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Abstract

Chronic Obstructive Pulmonary Disease (COPD) is the third leading cause of mortality in

the United States; however, COPD has heterogeneous clinical phenotypes. This is the first

large scale attempt which uses transcriptomics, proteomics, and metabolomics (multi-

omics) to determine whether there are molecularly defined clusters with distinct clinical phe-

notypes that may underlie the clinical heterogeneity. Subjects included 3,278 subjects from

the COPDGene cohort with at least one of the following profiles: whole blood transcriptomes

(2,650 subjects); plasma proteomes (1,013 subjects); and plasma metabolomes (1,136 sub-

jects). 489 subjects had all three contemporaneous -omics profiles. Autoencoder embed-

dings were performed individually for each -omics dataset. Embeddings underwent

subspace clustering using MineClus, either individually by -omics or combined, followed by

recursive feature selection based on Support Vector Machines. Clusters were tested for

associations with clinical variables. Optimal single -omics clustering typically resulted in two

clusters. Although there was overlap for individual -omics cluster membership, each -omics

cluster tended to be defined by unique molecular pathways. For example, prominent molec-

ular features of the metabolome-based clustering included sphingomyelin, while key molec-

ular features of the transcriptome-based clusters were related to immune and bacterial

responses. We also found that when we integrated the -omics data at a later stage, we iden-

tified subtypes that varied based on age, severity of disease, in addition to diffusing capacity

of the lungs for carbon monoxide, and precent on atrial fibrillation. In contrast, when we inte-

grated the -omics data at an earlier stage by treating all data sets equally, there were no clin-

ical differences between subtypes. Similar to clinical clustering, which has revealed multiple

heterogenous clinical phenotypes, we show that transcriptomics, proteomics, and
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metabolomics tend to define clusters of COPD patients with different clinical characteristics.

Thus, integrating these different -omics data sets affords additional insight into the molecu-

lar nature of COPD and its heterogeneity.

Introduction

Chronic Obstructive Pulmonary Disease (COPD) is a major cause of morbidity and mortality

in the United States, where it affects 22 million Americans and is the 4th leading cause of

death [1]. Although >80% of COPD patients are smokers, only about ~20% of smokers

develop COPD [2]. Prior research has focused on individual genes or proteins as risk factors,

but these candidates typically only account for a small percentage of risk or variance explained

with respect to clinical phenotypes. For example, the only well-established genetic risk variant

(α1-antitrypsin deficiency) accounts for only 1–2% of COPD cases [3]. Other studies have

implicated proteases, oxidative stress, immune defects, and infections as causes of COPD [4,

5]. Furthermore, some smokers develop a predominately emphysema phenotype, character-

ized by damage to alveoli, where others develop predominantly airway disease.

Because COPD is a heterogeneous disease, the identification of subtypes (i.e., subpopula-

tions of subjects with similar disease characteristics) is of interest and can help increase our

understanding of the biologic mechanisms involved in COPD development and progression,

and lead to more accurate diagnoses in clinical practice. Subtyping COPD has been performed

using clinical data, imaging phenotypes and gene expression in blood [6–8], but not using a

multiple -omics approach with appropriate sample size to capture heterogeneity (see smaller

studies in [9, 10]).

Limitations for multi-omics subtyping have included small sample size, minimal clinical

phenotyping, and sample collection biases. In particular, one of the major barriers to past stud-

ies of COPD in humans has been the lack of a large, well-phenotyped cohort of at-risk subjects

with corresponding biologic specimens and molecular characterization. The Lung Tissue

Research Consortium was started over 5 years ago to overcome this limitation; however, this

cohort has limited potential because subjects only included those undergoing surgery, which is

not representative of a general population at risk for COPD.

The COPDGene study now has -omics data for a sample size that is much larger than for

any previous study of this type (>1,000 participants), providing the unique opportunity to

integrate available -omics profiles in an unsupervised learning framework to identify COPD

subtypes defined using a variety of molecular features in the blood. This approach offers the

advantage of examining consistency across multiple -omics profiles, which should reduce

errors since each -omics technology has its own sources of variability, missing data, and tech-

nical noise that may lead to classification errors. To identify molecular subtypes for COPD, we

conduct dimension reduction using autoencoders, and subspace clustering followed by feature

selection on transcriptomic, proteomic and metabolomic data individually, and in an inte-

grated manner using all three data sets.

Results

Subtyping COPD subjects is important for understanding biological mechanisms and for diag-

nosis in clinical practice, but has primarily been performed using clinical data, imaging pheno-

types, or a single -omics type [6, 8, 11]. Since COPD is a systemic disease and it is difficult and

invasive to obtain lung samples, it is also of interest to understand how subjects cluster based
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on molecular profiles in the blood. This study was possible because we have data from the larg-

est transcriptomic (n = 2,637), proteomic (n = 1,013) and metabolomic studies (n = 1,057) for

COPD. Demographic and clinical characteristics of subjects profiled from each study are simi-

lar (Table 1), however the subjects with proteomics and metabolomics data were somewhat

older than the subjects with transcriptomic data (~ 2 years on average, ANOVA p-value <

.0001 across all three groups, Table 1), more likely to be NHW, have emphysema and airflow

obstruction, and only came from two clinical centers (S1 Table). A subset of n = 489 subjects

was profiled using all three -omics technologies (S2 Table).

Table 1. Clinical characteristics and demographics for profiled subjects by each of the three -omics technologies.

Variable Transcriptomic Proteomic Metabolomic p-value11

No. of Participants 2637 1013 1057

Age (mean(sd1)) 65.5 (8.6) 67.8 (8.6) 67.6 (8.6) < 0.0001

% Female 48.3 49.3 49.5 0.7668

% AA2 25.2 7.9 8.6 < 0.0001

%NHW2 74.8 92.1 91.4

BMI3 (mean(sd1)) 29 (6.3) 29.1 (6.4) 28.9 (6.2) 0.8600

% Former Smoker 64.4 75.3 74.7 < 0.0001

% Current Smoker 35.6 24.7 25.3

Smoking Pack-Years (mean(sd1)) 44.1 (23.9) 45.1 (24.8) 45.1 (24.7) 0.3685

% Controls 56.1 52 52 0.0195

% COPD4 Cases 43.9 48 48

% PRISm5 12.7 9.3 9.3 0.3346

% GOLD 0 43.4 42.6 42.7

% GOLD 1 9.9 10.4 10.7

% GOLD 2 20.1 19.8 20

% GOLD 3 9.9 11.6 11.3

% GOLD 4 4.1 6.2 6

FEV1pp6 (mean(sd1)) 78.5 (24.3) 77.2 (26.6) 77.6 (26.4) 0.3563

FEV1/FVC7 (mean(sd1)) 0.6762 (0.1471) 0.6572 (0.1549) 0.6581 (0.1544) 0.0002

% Emphysema8 (mean(sd1)) 5.5 (9.3) 7.1 (10.1) 7 (10.1) < 0.0001

Exacerbation Frequency9 (mean(sd1)) 0.3 (0.8) 0.3 (0.8) 0.3 (0.7) 0.9326

% Chronic Bronchitis10 14.7 16.5 16.2 0.443

1sd-standard deviations.
2NHW—Non-Hispanic White; AA—African American.
3BMI–body mass index (kg/m2).
4COPD is defined by GOLD score > 0.
5PRISm—Preserved Ratio Impaired Spirometry [11].
6FEV1/FVC = post-bronchodilator forced expiratory volume at one second (FEV1)/forced vital capacity (FVC)
7FEV1pp = FEV1 percent predicted.
8Quantitative emphysema was quantified by percent of lung voxels -950 Hounsfield Units (% low attenuation areas: %LAA) on the full inspiratory CT scans. Visual

emphysema was assessed as described by [12].
9Exacerbations were defined as acute worsening of respiratory symptoms requiring treatment with oral corticosteroids and/or antibiotics, emergency room visit, or

hospital admission [13].
10Chronic bronchitis was defined as self-reported chronic cough and sputum for at least three months in each of the two years prior to baseline.
11P- values are reporting for testing the differences of variables across the three different groups of subjects. P-values are based on chi-square tests for categorical or

binary variables (sex, smoking status, COPD status, COPD severity by GOLD status, and chronic bronchitis status) or ANOVA tests for continuous variables (age, BMI,

smoking pack-years, FEV1pp, FEV1/FVC, percent emphysema, and exacerbation frequency).

https://doi.org/10.1371/journal.pone.0255337.t001
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Single-omics analyses

Before embarking on multi-omics integration, we explored the signatures of each -omics pro-

file separately. The overall strategy of our subtyping approach (single -omics and integrated)

has four steps (Fig 1): 1) covariate filtering, 2) dimensionality reduction 3) clustering and 4)

evaluation.

Covariate filtering. We devised a covariate filtering approach (see Methods) that was

unbiased by systematically testing the association of all molecular features with all demo-

graphic, clinical, and imaging variables, and proceeded with only the features that showed at

least one association but excluding common variables such as age and sex, as well as clinical

blood count variables (Fig 1, S3 Table). This filtering method resulted in 1,889 transcripts, 142

proteins and 187 metabolites for clustering. Because of the use of blood samples, we also

regressed out cell composition before performing clustering (see Methods).

Dimensionality reduction. Even with the reduced number of features, clustering the

remaining high-dimensional dataset is problematic due to lack of scalability of clustering

methods. To address this problem, we explored dimension reduction methods (see Methods),

and focus on the well-established method PCA, and a more recent approached based on deep-

learning using auto encoders (AE) [14]. An important tuning parameter for these methods is

the number of reduced dimensions (i.e., number of PCs, number of AE embeddings). For

both methods, the diagnostic plots based on training and test data (individual and cumulative

percent variance explained, see Methods) indicate that eight dimensions is appropriate for all

Fig 1. Flow chart illustrating -omics subtyping pipeline. T, P, and M denote the Transcriptomic, Proteomic or

Metabolomic data respectively. The sample size (N) and number of features are provided for each of the individual

data sets, including the Clinical data. In the first step, uninformative features were filtered by only moving forward

with features that had at least one association with demographic, clinical, and imaging variables (but excluding

common variables such as age and sex, as well as clinical blood count variables; p = 242 clinical variables). In the

second step, dimension reduction was performed using Autoencoders where EM represents embeddings (or using

PCA—not shown). In the third step, the reduced dimensions were used to cluster subjects into subtypes using

subspace clustering (or k-means—not shown). Finally, the subject subtypes were evaluated in the fourth step by

identifying the features (transcripts, proteins, metabolites) or clinical variables (using the complete set p = 273 of

clinical variables) that discriminated between the subtypes.

https://doi.org/10.1371/journal.pone.0255337.g001
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three omics data sets (S1 Fig in S1 File). For PCA, eight components explain at least 40% of

the variability.

Clustering. For most clustering methods, an important tuning parameter is the number

of clusters k, and the w parameter for MineClus, which were selected based on silhouette scores

and connectedness (see Methods). We found that k = 2 subtypes and using MineClus almost

always had higher silhouette and connectedness (S4 Table). We found the AE and PC results

were similar based on the internal cluster quality metrics, in addition to overlap between sub-

jects (normalized Jaccard similarity > 0.80 for the large subtype discovered by each method).

To choose between AE and PC, we examined their ability with eight dimensions to recover the

original data as measured by the MSE. AE had lower MSE for all three data sets (0.53, 0.55,

0.54) compared to PC (0.56, 0.66, 0.61) for the transcriptomic, proteomic and metabolomic

data set respectively.

Therefore, we moved forward with AE for dimension reduction, MineClus for clustering,

and k = 2 (Table 2). For the MineClus results, there tended to be one larger subtype (85–90%

of subjects), and one smaller subtype (10–15% of subjects) (S2 Fig in S1 File). For our final

results, we examined the overlap of subjects between the large subtype and found that the

metabolomic-proteomic results had the most overlap based on larger values of the normalized

Jaccard score (Fig 2). Because the second subtype was much smaller, the overlap was not as

strong for any pair of -omics data sets, compared to the large clusters. See S1 Appendix and

S3–S5 Figs in S1 File for the sensitivity analysis.

Clinical associations. For each -omics data set, we evaluated the differences on clinical

variables between the two subtypes (Table 3, S5 Table). Although sometimes there were com-

mon discriminating clinical features (e.g., age at enrollment), the subtypes discovered by each

of the -omics varied and identified a distinct profile of subjects. The subjects clustering on

transcriptomic data differed based on variables such as oxygen therapy, airway wall thickness,

and red blood counts. The subjects clustering on proteomic data differed on variables related

to kidney disease, blood pressure and smoking duration. The subjects clustering on metabolo-

mics data differed on blood pressure, coronary artery disease, kidney disease, diabetes, and dif-

fusing capacity for carbon monoxide (DLCO). Along with the higher Jaccard scores between

the clusters described above, the proteomic-metabolomic results had more overlapping types

of clinical variables discriminating the subtypes, e.g., coronary artery disease, kidney disease

and several quality of life measurements by the 36-Item Short-Form (SF-36) patient-reported

health survey.

Feature selection. SVMRFE and cross-validation identified the top 13 transcripts, 41 pro-

teins and 12 metabolites that discriminated between the subtypes (Table 4, S6 Table, S6 Fig in

S1 File). Most of the genes represented by the transcripts and proteins in Table 4 are con-

nected based on co-expression, co-localization and genetic interactions (S7 Fig in S1 File).

Since these subsets were too small to perform an enrichment analysis, we relaxed this list to

find the top ranking 250, 42, and 28 features respectively (see Methods), and used the original

non-covariate filtered set as our background (Table 5, S7 Table). For the transcriptome-based

subtypes, for the transcripts that discriminated between the subtypes, we found enrichment in

Table 2. Final subtyping results based on AE and MineClus for each -omics data. For each -omics type the total number of samples and features, two subtypes (size; sil-

houette), and number of outliers is listed along with the overall silhouette and connectedness.

Dataset Samples Features w Outliers Subtype 1 Subtype 2 Silhouette Connectedness

Transcriptomics 2637 1889 14.2 23 2342; 0.31 272; 0.35 0.31 0.96

Proteomics 1013 142 5.58 57 848; 0.17 108; 0.13 0.16 0.92

Metabolomics 1057 187 6.5 28 893; 0.20 136; 0.15 0.19 0.92

https://doi.org/10.1371/journal.pone.0255337.t002

PLOS ONE COPD multi-omics subtyping

PLOS ONE | https://doi.org/10.1371/journal.pone.0255337 August 25, 2021 5 / 20

https://doi.org/10.1371/journal.pone.0255337.t002
https://doi.org/10.1371/journal.pone.0255337


12 gene ontology (GO) categories related to immune response, ribosomal function, and enzy-

matic activities. While many of these GO categories are quite broad, the immune and response

to bacterium categories might reflect associations with age or airway wall thickness. For the

proteome-based subtypes, we found no enrichment in any categories for the proteins that dis-

criminated between the subtypes. For the metabolome-based subtypes, we found enrichment

in one group “sphingomyelin” for the metabolites that discriminated between the subtypes.

This association is encouraging because sphingomyelins are associated with emphysema [15]

and the metabolomics clusters were associated with emphysema markers such as DLco,

although not emphysema per se.

Multi-omics analyses

Integration of multi-omics data sets for subtyping can be performed at different steps (Fig 3),

and we evaluated the effect of integrating either pre- or post-clustering (Steps 3–4, Fig 1).

Pre-clustering integration. By concatenating the selected embeddings for all of the

-omics data sets and then clustering, the maximum silhouette was for AE and MineClus, so we

only explored this result. We found two subtypes (k = 2) for each pairwise combination and

the combination of all 3 -omic types (S8 Table). For the pair-wise omics analyses, the clusters

Fig 2. Normalized Jaccard similarity between the clusterings of different datasets. T, P, and M, represent the

Transcriptomic, Proteomic or Metabolomic results respectively. The normalized Jaccard accounts for the varying sample sizes

for each subtype.

https://doi.org/10.1371/journal.pone.0255337.g002

Table 3. Summary of top 10 single-omics clinical associations. All clinical variables listed were significant at a false discovery rate of 10% over the variables tested and

are ordered by significance. Only the top 10 associations are displayed. For more details see Data Dictionary in S3 Table and complete results in S5 Table.

Transcriptomics Proteomics Metabolomics

1-min post-walk Sa02 (%) Kidney Disease Age at current visit

Age at current visit Distance walked (ft) High Blood Pressure

Airway Wall Thickness, segmental (main 6) High Blood Pressure Distance walked (ft)

Red Blood Cell Count Age at current visit Coronary Artery Disease

Clinical Center Duration of smoking (yrs) Kidney Disease

Heart Rate 1-minute post-walk (beats/min) Pack years, from Resp Questionnaire SF-36 Physical Health Aggregate (PCS) Score

(normalized)

Hematocrit (%) Coronary Artery Disease SF-36 Physical Function (PF) score

Hemoglobin (g/dL) SF-36 Physical Health Aggregate (PCS) Score

(normalized)

SF-36 Physical Function (PF) t-score (normalized)

Resting SaO2 (%) SF-36 Physical Function (PF) score Diabetes

In last 12 months, had wheezing or whistling in

chest

SF-36 Physical Function (PF) t-score (normalized) SF-36 Role Physical (RP) t-score (normalized)

https://doi.org/10.1371/journal.pone.0255337.t003
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Table 4. Features selected by SVMRFE for each omic type after 5-fold cross-validation. Cumulative score is the classification metric (f1-score) of an SVM used to pre-

dict the cluster labels using only the features at and above that feature (e.g., score for Fibroblast growth factor 20 is the result of an SVM trained on feature set [Interleukin-

23, Fibroblast growth factor 20]). These scores are not used to select the size of the feature sets because the size is selected before features are ranked (see Methods).

Dataset Name Cumulative f1-score

Transcriptomics SLCO4C1 91.81%

TNFRSF10B 92.23%

SNX4 91.81%

RLF 91.85%

SELENOW 91.62%

TPD52L2 92.77%

PPP1R10 91.47%

CD80 92.16%

SNRPB2 92.27%

RSL24D1 92.04%

RPL26L1 95.10%

RPS27L 91.70%

FOLR2 91.81%

Proteomics Interleukin-23 89.75%

Fibroblast growth factor 20 92.47%

Stromelysin-1 92.36%

Macrophage-capping protein 92.05%

C5a anaphylatoxin 92.68%

Coagulation Factor X 92.47%

Gelsolin 92.78%

Trefoil factor 3 92.57%

Limbic system-associated membrane protein 93.51%

Mannose-binding protein C 93.51%

Adhesion G protein-coupled receptor E2 92.57%

Neural cell adhesion molecule 1, 120 kDa isoform 92.78%

Apolipoprotein A-I 92.47%

Follicle stimulating hormone 93.30%

Glucose-6-phosphate isomerase 92.68%

A disintegrin and metalloproteinase with thrombospondin motifs 5 93.62%

Interleukin-1 receptor-like 1 93.10%

Nidogen-1 93.31%

72 kDa type IV collagenase 93.10%

Transforming growth factor-beta-induced protein ig-h3 93.10%

C-X-C motif chemokine 10 92.99%

Hemojuvelin 92.99%

Complement factor B 92.99%

Bone morphogenetic protein 1 93.20%

UNANNOTATED (SOMAmer: 9191–8_3) 91.74%

C-reactive protein 92.89%

Insulin-like growth factor-binding protein 6 92.78%

Apolipoprotein B 92.57%

C-X-C motif chemokine 16 92.15%

UNANNOTATED (SOMAmer: 5451–1_3) 92.15%

Tumor necrosis factor receptor superfamily member 10D 92.47%

UNANNOTATED (SOMAmer: 5349–69_3) 91.74%

UNANNOTATED (SOMAmer: 8459–10_3) 91.74%

UNANNOTATED (SOMAmer: 8464–31_3) 91.74%

SPARC-related modular calcium-binding protein 1 91.32%

Mast/stem cell growth factor receptor Kit 92.05%

Ephrin-B1 91.32%

NT-3 growth factor receptor 92.36%

UNANNOTATED (SOMAmer: 5115–31_3) 92.36%

60 kDa heat shock protein, mitochondrial 92.68%

UNANNOTATED (SOMAmer: 5509–7_3) 91.94%

(Continued)
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of n = 489 subjects based on transcriptomic and proteomic data differed by clinical center,

chest wheezing in the past year, and smoking status. The clusters of n = 511 subjects based on

transcriptomic and metabolomic data differed by clinical center and age of enrollment in the

study. Finally, the greatest overlap between -omic data types was found for subjects with prote-

omic and metabolomic profiling, consistent with our previous observations. The clusters of

these subjects differed on several variables with the most significant variables being age at

enrollment, blood pressure, reported coronary artery disease, distance walked, reported kidney

disease, sex, and smoking pack-years. Of note is that the smaller cluster for these subjects had

an exceptionally low silhouette (0.04). For the integrated analysis with all three -omics data

sets (n = 489), no clinical variables were found to significantly differ between the two subtypes.

Post-clustering integration. We examined the single -omic subtype assignments of sub-

jects with all 3 -omic profiles (n = 489), which resulted in 8 new subtypes based on

Table 4. (Continued)

Dataset Name Cumulative f1-score

Metabolomics dehydroisoandrosterone sulfate (DHEA-S) 91.93%

3-(3-amino-3-carboxypropyl)uridine� 91.64%

X– 12117 91.84%

stearoyl sphingomyelin (d18:1/18:0) 91.84%

hydroxy-CMPF� 91.45%

N6-carbamoylthreonyladenosine 92.52%

N-formylmethionine 92.23%

sphingomyelin (d18:1/20:1, d18:2/20:0)� 91.55%

sphingomyelin (d18:1/17:0, d17:1/18:0, d19:1/16:0) 91.84%

1-palmitoyl-2-linoleoyl-GPC (16:0/18:2) 92.81%

3-carboxy-4-methyl-5-propyl-2-furanpropanoate (CMPF) 92.32%

pyroglutamine� 91.84%

Integrated (Transcriptomics + Proteomics + Metabolomics) UQCRB 74.28%

https://doi.org/10.1371/journal.pone.0255337.t004

Table 5. Top enrichment pathways from multiple annotation sources. For annotations with a defined hierarchy (gene ontology: GO), p-values were adjusted per-level

of the hierarchy (FDR< 0.10). Levels begin from 1, the lowest level of the hierarchy, and increase to the top level, number of levels vary by annotation database.

Dataset Annotation Level Name FDR (Level)

Transcriptomics GO Biological Process 4 regulation of immune response (GO:0050776) 3.97 X 10−2

3 membrane invagination (GO:0010324) 4.54 X 10−2

3 response to bacterium (GO:0009617) 6.29 X 10−2

3 positive regulation of immune response (GO:0050778) 8.10 X 10−2

3 positive regulation of cysteine-type endopeptidase activity (GO:2001056) 8.10 X 10−2

5 positive regulation of catalytic activity (GO:0043085) 8.40 X 10−2

GO Cellular Component 5 immunoglobulin complex (GO:0019814) 5.01 X 10−6

4 immunoglobulin complex, circulating (GO:0042571) 1.13 X 10−2

2 ribosome (GO:0005840) 2.13 X 10−2

2 ribosomal subunit (GO:0044391) 2.13 X 10−2

5 extracellular space (GO:0005615) 5.24 X 10−2

1 cytosolic ribosome (GO:0022626) 8.20 X 10−2

Proteomics No Significant Pathways

Metabolomics Sub Class� N/A Sphingomyelins 3.19 X 10−2

� Sub classes for metabolomic features were annotated by Metabolon, Inc.

https://doi.org/10.1371/journal.pone.0255337.t005
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combinations of whether they were in the large or small subtype (e.g., large transcriptomic,

large proteomic, and large metabolomic) (Fig 4A; S9 Table) The majority of subjects (77%)

were assigned to the large cluster in all -omic subtypings. This new large cluster was not differ-

entiated from the remaining subjects by any clinical variable (S10 Table). In exploring the

small cluster assignments, there were several subjects assigned to the larger cluster for two of

the -omic data types, yet the smaller cluster in the remaining -omic data type (Fig 4B). These

subjects were of interest based on their distinct profiling within one particular -omic data set.

These groups (highlighted in S9 Table) were found to be significantly different based on clini-

cal measures, potentially identifying new subtypes (Table 6). The subtype based on the smaller

transcriptomic cluster identified younger and healthier subjects than the metabolomic and

proteomic profiles, as evident with significantly longer average distance-walked, higher diffus-

ing capacity of the lungs for carbon monoxide (DLCO), less gas trapping, and increased FEV1

percent predicted compared to the other 2 groups. In contrast, the subtype based on the

smaller metabolomic cluster were older and more diseased than the other two groups. Finally,

Fig 3. Flow chart for multi-omics pre- and post-clustering integration. T, P, and M, represent the Transcriptomic,

Proteomic or Metabolomic data sets respectively. Tran, Prot, and Met represent the Transcriptomic, Proteomic or

Metabolomic subtypes respectively. 1 and 2 signify the large or small subtype respectively.

https://doi.org/10.1371/journal.pone.0255337.g003

Fig 4. Summary of post-clustering -omics integration. A) Upset plot representing the intersecting clusterings from

the single-omic analysis among subjects with all 3 -omic profiles. B) A Venn diagram of the smaller clusters for

comparison among subjects specifically categorized in the smaller cluster in only 1 of the 3 -omic clusterings.

https://doi.org/10.1371/journal.pone.0255337.g004
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the subtype based on the smaller proteomic cluster had the lowest average 6-minute walk dis-

tance of the three groups, and percent on atrial fibrillation. Otherwise, that subtype was in

between the two other groups with respect to age and lung function.

Stratified analysis. To assess whether subsets of COPDGene subjects had different pro-

files, we performed the clustering only on subjects stratified by COPD cases status, or current/

former smokers (S11 Table). In all cases, we compared how the clinical associations varied in

the stratified results compared to the set of all subjects. For COPD cases, subtyping by each of

the individual -omics data sets did not identify subtypes that differentiated by any clinical vari-

ables for proteomics, and only age enrolled for metabolomics, and oxygen saturation for tran-

scriptomics. For smoking status, we identified two subtypes each for current and former

smokers separately for each -omics data set. The clinical associations that differentiated the

two subtypes changed based on smoking status, especially for the proteomic and transcrip-

tomic profiles. Based on proteomic data, subtypes of current smokers differed mostly by age,

duration smoking, and DLCO, while subtypes of former smokers mostly differed by reported

kidney disease, platelet counts, diabetes status, age, distance walked, and airway wall thickness.

Based on metabolomic data, subtypes of current smokers differed by blood counts, while sub-

types of former smokers differed mostly by sex and airway wall thickness.

Discussion

In this work, we developed a pipeline for the largest multi-omics subtyping of COPD, which

complements subtyping approaches using clinical or imaging data [6, 8, 11]. We found that

when the subtypes of each -omics profile were explored separately, clustering by omics was

complementary and each omics platform tended to identify unique clusters of subjects with

different clinical features. Although there was some overlap, especially between the metabolo-

mics and proteomic results, there were also unique clinical signatures associated with subtypes

for each of the three -omics subtypes. In particular, prominent molecular features of the meta-

bolomics clustering included sphingomyelin (which has known associations with emphy-

sema), while key transcriptome pathways were immune and bacterial responses. Similarly,

some key associations with the proteomic molecular clusters include kidney disease, for which

the SOMAscan platform has been particularly useful for clustering [16]. These findings suggest

Table 6. Post-clustering clinical associations of subjects that are in the small subtype for one of the -omics data sets, but not the others.

Clinical variable FDR� Small Transcriptomic, Large Proteomic

& Metabolomic

Small Proteome Cluster, Large

Transcriptomic & Metabolomic

Small Metabolome, Large

Transcriptomic & Proteomic

Distance walked 4.91E-

02

1397.3 (308.4) 1020.0 (520.2) 1184.4 (584.6)

DLco percent

predicted

5.44E-

02

95.2 (25.3) 75.5 (23.8) 69.5 (27.1)

Atrial Fibrillation a 5.44E-

02

5.6% 0.0% 35.3%

Percent gas trapping

(-856)

6.80E-

02

14.5 (15.0) 26.2 (22.1) 30.4 (19.9)

Age at enrollment 6.80E-

02

65.2 (8.3) 70.7 (7.3) 73.4 (10.3)

FEV1 percent

predicted

7.41E-

02

83.2 (21.7) 69.5 (28.4), 61.6 (18.0)

�FDR adjusted p values over the variables tested. For more detailed explanation of the clinical variables see Data Dictionary in S3 Table. Mean and standard deviation

except for a which is reported as a percentage.

https://doi.org/10.1371/journal.pone.0255337.t006
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that comorbidities such as diabetes, metabolic syndrome, and renal failure, may play a strong

role in subtyping and need to be considered in multi-omic clustering.

We explored existing methods for -omics integration which are broadly categorized as hori-

zontal and vertical integration methods [17]. Horizontal methods integrate subjects from dif-

ferent datasets of the same -omic type (e.g., multiple RNA-Seq datasets), which are not

applicable to our analysis. Of the remaining vertical integration methods, they can be further

categorized as parallel or hierarchical. Hierarchical methods focus the analysis on one -omics

data at a time and in sequence (e.g., from gene to protein level) while preserving information

of the previous analysis in the next which requires some form of annotation to associate -omic

features across datasets. Of the parallel methods, mixOmics [18] is the most similar system to

the one used in this study, and provides a number of methods to integrate -omics, including

PCA, PLS, and CCA. However, none of these methods were able to provide the same level of

internal metrics and clinical feature associations as integration using concatenated

embeddings.

Our study generated important insights on whether integration should be done pre- or

post-clustering for the COPD data. For instance, pre-clustering (concatenating all three pro-

files and treating them equally) did not identify consistent subtypes that differed on clinical

variables. In the post-clustering approach (examining overlapping subjects from subtypes

based on each profile separately), we found that subjects that were not consistently assigned to

the large subtype for all -omics data sets differentiated themselves based on certain clinical

associations. For example, the subtype based on the smaller metabolomic cluster were older

and more diseased than the other combinations. Post-clustering approaches that integrate

across clustering results based on individual data types have been used in several cancer appli-

cations (e.g., [19, 20]).

For observational studies of human diseases, covariates such as sex and age can be highly

associated with the disease signal. But these covariates can also be strongly associated with

molecular profiles in the blood. As a first pass, we included all clinical features but found that

the results from the clustering algorithms primarily separated male versus females, current ver-

sus former smokers, or by cell types, as there are strong gene, protein or metabolic signatures

for these differences. Although these results could be useful for future investigations, we

wanted to focus on clusters that were more specific to COPD disease severity and progression.

However, if we only include features that separate based on COPD severity (e.g., GOLD stage)

this resorts to a supervised learning approach based on existing classifications, making it more

difficult to identify new subtypes. Therefore, we found covariate filtering in Step 1 and removal

of basic (but influential) covariates such as sex and age to be an important step that allowed us

to focus on disease-related profiles rather than demographic variables. We did this in an unbi-

ased manner by testing 242 available clinical variables.

Although the covariate filtering step helped reduce dimensionality, there were still hun-

dreds or thousands of features depending on the -omics data set which can be problematic for

clustering algorithms. Dimension reduction for more than two omics datasets is essential com-

putationally. High dimensional datasets are hard to visualize, and complete enumeration of all

subspaces becomes computationally intractable with increasing dimensionality [21]. We iden-

tified AE as a particularly useful dimension reduction strategy that preserved a lot of the origi-

nal variance. We also used other methods for dimension reduction such as PCA, and partial-

least squares regression and report the former. The subtyping results on PCA versus AE were

very similar based on the clustering metrics, but the AE embeddings more closely recapitulated

the original data based on mean squared error. For both PCA and AE, we used cross-valida-

tion and “elbow-plots” to determine the number of dimensions for clustering.
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For clustering, we evaluated other standard methods such as K-means, and hierarchical

clustering, and report the former. However, given a large number of attributes, it is likely that

some attributes are correlated. Hence, clusters might exist in arbitrarily oriented dense but iso-

lated subspaces, therefore we focused on subspace clustering, as implemented in MineClus

[22]. Among all methods explored, subspace clustering algorithms performed the best as they

do not require inclusion of potentially irrelevant features in clustering; hence, more realistic

clusterings. In our application, K-means did not perform as well as subspace clustering. It may

not be ideal given the large number of remaining but essential data dimensions, even after sig-

nificantly reducing the dimensionality of the dataset.

The subtyping results are highly dependent on the MineClus tuning parameter w, and

number of clusters k, so we used several resampling approaches, and systematic testing of w to

make the final selection. We found that the results were stable with respect to w. However, we

found that often some values of w resulted in two subtypes where the smaller one had a much

smaller silhouette score. To ensure that both subtypes were cohesive, we required a minimum

silhouette score (>0.10) for the smaller subtype when possible. The best number of subtypes

was typically k = 2 based on multiple clustering metrics. However, the gap statistic analysis

indicated that the proteomic data showed less evidence of clustering as k = 1 was preferred.

There are some important limitations to this work. First, the overlap of the proteomic-

metabolomic results throughout our analyses may be due to more similar characteristics and

recruitment centers of subjects with these data, compared to subjects with transcriptomic data.

However, the similarities between the proteomic-metabolomic results also held when we con-

strained the analyses to overlapping subjects with all three data sets. In the future, through pro-

grams such as TOPMed, more subjects will be profiled with these -omics technologies which

will increase the overlap of subjects between the datasets. Second, because COPDGene is cur-

rently the only study focused on COPD with -omics data in relatively large numbers, there is

no appropriate replication sample for the analyses performed. Third, although manageable

with eight dimensions, MineClus was not scalable when the dimensions were greater than 30.

Our cross-validation process for selecting the number of dimensions did not indicate values

that high, but this may not be the case for other studies. Finally, subtyping can be very unstable

in some cases. Since most of the subspace clustering methods resort to randomization to

address the combinatorial complexity of evaluating clusters in numerous possible subspaces,

these methods can be unstable depending on tuning parameters and also sensitive to outliers

[23]. Therefore, at every step in our workflow, we evaluated the stability of our results by trying

different methods, evaluating different metrics, applying cross-validation strategies, and per-

forming sensitivity analyses.

Conclusion

Our work illustrates the benefits of subtyping based on multi-dimensional molecular profiles,

and the importance of using multiple profiles for providing different perspectives on disease

severity. We recommend exploring each single -omics separately first, followed by a multi-

omics approach. For -omics integration, one of the critical decisions is when to perform the

integration, i.e., early or late in the process [24]. There are benefits and advantages for each

approach, and the best solution often depends on the specific hypothesis and data set (see

reviews on integration in [25, 26]). In our work, we noticed that the early integration did not

result in subtypes that had meaningful clinical differences. This may be reflecting one of the

drawbacks of early integration, which disregards the unique distribution of each of the -omics

data types and treats them equally [24]. For this problem and data set, we found that focusing
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on subjects that clustered differently amongst the -omics data sets highlighted more interesting

clinical characteristics.

Materials and methods

Data

Study population and ethics statement. The NIH sponsored multicenter Genetic Epide-

miology of COPD (COPDGene, ClinicalTrials.gov Identifier: NCT00608764) study was

approved and reviewed by the institutional review board at all participating centers [27]. All

study participants provided written informed consent (S1, S2 Tables for demographics clinical

centers, and IRB boards for each center). For information on recruitment dates, inclusion/

exclusion criteria for participant recruitment, and descriptions of where participants were

recruited, please see Regan et al., 2010 [27]. Data analyzed were de-identified. Each in-person

visit included spirometry before and after albuterol, quantitative computed tomography (CT)

imaging of the chest, and blood sampling. In this work, we focus on -omics data sets collected

at Phase 2 based on blood sampling (Table 1), which have the most extensive contemporane-

ous -omics datasets.

Clinical data and definitions. Of the 808, clinical variables available on subjects [27], we

selected 273 that directly measured COPD phenotypes (see S3 Table). The remaining variables

could be grouped roughly into demographic variables (e.g., sex, age), clinical blood count mea-

sures, medical history, symptom questionnaires, and clinical imaging. See S1 Appendix for

case definitions.

Transcriptomics. Transcript profiles were quantified for 2,650 subjects (1980 Non-His-

panic Whites—NHW, 667 African Americans—AA) from 20 clinical centers in the COPD-

Gene Phase 2 study (Table 1, S1, S2 Tables, S1 Appendix) from total RNA extracted from

whole blood samples.

Proteomics. Proteomic profiles were generated on 1,013 subjects (933 NHW; 80 AA)

from two clinical centers (National Jewish Health and University of Iowa) who participated in

an ancillary study in which they provided fresh frozen plasma collected using an 8.5 ml p100

tube (Becton Dickinson) at Phase 2 (Table 1, S1, S2 Tables, S1 Appendix). The proteomic

data was quantified at National Jewish Health using the SOMAscan1Human Plasma 1.3K

assay.

Metabolomics. Metabolite profiles from p100 samples from Phase 2 were generated on

1,136 subjects (1,040 NHW; 96 AA) using the Metabolon (Durham, USA) Global Metabolo-

mics Platform, as described [28, 29] (Table 1, S1, S2 Tables, S1 Appendix).

Omics data adjustment, scaling and covariate filtering

All datasets, having previously been log transformed, were adjusted for blood cell counts by

regressing measures for hemoglobin, neutrophil percent, lymphocyte percent, eosinophil per-

cent, monocyte percent and whole blood count against the molecular profiles, and extracting

the residuals from the regression fit. These residuals were then centered and scaled using Z-

score standardization. Next, features were filtered based on significant associations with at

least one of 242 clinical or demographic variables (having removed blood count and demo-

graphic variables from the aforementioned 273) associated with lung function, COPD, or

other comorbidities (S3 Table, S1 Appendix). To avoid bias due to outliers, non-parametric

tests were used to identify association: either a Wilcoxon signed rank or Kruskal-Wallis based

on whether the variable was continuous or categorical respectively. We accounted for multiple

testing using the false discovery rate (FDR) procedure of Benjamini and Hochberg [30]. Fea-

tures remained if they were significantly associated with at least one clinical variable at a
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stringent threshold (within variable FDR adjusted p value< 10−5) to help optimize the effi-

ciency of the dimension reduction step.

Principal components analysis (PCA) implementation

The implementation of PCA used in this study is from the scikit-learn package in Python 3.

The number of principal components (PCs) was chosen by first transforming the dataset to

the largest number of allowable PCs (minimum of either the sample size n, or number of fea-

tures p), then plotting the percent variance explained for each component.

Autoencoder (AE) implementation

A deep autoencoder network (hereafter simply called autoencoder) is a genre of deep neural

networks for identifying a reduced representation of a given dataset. This representation dif-

fers from other methods such as PCA or Independent Component Analysis in that it is non-

linear. Autoencoders consist of an encoder and decoder pair of multi-layer neural networks

such that the encoder network learns an embedding of each data point into a latent space (typi-

cally with fewer dimensions than the input space) that the decoder network then learns to

revert back into the original input space (Fig 1). Training of an autoencoder involves estimat-

ing the latent space that captures the information of the data points in the input space in a

reduced form so that it may be decoded efficiently. In this case, efficiency is measured in terms

of mean squared error between a decoded data point and the corresponding input data point.

A test set (randomly chosen 10% subset of the total subjects) is held out to measure the error

on unseen data for each epoch and to check for overfitting of the model, which we define as a

>5% difference in the train/test error. Once training is completed, only the encoder network

is needed to reduce the dimensionality of the input dataset.

Dimension reduction

We used the “elbow” method to find the number of dimensions where the gains in silhouette

(defined below) or mean square error for AE or percent variance explained for PC, leveled off

(see S1 Appendix). The same number of dimensions was used for all -omics datasets to facili-

tate the subsequent multi-omics analysis and avoid data set dominance.

Clustering

In order to select the clustering algorithm for this study, we examined various methods,

including K-Means [31], sparse K-Means [32], spectral clustering [33], hierarchical clustering

[34], and subspace clustering [35]. For all algorithms, to decide the number of clusters (k), we

tested each dataset with different clustering algorithms, and explored clusterings with 2–10

clusters. We found that, based on the various evaluation metrics discussed below, k in the

range of [2–4] performed the best. In this work, we focus on results obtained from K-means as

well as MineClus, which is an implementation of subspace clustering (see S1 Appendix).

Metrics

Different internal and external cluster quality metrics were used to select the best clustering

algorithm and the best number of clusters (k) and w. These metrics were also used to assess the

quality of the clusterings and are described in the S1 Appendix. Briefly, the silhouette coeffi-

cient measures the quality of a clustering [36] based on the cohesion and separation of its clus-

ters, and the connectedness score [37] evaluates the compactness of the clusterings.
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Sensitivity analysis

Because clustering algorithms can be sensitive to parameters, we examined the sensitivity of

our clusters and cluster size to perturbations using resampling based methods described in

more detail in the S1 Appendix. Briefly, we used the gap statistic [38], which is an alternative

for the elbow method that is widely used to determine the optimal number of clusters k, and

the Jaccard similarity, which is commonly used to measure the similarity between two sets A

and B. In addition, we examined the stability of clusters, and the consistency of membership of

subjects in clusters.

Clinical associations

Subjects were assessed for cluster assignment associations with the aforementioned 273 clinical

variables using an ANOVA for continuous variables, a chi-squared test for categorical vari-

ables with expected frequencies greater than 5, and a Fisher’s exact test if the expected frequen-

cies were less than 5. We considered associations statistically significant at p-value < 0.05 after

employing a FDR correction for multiple testing [30].

Feature selection

Feature selection was implemented using Recursive Feature Selection based on Support Vector

Machines (SVMRFE) [39]. SVMRFE works by iteratively removing one or more features from

the feature set at a time based on how well each feature performs in discerning the outcome

variable (here the cluster labels). Performance of a feature in this case is the square of its corre-

sponding coefficient from a linear SVM trained on that feature set. The features are therefore

ranked by the reverse order of the iteration in which each is removed (e.g., the feature removed

in the iteration before the last is ranked second). The optimal number of features is chosen as

the feature set that optimizes the accuracy of the SVM in predicting the outcome variable and

all such features are ranked first. We visualized connections between the top features in a net-

work framework using GeneMANIA [40].

Enrichment

The number of features used in enrichment differed from the selected features in order to have

a good representation of pathways. Because feature set sizes can be ranked by the classification

metric (e.g., f1-score), if too few features were selected to generate meaningful enrichment

results (e.g., <20), more features are chosen for the analysis by moving further down the rank-

ings to include more features (see S1 Appendix). We took all features with an f1-score above

0.93, a percentage point above the average score of 0.92. The analysis was then performed on

each of the datasets using Fisher’s Exact Test with FDR adjusted p-values using the top features

as defined above ranked from the feature selection process.

Integration

We explored integration of the -omics data at two different stages of the pipeline. First, we

integrated pre-clustering by clustering on the concatenated autoencoder embeddings from

each of the -omics types. In this method for integration, each of the -omics datasets were

embedded using a separate autoencoder unique to each -omic datasets, then joined by subject

identifiers. For the purposes of integration, we required that each -omic type was represented

by the same length of embeddings (e.g., proteomics and metabolomics would both have

embeddings of length 8, making 16 features in the integrated dataset). The number of embed-

dings were determined using the methods described above. This restriction on embedding
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length prevented any one -omic type from dominating the clusters, and thus, the clinical asso-

ciations and selected features. We explored the same dimension reduction and clustering

methods described above. Second, we integrated post-clustering, where subjects with all three

omic profiles were reclassified based on their single -omic cluster assignments. Clinical associ-

ations were assessed among the subjects uniquely identified in the smaller cluster for an indi-

vidual -omic type.

Stratified analyses

We further explored clusterings, clinical associations, and selected features within each -omic

profile. Specifically, we stratified by COPD case status (to explore further clusterings within

individuals), and current smoking status (to avoid confounding based on smoking). We clus-

tered using the methods described above.
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