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Background and purpose: Increased blood–brain barrier permeability is believed to be associated with compli-
cations following acute ischemic stroke and with infarct expansion. Measurement of blood–brain barrier per-
meability requires a delayed image acquisition methodology, which prolongs examination time, increasing
the likelihood of movement artefacts and radiation dose. Existing quantitative methods overestimate
blood–brain barrier permeability when early phase CT perfusion data are used. The purpose of this study is
to develop a method that yields the correct blood–brain barrier permeability value using first-pass perfusion
CT data.
Methods: We acquired 43 CT perfusion datasets, comprising experimental (n = 30) and validation subject
groups (n = 13). The Gjedde–Patlak method was used to estimate blood–brain barrier permeability using
first-pass (30–60 s after contrast administration) and delayed phase (30–200 s) data. In the experimental

group, linear regression was used to obtain a function predicting first-pass blood–brain barrier permeability
estimates from delayed phase estimates in each stroke compartment. The reliability of prediction with this
function was then tested using data from the validation group.
Results: The predicted delayed phase blood–brain barrier permeability was strongly correlated with the mea-
sured delayed phase value (r = 0.67 and 0.6 for experimental and validation group respectively; p b 0.01).
Predicted and measured delayed phase blood–brain barrier permeability in each stroke compartment were
not significantly different in both experimental and validation groups.
Conclusion:We have developed a method of estimating blood–brain barrier permeability using first-pass per-
fusion CT data. This predictive method allows reliable blood–brain barrier permeability estimation within
standard acquisition time, minimizing the likelihood of motion artefacts thereby improving image quality
and reducing radiation dose.
© 2013 The Authors. Published by Elsevier Inc. All rights reserved.
1. Introduction

Increased blood–brain barrier permeability, one of the pathological
changes following ischemic stroke (Taheri et al., 2009), is believed to
predispose to complications such as hemorrhagic transformation
(Hamann et al., 1996),massive vasogenic oedema (Klatzo, 1987), infarct
expansion (Bektas et al., 2010) and poor clinical outcome (Warach and
Latour, 2004). Changes in blood–brain barrier permeability may occur
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spontaneously following acute stroke or may be a consequence of
recanalisation therapy (Cruz-Flores et al., 2001; Molina et al., 2002,
2001; B. Thanvi et al., 2008; B.R. Thanvi et al., 2008; Treadwell and
Thanvi, 2010). Because of the consequences of blood–brain barrier
breakdown, there is increasing interest in the measurement of
blood–brain barrier permeability in patients with acute stroke
(Aoki et al., 2002; Bang et al., 2007; Lampl et al., 2006; Wang and
Lo, 2003). Perfusion CT is used increasingly in the investigation of
acute ischemic stroke and can be used to quantify blood–brain bar-
rier permeability with the application of the Gjedde–Patlak plot
(Gjedde, 1981, 1982; Patlak et al., 1983; Patlak and Blasberg, 1985),
which is a model independent technique for the estimation of unidirec-
tional clearance of tracers (in this case iodinated contrast agent) across
the vascular endothelium in the brain. In early studies using first-pass
perfusion CT data, increased blood–brain barrier permeability was
found to predict the risk of hemorrhagic transformation (Lin et al.,
served.
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Fig. 1. Example of Gjedde–Patlak plot in one subject using mean intensity values in the
entire ischemic region and in the M1 segment of the middle cerebral artery. The slope
of the plot is lower for the 60–200 s time frame than the 30–60s time frame. A better
linear fit is seen for the 60–200 s time frame.
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2007). However, subsequent comparisons between blood–brain barrier
permeability estimates obtained with the first-pass and delayed phases
of perfusion CT data by Dankbaar et al. (2008) suggested that the use of
first-pass data leads to overestimation of permeability (Hom et al.,
2009). Delayed perfusion CT acquisitions lasting up to 4 min have the
disadvantages of a greater likelihood of artefacts due to patient move-
ment and of increased radiation dose (Schneider et al., 2011).

In this study we examined the correlation between blood–brain
barrier permeability estimates obtained from the terminal phase of
a first-pass acquisition and from delayed phase data. The terminal
phase of a first-pass acquisition contains information from the
early period of contrast recirculation. We then developed a method
of predicting delayed phase blood–brain barrier permeability esti-
mates using estimates from first-pass data and validated the predic-
tive model in a second cohort of acute stroke patients.

2. Methods

2.1. Patients

Forty three patients admittedwith a clinical diagnosis of acute ische-
mic stroke to Royal Brisbane and Women's Hospital were recruited be-
tween May 2011 and April 2012. All patients underwent perfusion CT
study at admission. Thirty perfusion CT datasets were randomly select-
ed and comprised the experimental group while the remaining 13 sub-
jects comprised the validation group for the study (selected without
regard for age or gender). This research project was approved by the
hospital's Human Research Ethics Committee.

2.2. Perfusion CT imaging

Patients underwent perfusion CT examination on a 128-slice CT
scanner (Siemens Somatom Definition AS+ Siemens AG Erlangen
Germany). Images were acquired in cine mode with multiple gantry
rotations starting at 6 s after intravenous administration of 40 ml of
iodinated contrast agent (Ultravist 300 mgI/ml; Bayer HealthCare
Pharmaceutical Inc., Leverkusen, Germany) at a flow rate of 6 ml/s
via an 18-Gauge catheter inserted into an antecubital vein. Image ac-
quisition included first-pass (26 scans over 60 s) and delayed-phase
(four contiguous scans lasting 140 additional seconds beginning at
80, 120, 160 and 200 s). Scans were performed with a tube voltage
of 120 kVp, a tube current of 80 mA, slice-thickness of 3 mm, and
Z-axis coverage of 90 mm from the skull base to the vertex.

2.3. Perfusion CT analysis

Automated motion correction between time frames was performed
using FLIRT (FSL-FMRIB, Oxford UK). Image noise was then removed
and vascular structures were identified with independent compo-
nents analysis using MELODIC (FSL-FMRIB). From the arterial com-
ponent map created with independent component analysis, the
pre-bifurcation segment (M1) of the middle cerebral artery contra-
lateral to the affected cerebral hemisphere was manually segmented
by a trained observer (GTN). The arterial input function was obtained as
the mean value in Hounsfield units from all voxels in the segmented
M1 in each time frame (Ferreira et al., 2010). Voxel-based maps of cere-
bral blood flow, cerebral blood volume, andmean transit time were gen-
erated with purpose-written software using MATLAB R2012a (The
MathWorks Inc., Natick, USA). Cerebral blood flow maps were created
by deconvolution using the standard singular value decomposition ap-
proach (Konstas et al., 2009a; Ostergaard et al., 1996). Cerebral blood vol-
ume was calculated as the ratio between the area under the tissue
time-intensity curve and the area under the arterial input function.
Mean transit time maps were then created as the ratio between cerebral
blood volume and cerebral blood flow (Konstas et al., 2009a, 2009b).
Stroke compartments were defined as penumbra (tissue-at-risk), infarct
core (not salvageable tissue), and entire ischemic tissue (penumbra
plus infarct core). Infarct core and tissue-at-risk compartments were seg-
mented by applying the following cerebral blood volume andmean tran-
sit time thresholds: a. Penumbra: mean transit time >145% compared to
contralateral region and cerebral blood volume≥2.0 ml/100 g; b. Infarct
core:mean transit time>145% and cerebral blood volume b2.0 ml/100 g
(Wintermark et al., 2006). Using these thresholds, we generated volumes
of interest corresponding to penumbra, infarct core and entire ischemic
tissue. Volumes of interest corresponding to non-stroke tissue were gen-
erated as mean value of a region of interest created by reflecting the en-
tire ischemic volume of interest across the midline.

2.4. Estimation of blood–brain barrier permeability

Blood–brain barrier permeability values were estimated from
perfusion CT data using the Gjedde–Patlak method (Fig. 1) (Gjedde,
1981, 1982; Patlak et al., 1983; Patlak and Blasberg, 1985):

Mt tð Þ
Ca tð Þ ¼ K1

�
∫
t

0

Ca τð Þdτ

Ca tð Þ þ Vp

where Mt is image intensity (measured in Hounsfield units) in each
brain tissue voxel at time t; Ca(t) is mean intensity from all voxels in
the M1 segment at time t (measured in Hounsfield units); K1 is the
transfer coefficient for unidirectional clearance of contrast agent across
the endothelial membrane, a measure of blood−brain barrier perme-
ability; and Vp denotes the vascular space fromwhich clearance occurs.
The least squares estimate of K1 was obtained at each voxel using linear
regression. Blood−brain barrier permeability was estimated using
both first-pass (K1

FP, 30−60 s after intravenous contrast administra-
tion), and delayed-phase (K1

DP, 60−200 s) data. Mean K1
FP and K1

DP

values in each volume of interest were then calculated. To evaluate
the quality of graphical analysis, the root-mean-square error of the
Gjedde−Patlak plot was calculated at voxel level and normalised by
the mean value of Mt(t) / Ca(t) for each measurement time frame. The
mean difference in normalised root-mean-square errors for each time
frame was compared assessed for each stroke compartment.

2.5. Statistical analysis

The paired t-test was used to compare K1
FP and measured K1

DP and to
compare normalised root-mean-square errors. We used the Bonferroni
correction for multiple comparisons. In the experimental group, analy-
sis of covariance was performed to examine whether the relationship
between K1

FP and K1
DP differed between stroke compartments. Linear



Table 1
Subject demographics and clinical information.

Experimental group Validation group

Age: Mean ± standard deviation 69 ± 16 years 71 ± 12 years
Gender

Male 13 (43%) 8 (61%)
Female 17 (57%) 5 (39%)

Diagnosis
Transient ischemic attack 7 (23%) 8 (62%)
Anterior cerebral artery (ACA) stroke 2 (7%) –

Middle cerebral artery (MCA) stroke 17 (57%) 5 (38%)
Anterior choroidal artery stroke 2 (7%) –

Posterior cerebral artery stroke 1 (3%) –

MCA + ACA stroke 1 (3%) –

Volume: Median (range)
Penumbra 62 (1–211 ml) 74 (2–140 ml)
Infarct core 9 (0.4–78 ml) 17 (0.5–25 ml)

Time between onset and CT:
Mean ± standard deviation

2.8 ± 1.2 h 3.7 ± 2.3 h

Thrombolysis 9 (30%) 4 (31%)
Thrombectomy 2 (7%) –
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regression between K1 estimates from the two time frames in all com-
partments was used to generate a model predicting K1

DP from K1
FP esti-

mates. Predicted K1
DP values were then generated in each voxel using

the predictive model. Mean predicted K1
DP values were calculated for

each volume of interest in both the experimental and the validation
group. In both groups mean predicted and measured K1

DP were com-
pared using the paired t-test. To test the accuracy of the prediction
method, prediction regression error sum of squares, mean square
error of prediction, and goodness of fit (R2) were calculated in both
groups.

3. Results

3.1. Subjects

Forty-three patients (22 Males, 21 Females) were enrolled in the
study. Mean age was 70 years (range: 42 to 93 years). Perfusion CT
scans were performed one to seven hours after stroke onset
(mean ± standard deviation: 3 ± 1.5 h). Twenty-eight patients
had a clinically confirmed ischemic stroke, while 15 patients were
diagnosed as having a transient ischemic attack because clinical
symptoms resolved within 24 h and no infarct was seen on follow
up MRI. The features of the patients in the experimental and valida-
tion groups are shown in Table 1.

3.2. Relationship between K1
DP and K1

FP

Mean K1
FP was significantly higher than measured K1

DP in all tissue
compartments (p b 0.0001; Table 2). Analysis of covariance revealed
no significant interaction between stroke compartment and the covari-
ance between K1

DP and K1
FP (F = 0.95, p = 0.42). In light of this, a linear

predicting function was generated from the regression between mean
Table 2
K1
DP and measured and predicted K1

DP in experimental and validation groups.

Stroke sub-region Experimental group (Mean ± SD)

K1
FP † Measured K1

DP † Pred

Penumbra 9.4 ± 5.6 3.37 ± 1.16 3.24
Infarct 7.0 ± 3.9 2.97 ± 1.18 2.85
Entire ischemic tissue 9.0 ± 5.1 3.30 ± 1.15 3.17
Non-stroke tissue 6.4 ± 3.8 2.51 ± 0.90 2.77
All compartments 8.4 ± 5.0 2.99 ± 1.13 2.99

SD: Standard deviation.
† ml/100 g/min.
K1
DP and K1

FP values in each stroke and non-stroke compartment for
each subject:

PredictedKDP
1 ¼ 0:16� KFP

1 þ 1:74:

Standard errors of the slope and intercept were 0.02 and 0.16 re-
spectively. K1

DP values in patients with transient ischemic attacks were
similar to those for non-stroke tissue in stroke patients.

3.2.1. Relationship between predicted and measured K1
DP

Predicted and measured K1
DP estimates were strongly correlated in

both the experimental group (r = 0.67, p b 0.01) and the validation
group (r = 0.60, p b 0.01) as shown in Fig. 2. A typical image of mea-
sured and predicted K1

DP is shown in Fig. 3.

3.2.2. Quality of the Gjedde–Patlak model fit
Themeannormalised root-mean-square error for plots utilisingdata

from each time frame are shown in Table 3. The mean normalised root
mean square error was significantly higher for first-pass data than for
delayed phase data.

3.2.3. Comparison between predicted and measured K1
DP

The mean value of predicted K1
DP in each volume of interest did not

differ significantly from the measured value (Table 1) in both the ex-
perimental and validation groups with p > 0.05 in all comparisons.

3.3. Reliability of the prediction method

In the experimental group, the predicting function explained 45% of
the variance in K1

DP (R2 = 0.45, F (1, 97) = 80.5, p b 0.01). In the vali-
dation group, K1

FP explained 35% of the variance (R2 = 0.35, F (1, 27) =
14.4, p b 0.01). Prediction regression sum of square error in the exper-
imental group (69.6) was greater than in the validation group (20.5)
while the mean square error of prediction in the two datasets was sim-
ilar (0.72 and 0.76 for experimental and validation groups respectively).

4. Discussion

In this study we have established a linear relationship between
K1
FP and K1

DP in all stroke compartments. Using ourmodel, the predict-
ed delayed phase value was comparable to measured K1

DP. Our model
should assist the assessment of blood–brain barrier permeability in
acute stroke by removing the requirement for prolonged perfusion
CT acquisitions.

Although early studies used the first-pass perfusion CT data to assess
permeability changes (Lin et al., 2007; Cianfoni et al., 2006), Hom et al.
(2009) found that the optimal acquisition time to estimate blood–
brain barrier permeability using the Gjedde–Patlak plot was at least
210 s after intravenous contrast injection. At earlier time points, the
Gjedde–Patlak plot is not linear resulting in overestimation of blood–
brain barrier permeability (Dankbaar et al., 2008). Like previous authors
we observed that K1 estimates were lower for delayed phase compared
to first-pass data. Tominimize overestimationwhen first-pass perfusion
Validation group (Mean ± SD)

icted K1
DP † K1

FP Measured K1
DP Predicted K1

DP

± 0.92 9.6 ± 7.5 3.63 ± 0.89 3.27 ± 1.19
± 0.63 8.7 ± 5.7 3.53 ± 0.87 3.12 ± 0.91
± 0.82 9.3 ± 7.2 3.57 ± 0.90 3.22 ± 1.14
± 0.60 6.5 ± 2.3 2.41 ± 0.97 2.77 ± 0.36
± 0.77 8.0 ± 5.2 3.05 ± 1.05 3.02 ± 0.28



Fig. 2. Relationship between predicted K1
DP and measured K1

DP in all stroke compartments. Results for the experimental group are shown on the left and for the validation group on
the right.
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CT data are used, Schneider et al. (2011) attempted to correct for delays
in arrival time of the contrast bolus shifting the peak of the arterial input
function to match that of the tissue enhancement curve in each voxel of
an image. This approach still required acquisitions of up to 90 s in length
rather than using standard first-pass data alone because of lack of equi-
librium conditions.

Dankbaar et al. (2008) pointed out that the Gjedde–Patlak plots
constructed from first-pass data are not linear, especially for tissue
at risk because of delayed enhancement in the tissue at risk com-
pared with the arterial input function and preserved or increased in-
tensity of the enhancement in the tissue at risk. This causes the
Gjedde–Patlak plot to rise steeply during the first-pass and fall
steeply at the end of the first-pass. It should be emphasized that in
our study, the time frame from 30 to 60 s after contrast administra-
tion was used to estimate K1 in the first-pass data because this was
after the negatively sloping part of the plot and at the start of the
second positive slope of the Gjedde–Patlak plot in relation to con-
trast recirculation. Dankbaar et al. (2008) suggested that blood–
brain barrier permeability values measured from the first-pass and
from the delayed phase do not differ as much in the infarct core as
they do in the tissue at risk. The accuracy of predicting K1 values
Fig. 3. Images of predicted and measured K1
DP showing increased blood–brain barrier permea

pared to the homologous regions in the unaffected contralateral hemisphere.
did not differ significantly between stroke compartments. Predicted
values did not differ from measured K1

DP in any of the tissue compart-
ments and values were comparable with previously published blood–
brain barrier permeability values (Lin et al., 2007; Hom et al., 2009;
Dankbaar et al., 2011). The predicting function developed in the present
studywas for data obtained in specificmeasurement time frames. How-
ever, the approach should be applicable to obtaining predicting func-
tions using data from other acquisition protocols.

The quality of the fit in the Gjedde–Patlak plots, assessed with the
mean normalised root-mean-square error of the fit in each stroke com-
partment, suggested a significantly better linear fit in the delayed phase.
With the use of standard first-pass perfusion CT data, the acquisition
time of the images required to estimate blood–brain barrier permeability
is significantly reduced compared to delayed image acquisition (60 in-
stead of 200 s). This minimizes risk of motion artefacts, which are often
seen in delayed images prior to registration. Recent publications have
highlighted the radiation exposure from comprehensive CT evaluation
of acute stroke, thepossibility of radiation induced sequelawith repetitive
examinations and the need to consider the potential risk-benefit ratio for
new techniques (Latchaw et al., 2009; Mnyusiwalla et al., 2009). The ef-
fective radiation dose for the prolonged acquisition in this study was
bility in the ischemic region (white boundary) and infarct core (black boundary) com-

image of Fig.�2
image of Fig.�3


Table 3
Mean normalised root-mean-square error (±standard deviation) for graphical analysis
in each stroke compartment.

Stroke compartment First pass Delayed phase

Penumbra 0.78 ± 0.08 0.67 ± 0.06 p b 0.0001
Infarct core 0.85 ± 0.13 0.69 ± 0.09 p b 0.0001
Non-stroke tissue 0.77 ± 0.1 0.64 ± 0.08 p b 0.0001
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5.2 mSv compared to 4.5 mSv for the first-pass acquisition, a reduction of
14% in effective radiation dose.

5. Conclusion

Our model predicts delayed blood–brain barrier permeability using
first-pass perfusion CT data in patients following acute stroke. By using
first-pass data, scanning time is not prolonged thus reducing radiation
exposure and lessening the likelihood of motion artefacts. The sample
size for both groups was relatively small and future studies with larger
samples and different scanning protocols would address the generaliz-
ability of our method and its ability to predict stroke complications
such as haemorrhage and oedema.
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