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Protective Effects of Lycium barbarum Extracts on UVB-Induced
Damage in Human Retinal Pigment Epithelial Cells
Accompanied by Attenuating ROS and DNA Damage
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The medicinal herb Lycium barbarum fruit has been widely used for improving and maintaining the health of the eyes in the Far
East for many centuries. This study is aimed at investigating whether protective effects generated from the aqueous (LBA) and
ethanol (LBE) extracts of the L. barbarum fruit existed against oxidative stress-induced apoptosis in human retinal pigment
epithelial cells. L. barbarum extracts LBA and LBE exerted the activity of ROS scavenging and rescued UVB irradiation-induced
growth inhibition in retinal pigment epithelial ARPE-19 cells. Compared to LBA, the ethanol extract LBE exerted a superior
protective activity on UVB-induced growth arrest in ARPE-19 cells. Both L. barbarum extracts significantly reduced cell cycle
G2-arrest population in ARPE-19 cells. Furthermore, the cytometer-based Annexin V/propidium iodide staining assay further
showed that both L. barbarum extracts protected ARPE-19 cells from UVB-induced apoptosis. L. barbarum extracts also
reduced the activation of γH2AX, a sensor of DNA damage in ARPE-19 cells in a dose-responsive manner. By using Ingenuity
Pathway Analysis (IPA), the bioinformatics revealed that the protective effects of both LBA and LBE extracts might be involved
in three signaling pathways, especially the Toll-like receptor (TLR) pathway associated with cellular proliferation. Our study
suggests that both ethanol and aqueous extracts of L. barbarum exhibit antioxidant activity and rescue UVB-induced apoptosis
of ARPE-19 cells. Collectively, the ethanol extract exerts a superior effect on rescuing UVB-induced growth arrest of ARPE-19
compared to the aqueous extract, which might be associated with the activation of TLR signaling. Our present work will benefit
the preventive strategy of herbal medicine-based vision protection for treating eye diseases such as age-related macular
degeneration in the future.
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1. Introduction

Age-related macular degeneration (AMD), a progressive
macular retinal disease with degenerative changes, can be
divided into atrophic and exudative, characterized by the
progressive atrophy of retinal pigment epithelial (RPE) cells
and the formation of choroidal neovascularization (CNV)
[1]. RPE cells are located between the layers of photore-
ceptor cells and provide nutrition to the latter. If oxidative
damage occurs in RPE cells, the breakdown of photorecep-
tor cells would quickly follow and visual acuity might
become damaged [2].

The fruit of Lycium barbarum (LB) wolfberry is a tradi-
tional Chinese herbal medicine that has multiple functions
in pharmacology [3] like antioxidation [4–6], antiaging [7,
8], neuroprotection [9–12], cytoprotection [13, 14], and
immunomodulating [5, 15]. A previous study showed that
LBP (Lycium barbarum polysaccharides) extracted from the
fruit of L. barbarum might be responsible for the above
biological activities [16]. LBP was also shown to exert a
protective effect against oxidative damage in cells [17–20].
Based on the antioxidant activity of L. barbarum, many stud-
ies have demonstrated that LBP has a protective effect against
oxidative injury in cells [17–20], and many studies have
focused on the bioactivities of this extract of L. barbarum.
However, the effects of the ethanol fraction of LB extracts
have been little addressed by previous studies. In the study,
we prepared both aqueous (LBA) and ethanol (LBE) extracts
of LB and investigated the protective effects of LBA or LBE
on human retinal pigment epithelial (ARPE-19) cells from
UVB damage, notably proliferation inhibition and apoptosis.
We also discussed the possible mechanism underlying L.
barbarum extract-mediated protective effect on retinal
pigment epithelial cells.

2. Materials and Methods

2.1. Plant Material and Extraction. A total of 500 g of dried
fruits of L. barbarum were placed in boiling 3 L water
(100°C) for 4 h according to a traditional method described
as in the previous study [21]. After filtration, usingWhatman
no. 3 filter paper, the aqueous extract of L. barbarum was
lyophilized. For the ethanol extracts, 500 g of dried fruits
was placed in 3 L of ethanol for 3 h at 70°C. The solution
was filtrated with Whatman no. 3 filter paper and then
evaporated at 35°C with reduced pressure.

2.2. Cell Culture. Arising retinal pigment epithelia cell line-19
(ARPE-19), a monolayer of polarized epithelial cells located
between the sensory retina and choriocapillaris, is differenti-
ated and mitotically inactive under normal physiological
conditions. The ARPE-19 (No. 60,383), obtained from the
Bioresource Collection and Research Center (BCRC,
Hsinchu, Taiwan), was grown in DMEM medium (Dulbec-
co’s Modified Eagle’s Medium, Invitrogen Corporation,
Carlsbad, CA, USA) supplemented with 10% (v/v) fetal
bovine serum, 100 units/mL penicillin, and 100μg/mL
streptomycin in an incubator with 5% CO2 at 37°C. Cells
were pretreated with L. barbarum extracts (from 0 to
200μg/mL) for 2 h; then, cells were exposed to 50mJ/cm2

of UVB cultured for 24h. The experiment of different expos-
ing dose of UVB was performed in triplicate and repeated
three times to ensure reproducibility.

2.3. Assessment of Cell Viability. The cell viability was
assessed using a colorimetric tetrazolium 3-[4, 5-dimethyl-
thiazol-2-yl]-2, 5 diphenyl tetrazolium bromide (MTT)
assay. Briefly, 1× 104 cells were seeded into a 96-well plate,
and the cells were treated with different exposing doses of
UVB (from 0 to 60mJ/cm2) for indicated periods (24 and
48 hr, respectively). The final concentration of MTT in each
well was 0.5mg/mL, and the cells were further incubated.
Afterward, the media containing MTT were removed, and
the crystal formazan was dissolved entirely with Dimethyl
sulfoxide (DMSO). The absorption length of light was
measured at 570nm using a microplate reader (Thermo,
Massachusetts, USA), and the relative cell viability was
presented as the percentage of absorbance values in treated
cells to that of control cells.

2.4. Assessment of Cell Cycle Distribution. The assay of flow
cytometer-based propidium iodide (PI) staining was used
for detecting cell cycle distribution as described previously
[22]. Briefly, ARPE-19 cells were pretreated with LBA and
LBE for 2 h; then, the cells were irradiated with 50mJ/cm2

UVB for 24 hr. Afterward, trypsin-suspended cells were
washed and ethanol-fixed. After centrifugation, the cells were
stained with 10μg/mL PI (Sigma, St. Louis, MO) and 10μg/
mL RNase A at room temperature in the dark. The PI-
stained cells were further analyzed by FACScan, a flow cyt-
ometer (Becton-Dickinson, Mansfield, MA), and WinMDI/
PC-freeware V2.9 (Joseph Trotter, La Jolla, CA, USA).

2.5. Assessment of Mitochondrial Membrane Potential
(ΔΨm). The changes in the mitochondrial membrane poten-
tial (ΔΨm) were assessed using a mitochondrial permeable
lipophilic cationic dye 5,5,6,6-Tetrachloro-1,1,3,3-tetraethyl-
benzimidazolylcarbocyanine iodide (JC-1). In healthy cells,
JC-1 accumulates in the mitochondria and emits red fluores-
cence (560 nm); however, in mitochondrial cells with
changed membrane potential, the JC-1 accumulates in the
cytoplasm and emits fluorescence (530 nm). ARPE-19 cells
were pretreated with LBA and LBE and incubated with
10mg/mL JC-1 at 37°C in the dark. Cells were washed twice
with serum-free medium and detected using a fluorescence
microscope (Olympus IX71 CTS).

2.6. FITC-Annexin V/PI Apoptosis Assay. The assessment of
apoptotic cells was performed according to previous work
[22]. Briefly, cells were pretreated with LB extracts 2 hr,
respectively, prior to UVB irradiation for 24 hr. The changes
of early and late apoptosis were determined using an
Annexin-V-Fluorescein isothiocyanate (FITC)/PI Apoptosis
Detection kit (BioVision, CA 94043, USA). Briefly, cells were
resuspended in binding buffer then incubated in the dark
with FITC-labeled Annexin V and propidium iodide for
15min at room temperature; finally, the samples were diluted
with phosphate-buffered saline (PBS). Flow cytometry was
carried out on a FACScan instrument (FACS Calibur; Becton
Dickinson, Mountain View, CA, USA), and data were

2 Oxidative Medicine and Cellular Longevity



processed with WinMDI/PC-software V2.9 (written by
Joseph Trotter, Scripps Research Institute, La Jolla, CA,
USA). Cells labeled with annexin conjugated with the FITC
fluorescence were recognized as apoptotic populations.

2.7. Determination of Intracellular ROS. We measured the
changes in intracellular ROS according to the previous work
with minor modifications [23]. 5× 105 cells were seeded in a
six-well plate in triplicate. The cells were pretreated with or
without LBA and LBE 2hr prior to the UVB irradiation.
After 12hr, the cells were washed twice with PBS, collected,
and then further incubated with 10μM dichloro-dihydro-
fluorescein diacetate probe (DCFH-DA, Molecular Probes
Inc., Eugene, OR, USA) at 37°C for 30min. The fluorescence
intensity of DCFH was quantified by flow cytometry (the
length of excitation is 485 nm, and the length of emission is
525nm). The results were presented as the percentage of
the control cells (100%).

2.8. Assessment of DNADamage. Briefly, cells were pretreated
with LB extracts 2 hr, respectively, prior to UVB irradiation.
Afterward, cells were harvested and fixed with 70% ethanol
at −20°C overnight; then, the cells were washed twice with
BSA-T-PBS solution (1% BSA and 0.2% Triton X-100 in
PBS). The cells were then incubated with 0.2μg/mL antibod-
ies against phosphorylated-Ser139 H2AX (γH2AX), and the
secondary antibody was subsequently conjugated with Alexa
Fluor 488 (Jackson Laboratory, Bar Harbor, Marine, USA).
The intensity of fluorescence was measured by flow cytome-
try (FACSCalibur, Becton-Dickinson). The results were
quantified using the software Cell Quest (Becton-Dickinson).

2.9. Microarray Analysis. RNA molecules were isolated using
MirVana Total RNA Isolation Kit (Applied Biosystems, Fos-
ter City, CA, USA) according to the instructions of the man-
ufacturer. The microarray and the data analysis were
performed by Welgene Biotech (Taipei, Taiwan) using the
SurePrint G3 GE 8× 60K Microarray, 8× 60K, AMADID
028005 (Agilent Technologies, USA [24]). The arrays were
scanned with G2505C Microarray Scanner (Agilent). The
information of probes on the arrays was extracted from the
image data using Feature extraction 10.5.1.1 (Agilent) for
quantifying signal and the intensity of background.

2.10. Ingenuity Pathway Analysis. The molecular functions of
the unique gene analysis of the UVB-induced genes were
analyzed using the software Ingenuity Pathway Analysis®
(IPA, Ingenuity Systems, Redwood City, California, USA).
The changed genes which met the criteria and were corre-
lated with the biological functions of the Ingenuity Pathways
Knowledge Base (Ingenuity Systems) were included.

2.11. Statistical Analysis.All experiments were conducted in
triplicate, and the data were represented as mean± SD.
The data were subjected to an analysis of variance
(ANOVA) and Duncan’s multiple range tests. p < 0 05
was considered significant.

3. Results

3.1. UVB-Induced Cell Death in Retinal Pigment Epithelial
Cells. ARPE-19 cells were exposed to UVB light with
indicated doses of UVB (from 0 to 60mJ/cm2, respec-
tively) for 24 hr, and the cell viabilities were 100± 2.61%,
76.97± 2.35%, 62.08± 2.40%, 59.17± 2.43%, 56.68± 3.08%,
51.98± 1.78%, and 47.52± 2.92%. At 48 hr, viabilities were
100± 4.22%, 80.57± 4.48%, 75.77± 6.09%, 48.06± 4.68%,
38.02± 3.27%, 35.20± 3.08%, and 33.66± 2.86% (Figure 1).
The results showed that the irradiation of 50mJ/cm2 UVB
significantly induced cell death of RPE cells.

3.2. L. barbarum Extracts Reduced UVB-Induced Cell Death
in Retinal Pigment Epithelial Cells. To evaluate whether
LBA and LBE protected ARPE-19 cells against UVB-
induced cell death, we detected the viability of ARPE-19 cells
after UVB (50mJ/cm2) incubation for 24hr and 48hr, with
or without LBA and LBE pretreatment in 25 and 50 (μg/
mL). As shown in Figure 2, the viability of cells was decreased
to 44.51± 2.38% after being exposed to UVB (50mJ/cm2)
for 24 hr; LBA and LBE pretreatments with a variety of
concentrations from 25μg/mL to 50μg/mL for 48 hr pre-
vented the loss of cell viability. Finally, 50μg/mL of both
LBA and LBE increased the cell variety from 44.51
± 2.38% to 53.54± 2.35% and from 44.51± 2.38% to
57.96± 6.50%, respectively.

3.3. LBA and LBE Reduce Endogenous ROS Level after
Irradiated ARPE-19. As shown in Figure 2, the pretreatments
of LBA and LBE rescue the viability of ARPE-19 cells follow-
ing the irradiation of UVB. Under normal conditions,
reactive oxygen species (ROS) could act as a second
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Figure 1: The viability of UVB irradiation on growth of ARPE-19
cells. The cells were exposed to the irradiation of UVB at indicated
doses and then incubated further for 24 hr and 48 hr, respectively.
The viability of cells was determined by MTT assay. The results
are expressed as mean± standard deviation (SD) (n = 3). The (∗)
asterisk and (#) hash symbols indicate p < 0 05 vs. cells without
UVB irradiation for 24 hr and 48 hr, respectively.
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messenger in cell signaling and regulates various biological
functions [25–27]. However, excess ROS production could
inhibit proliferation of cells and cause cell death [26–29]. A
high level of endogenous ROS is highly correlated with the
pathophysiology of retinal degeneration diseases including
AMD. After exposure to UVB, levels of ROS will reach 29.4
± 5.4%, compared to pretreatment with LBA and LBE in a
high dose of 50 (μg/mL) then down to 5.9± 0.3% and 4.7
± 0.2%, respectively. As shown in Figure 3, LBA and LBE
reduced the levels of endogenous ROS in human ARPE-19
cells after the irradiation of UVB (p < 0 05).

3.4. LBA and LBE Significantly Reduced UVB-Induced
Apoptosis of ARPE-19. To determine whether LBA and LBE
mitigated cell apoptosis in UVB-irradiated ARPE-19 cells,
the cytometer-based Annexin V/PI dual staining assay was
conducted. ARPE-19 cells were cultured with 0, 25, and
50μg/mL of LBA and LBE for 24 hr before being irradiated
with UVB 50mJ/cm2 for 24 hr. Data are represented as
(mean± SD) of five individual experiments, with p < 0 05
compared with control. Following UVB-induced apoptosis
of ARPE-19 cells, incubation of two treatments for 24 hr
demonstrated levels of apoptotic cells decreased from 29.5
± 3.4% to 15.7± 5.1% and 9.3± 2.3% by LBA and down to
14.7± 5.1% and 9.4± 1.7% by LBE, respectively. As shown
in Figure 4, the results showed that both treatments protect
apoptosis in the ARPE-19 cells, suggesting the protective
effects of LBA and LBE on ARPE-19 cell.

3.5. L. barbarum Extracts Attenuate UVB-Induced Loss of
Mitochondrial Membrane Potential. Mitochondria-mediated

signaling is mainly responsible for apoptosis; we further
determined whether LB extract protects UVB-induced apo-
ptosis through the regulation of mitochondrial signaling.
The JC-1 fluorescence dye was used for detecting the loss of
mitochondrial membrane potential (MMP), a marker of
mitochondrial-mediated apoptosis [30]; therefore, we
assessed the MMP membrane potential (ΔΨm) in UVB-
irradiated cells using JC-1 staining. As shown in Figure 5,
the results show that L. barbarum extract pretreatment had
strong intensity of red fluorescence (J-aggregation) and weak
intensity of green fluorescence (JC-1 monomer) compared to
UVB irradiation alone, indicating that both L. barbarum
extracts LBA and LBE prevent the loss of MMP in UVB-
irradiated cells.

3.6. LBA and LBE Protected UVB-Induced DNA Damage of
ARPE-19 Cells. γH2AX, a phosphorylated histone variant
H2AX at site Ser139, is a marker of DNA damage [31]. The
assessment of γH2AX is widely used for detecting DNA dam-
age. As shown in Figure 6, the protective ability of both LBA
and LBE pretreated with various concentrations at 25 and
50μg/mL shows 24.6± 2.1% of UVB-irradiated, 8.7± 0.4%
and 6.6± 0.9% of LBA, and 7.8± 0.6% and 6.6± 0.4% of
LBE significantly attenuated the activation of γH2AX in
a dose-responsive manner, suggesting a protective role of
both LBA and LBE in UVB-induced apoptosis of human
ARPE-19 cells.

4. Discussion

Chronic photooxidative stress from the environment could
cause various damages including the integrity of the mem-
brane, increased ROS, DNA damage, and cell death of RPE.
Dysfunction and degeneration of RPE cells are crucially
involved in the pathogenesis of AMD or other RPE
degeneration-associated diseases [32, 33]. The apoptotic
death of RPE cells, followed by photoreceptor cell death, is
thought to mainly contribute to the pathogenesis of the dry
form of AMD [33]. The progression of AMD pathogenesis
is highly correlated with various oxidative stresses and could
be prevented or delayed by supplying vitamin C or other
antioxidants [34, 35]. L. barbarum (wolfberry) has been used
as a traditional antiaging herb in Chinese pharmacopeia over
a long history [36]. LBA, the primary active ingredient of
lycium barbarum, isolated from the aqueous extracts of
lycium barbarum, has multibioactivity properties on modu-
lating cellular physiology, and LBA could exert protective
effects on hepatocytes and neurons of the eye [37–40]. How-
ever, little is known regarding ethanol extracts of LB.

To confirm whether LB extracts LBA and LBE could pro-
tect ARPE-19 cells against UVB-induced cell damage, we first
examine the viability of ARPE-19 cells after the irradiation of
UVB. Our results showed that the pretreatments of both LBA
and LBE significantly mitigated the proliferation of ARPE-19
cells. Under normal conditions, reactive oxygen species
(ROS) could act as a second messenger in cell signaling and
regulates various biological functions [25–27]; however, a
high level of endogenous ROS is highly correlated with the
pathophysiology of retinal degeneration diseases including
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Figure 2: L. barbarum extracts rescue the viability of UVB-treated
cells in an appropriate concentration. ARPE-19 cells were
pretreated with either LBA or LBE for 2 hr before being exposed
to UVB irradiation. The cell viability was determined by MTT
assay 24 hr and 48 hr after UVB irradiation (50mJ/cm2). The
control group was the UVB-irradiated cells without L. barbarum
extracts. The results are expressed as a percentage of control and
are represented by mean± SD (n = 3). The asterisk indicates p <
0 05 vs. UVB-exposed cells without LBA and LBE pretreatments.
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AMD. Here, we demonstrated that both aqueous and ethanol
extracts of L. barbarum could enhance antioxidant activities
and attenuate the levels of endogenous ROS in ARPE-19
cells. Furthermore, both aqueous and ethanol extracts of L.
barbarum have potent antioxidant activities and rescue cells
from UVB-induced apoptosis. Moreover, ethanol extracts
of L. barbarum display stronger antioxidant effects than the
aqueous extract of L. barbarum. For bioactive constituents,
L. barbarum is rich in antioxidants, including hydrophilic

polysaccharides [41] and the hydrophobic flavonoids carot-
enoid and riboflavin [42]. Despite polysaccharide fractions,
LBP has been shown to have antioxidant activity, and a
previous study revealed that crude polysaccharide extracts
exhibited stronger antioxidant activity than purified polysac-
charide fractions (LBP) because antioxidants such as carot-
enoids, riboflavin, ascorbic acid, thiamine, and nicotinic
acid are more abundant in crude extracts. In our study, the
results showed that both LBA and LBE reduced the level of
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Figure 3: Effect of L. barbarum extracts on reactive oxygen species (ROS) production of ARPE19 cells after UVB irradiation exposure. (a)
ARPE-19 cells pretreated with PBS or L. barbarum extracts LBA and LBE 25 and 50μg/mL for 2 hr. After being exposed to 50mJ/cm2

UVB irradiation, cells were harvested and subjected to a flow cytometer-based DCFDA staining assay, which is oxidized by ROS to the
high fluorescence of DCF for detecting the changes of H2O2 in cells. (b) The quantitative analysis of (a). The asterisk symbols indicate p <
0 05 vs. UVB-irradiated cells without LBA or LBE pretreatments.
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Figure 4: Pretreatment with L. barbarum extracts rescues UVB-induced apoptosis of retinal pigment epithelial cells. (a) ARPE-19 cell was
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ROS in human ARPE-19 cells after UVB irradiation. More-
over, the JC-1 staining for detecting the loss of mitochondrial
membrane potential (MMP) as a marker of mitochondrial-
mediated apoptosis was conducted, and the results showed
that the pretreatment of both LB extracts prevented the loss
of MMP following UVB irradiation.

Therefore, we further determined whether LBA and LBE
occluded cell apoptosis under UVB-irradiated ARPE-19 cells
using a cytometer-based Annexin V/PI double staining
assay. Consistently, our results showed that UVB-induced

apoptosis of ARPE-19 cell at 24 hr; however, the percentages
of UVB-induced apoptotic cells were decreased with both LB
extract pretreatments. Both extracts exerted protective
effects on UVB-induced apoptosis in an ARPE-19 cell line.
It is well known that irradiation of UVB or visible light
causes photochemical lesions or other damages through
the induction of DNA damage [43]; therefore, examination
of whether LB extracts could protect ARPE-19 cells from
DNA damage using the assessment of γH2AX, a marker of
DNA damage [31], is desirable.
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Figure 6: The protective effect of LB extracts on UVB-induced DNA damage of ARPE-19 cells. (a) ARPE-19 cells pretreated with LBA and
LBE 25 and 50μg/mL for 2 hr prior to the exposure to 50mJ/cm2 UVB irradiation, cells were harvested and subjected to the flow cytometer-
based γH2AX immunostaining assay and repeated in three independent experiments. (b) The quantitative analyses of γH2AX level in ARPE-
19 cells (n = 3). The asterisk indicates p < 0 05 vs. UVB-exposed cells without the pretreatment of LB extracts.
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Our results showed that the pretreatments of both LBE
and LBA significantly attenuated the activation of γH2AX
in a dose-responsive manner, suggesting a protective role of
LB extracts in UVB-induced DNA damage of human
ARPE-19 cells. Because of the great benefits of L. barbarum,
many studies have been conducted extensively on the pre-
ventive effects of LB extracts against eye diseases [44–46].
For example, the work of Li et al. suggested that LBP is neu-
roprotective and could delay secondary degeneration of reti-
nal ganglion cells (RGCs), which might be associated with the
downregulation of oxidative stress and the MAPK JNK/c-Jun
pathway in retinal tissue [46]. Furthermore, the work of Liu
et al. demonstrated that the treatment of LBP not only
improves morphology and function of retinal tissue in rd1
mice, an in vivo photoreceptor degenerating model of retini-
tis pigmentosa, but also delays the functional degeneration of
RGCs [45]. However, little is known regarding the bioactivity
and mechanism of L. barbarum against DNA damage; conse-
quently, our study is the first to reveal L. barbarum extracts as
protective agents for UVB-induced DNA damage.

Previously, Lin et al.’s work analyzed the interrelation-
ship between Lycium barbarum and gene expression in
mouse spleen using oligo-microarray, and their result
showed that three genes, Bcl-2, NFκB, and TNF, were upreg-
ulated whereas two proapoptotic genes (apoptotic protease-
activating factor-1 (apaf-1) and caspase-3) were downregu-
lated by the treatment of Lycium barbarum [47]. Given the
superior cytoprotection on UVB irradiation-induced growth
arrest by ethanol extract LBE, we further investigated the
mechanism using human global gene expression profiles of
RNA isolated from ARPE-19 cells pretreated with L. bar-
barum extracts LBE or LBA prior to the irradiation of UVB
analyzed by a cDNA microarray at 24 hr. We identified that
a total of 403 genes in LBE-treated cells and a total of 558
genes in LBA-treated cells were changed, and 308 genes
might be involved in the signaling pathways associated with
the protective effect of L. barbarum extracts using analysis
by IPA bioinformatics software (Figure 7(a)). The analysis
of IPA further suggested that three signaling pathways of
the top-level functional annotation categories of genes
including PPAR, Integrin survival signaling, and Toll-like
receptor (TLR) signaling pathways were affected by the pre-
treatment of both L. barbarum extracts LBE and LBA
(Figures 7(b) and 7(c)).

Peroxisome proliferator-activated receptors (PPARs) are
important nuclear transcription factors for oxidative defense
system in eukaryotic cells. The PPAR family has at least three
members including PPARα, PPARβ/δ, and PPARγ [48]. For
example, PPARγ has been shown to have an antioxidant
function through transcriptional regulating a number of
antioxidation-associated gene catalase (CAT), glutathione
peroxidase (GPX-3), heme oxygenase-1 (HO-1), and manga-
nese superoxide dismutase (MnSOD) [49].

Integrins are transmembrane proteins and the heterodi-
merization of integrin receptors have been shown to regulate
cell survival, differentiation, and migration of metazoa
through communicating signals via the plasma membrane
[50]. Neuronal survival is exhibited by olfactory ensheathing
cell, a type of glia that supports axon outgrowth olfactory

system through integrin/milk fat globule-EGF factor 8
((MFG-E8) a secreted glycoprotein) signaling pathway [51].
Moreover, a recent study demonstrated that the sensory
axons of the spinal cord can regenerate by expressing
tenascin-binding α9-integrin together with kindlin-1, the
integrin activator [52].

Toll-like receptors (TLRs) are single and noncatalytic
receptors with membrane-spanning domains and the TLRs
can recognize microbial pathogen and initiate signal trans-
duction pathways of innate immunity [53]. Beyond the role
of TLRs in activating innate immunity, TLR seems to play a
critical role in neuron survival [54–57]. Patel and Hackam’s
work suggested that the oxidative stress-activated TLR3 trig-
gers neuron protection rather than pathogenic signaling in
the retina tissue of mice [58]. Bsibsi et al.’s work showed that
inflammation-induced TLR-3 activation triggers a neuropro-
tective response rather than a proinflammatory response in
human astrocytes [59]. Furthermore, Jeong et al.’s work
showed that polyinosinic poly-cytidylic acid- (poly(I:C)-)
induced activation of TLR3 might favor the survival of
microglia after cerebral ischemia, suggesting the neuropro-
tective role of TLR3 [60]. Controversially, the activation of
TLR might also create a degenerative effect in neuron cells;
for example, Chintala et al.’s work showed that poly(I:C)-
induced TLR3 activation upregulated the protein level of
MAPK JNK3 and promoted the degeneration of RGCs in
mouse eye [61]. Similarly, Gao et al.’s work showed that
poly(I:C)-induced TLR3 evoked an inflammatory response
and cell death both in murine photoreceptor 661W cells
and an in vivomodel [62]. Therefore, the role of TLR in pro-
survival or pro-cell death of neuron cells may depend on the
types [55] of stimuli, the level [60] of stimuli, and the down-
stream of TLR signaling [58].

In the results of microarray analysis combining the IPA
bioinformatics approach, the activation level of the TLR
pathway is higher in LBE pretreatment than that in LBA pre-
treatment (Figures 7(b) and 7(c)). Given the pivotal role of
the TLR pathway in cell proliferation and cell survival [63],
it is worth further investigating the three signaling pathways,
especially the TLR pathway in LB extract-mediated cytopro-
tection in human retinal pigment epithelial cells.

4.1. LBA and LBE Rescue UVB-Induced G2-Arrest after
Irradiated ARPE-19. In the study, 50mJ/cm2 of UVB irradi-
ation significantly caused the accumulation of cell cycle G2/
M population in human ARPE-19 cells. Interestingly, Chou
et al.’s work showed that 10 to 30mJ/cm2 UVB caused S-
arrest in ARPE-19 cells [64]; we suggest that different doses
of UVB irradiation might result in the discrepancy in the
arrest of cell cycle S and G2/M phases. Furthermore, the pre-
treatment of both LBA and LBE rescues UVB irradiation-
induced G2/M-arrest in ARPE-19 (Figure S1).

5. Conclusions

We demonstrated that both aqueous and ethanol extracts of
L. barbarum exhibit antioxidant activities and prevent UVB
irradiation-induced DNA damage and apoptosis of ARPE
cells. Interestingly, ethanol extracts of L. barbarum exert
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Figure 7: Activation of genes involved in L. barbarum extract-mediated protective effect on UVB irradiation. The human global gene
expression profiles of RNA were isolated from ARPE-19 cells pretreated with L. barbarum extracts LBE or LBA prior to the irradiation of
UVB then analyzed by a cDNA microarray at 24 hr. (a) A total of 403 genes in LBE and a total of 558 genes in LBA were changed, and
308 genes might be involved in the signaling pathways associated with the protective effect of L. barbarum extracts using the analysis of
IPA bioinformatics software. (b). Top-level functional annotation categories of genes including peroxisome proliferator-activated receptor
(PPAR), the nuclear receptor as a transcription factor, Integrin, and Toll-like receptor (TLR) signaling pathways were affected by the
pretreatment of both L. barbarum extracts LBE and LBA. Remarkably, the activation level of the TLR pathway is higher in the LBE
pretreatment than in the LBA pretreatment. (c) Genes might be involved in the activation of the TLR pathway. A pink color indicates the
upregulation of the genes. A green color indicates the downregulation of the genes.
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stronger antioxidant than aqueous extract, suggesting that
polyphenolic components might enhance the antioxidant
activities of the ethanol extract of L. barbarum. Based on
the results of the present study, we conclude that both aque-
ous and ethanol extracts of L. barbarum protect ARPE-19
cells from UVB exposure-induced growth and apoptosis
through reducing endogenous ROS and DNA damage
(Figure 8). This study is the first to depict the cytoprotective
activity of L. barbarum extracts on cytoprotection in UVB-
induced DNA damage in ARPE-19 retinal cells that might
be correlated with three signaling pathways including PPAR,
Integrin, and TLR. Further investigation on the ethanol
extracts of L. barbarum will benefit the prevention of retinal
degenerative-associated diseases such as AMD in the future.
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