated by the stimulation of Wnt signaling [18,37]. It was also
demonstrated that in mouse ES cell cultures in the absence of β-catenin the high expression
of LIF can retain the pluripotent characteristics of the stem cells. Conversely, the addition of
the GSK3 inhibitor, which stabilizes the β-catenin level, reduces the requirement of LIF for
ES cell pluripotency and self-renewal [39,40]. Interestingly, in some contexts the activated
expression of PPARδ was reported to increase the phosphorylation of STAT3, an important
factor of the LIF signaling pathway during mesenchymal stem cell culture [41]. As in LIF
signaling, cell cycle regulators are also key factors for maintaining the stemness of the
cells [37,42]. Loss of the self-renewal potential of the proliferating stem cells is directly
proportional to the reduced expression of the components of cell cycle machinery [10].
Studies have reported that cell cycle regulators and pluripotent activities of stem cells are
regulated by the same set of genes and pathways [42]. The Wnt/β-catenin pathway is also
an important factor for the control of cell cycle regulation [10]. Activated Wnt/β-catenin
signaling increases the expression of CyclinD1, c-Myc, and PPARδ during embryonic
development as well as during the progression of cancer [5,6,43]. Importantly, the selective
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inhibition of PPARδ function by GSK3787 reduces CyclinD1 and c-Myc expression during
in vitro embryonic development [6]. These observations reveal the involvement of PPARδ
in cell cycle progression and the pluripotent potential of stem cells. However, the molecular
evidence underlying the absolute requirement and direct relationship of the Wnt/β-catenin
pathway and PPARδ expression during ES cell pluripotency maintenance is still exotic.
Further study is needed to elucidate the link between PPARδ and other signaling pathways.

6. Wnt/β-Catenin Signaling and PPARδ Implication during Metabolic Disorder and
Cancer Progression

Wnt/β-catenin signaling represents a major pathway upon which various signals
converge to influence metabolism and cancer progression [44]. Imbalance or excess of
lipids in skeletal muscles or adipose tissue leads to the development of metabolic syn-
drome [44,45]. The PPARs family is known as a central regulator of lipid metabolism
and energy homeostasis. Wnt and PPARδ signaling has been implicated as playing an
important role in the normalization of fat accumulation, the reduction of adiposity and
insulin sensitization [36,44,45]. Recently, molecular cross-talk between PPARδ and Wnt
signaling was documented, which potentiates osteoblast differentiation by suppressing
pre-adipocyte differentiation [46]. A few pieces of compelling evidence indicated PPARδ as
a Wnt target gene [5,6,47,48]. Regarding the regulation of tissue metabolic reprogramming,
PPARδ also serves as a potent candidate of the Wnt/β-catenin pathway and plays a role
in the modulation of fatty acid metabolism and adipocyte production [46]. Wnt signaling
activity induces PPARδ expression, which directly interacts with β-catenin/TCF/LEF
transcription factors and enhances the expression of lipoprotein lipases, such as fatty acid
translocase (FAT), fatty acid binding protein (FABP), and carnitine palmitoyl-transferase 1
(CPT1) [46,49]. The synergistic action between Wnt/β-catenin signaling and PPARδ has
been more strongly supported when the treatment of mesenchymal stem cells with the spe-
cific PPARδ agonist GW501516 resulted in the amplification of Wnt ligand-induced nuclear
β-catenin accumulation and in Wnt co-receptor LRP5 expression. Moreover, chromatin
immunoprecipitation further revealed a direct binding of PPARδ on the LRP5 promoter in
MC3T3 cells [46]. These findings suggest a positive feedback loop between both pathways
during the regulation of several developmental and metabolic functions.

So far, PPARδ has been majorly implicated in lipid catabolism in adipose and muscle
tissue by enhancing fatty acid oxidation (FAO). This molecular cross-talk between Wnt
signaling and PPARδ has been implicated in many metabolic syndromes, such as obesity,
diabetes and the development of cancer [36,46,50]. The Wnt/β-catenin pathway is known
as an oncogenic signaling cascade, and it promotes the development and progression
of tumors by affecting the tumor cell metabolism [51]. PPARδ also emerges as a Wnt
downstream target gene in the progression of several types of cancer. Elevated PPARδ
expression has been observed during the progression of colorectal cancer in response to
aberrant β-catenin activation, which is caused by adenomatuous polyposis coli (APC)
mutation [11,36]. Elevated PPARδ expression promotes fat oxidation near adipose tissue
surrounding the tumor, thus providing a sufficient supply of energy substrates for the de-
velopment and proliferation of the tumor microenvironment [11,46]. However, the function
of PPARδ in conjunction with β-catenin during the development of colon carcinogenesis
is still uncertain [11,52]. To reveal a consistent understanding, PPARδ expression and
function needs to be more critically examined in normal and cancerous tissue in order to
identify its critical nodes in Wnt signaling for the treatment of various metabolic disorders
and the inhibition of tumorigenesis.

7. Future Perspectives

Wnt signaling has a broad range of roles in the control of early embryonic devel-
opmental processes. Wnt/β-catenin signaling is remarkably known for the regulation
of cell proliferation and differentiation events during early embryogenesis and stem cell
maintenance. This multitude effect of Wnt signaling may involve crosstalk with other
signaling components. The above model diagram (Figure 2) highlights the synchronized
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actions of PPARδ with β-catenin upon Wnt stimulation and suggests that these actions
are an important factor in supporting Wnt-regulated functions during development and
differentiation. However, to see the Wnt signaling-dependent cellular outcome, a detailed
analysis of PPARδ interaction with β-catenin as well as with TCF/LEF transcription fac-
tors is required. Further studies using the knockdown and knockout of the PPARδ gene
are needed to better understand the mechanistic action of PPARδ in coordination with
Wnt/β-catenin signaling in different aspects of development and differentiation. A better
understanding of Wnt/β-catenin signaling in coordination with PPARδ activation will
have a broader impact on biology and medicine.
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APC Adenomatuous Polyposis Coli
CDX2 Caudal Type Homeobox Transcription Factor 2
CPT1 Carnitine Palmitoyl Transferase-1
Epi Epiblast
ESC Embryonic Stem Cells
FABP Fatty Acid Binding Protein
FAO Fatty Acid Oxidation
FAT Fatty Acid Translocase
FZD5 Frizzled (class receptor 5)
GSK3i Glycogen Synthase Kinase 3 Inhibitor
ICM Inner Cell Mass
KLF4 Krupple Like Factor 4
LEF-1 Lymphoid Enhancer Factor-1
LRP5 Low density Lipoprotein Receptor related Protein-5
LIF Leukemia Inhibitory Factor
MC3T3 Murine Calvarial Osteoblast Cell Line
OCT4 Octamer Binding Transcription Factor 4
PPARδ Peroxisome Proliferative Activated Receptor Delta
PrE Primitive Endoderm
SOX2 SRY-Box Transcription Factor 2
STAT3 Signal Transducer Activation Factor 3
TE Trophectoderm
TCF T Cell Factor
VEGF Vascular Endothelial Growth Factor
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