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Abstract 
Background: Ongoing efforts attempt to define farms as regenerative 
to aid marketers, policymakers, farmers, etc. The approach needs to 
balance precision with function, and must be transparent, simple, 
scalable, transferable, incorruptible, and replicable. 
Methods: We developed practice-based scoring systems to 
distinguish regenerative cropland and rangeland, and validate them 
based on whether these scores scaled with regenerative goals on 
actual farm operations. Study systems included cornfields of the 
Upper Midwest, almond orchards of California, and rangeland 
systems of the Northern Plains. Response variables included soil 
carbon and organic matter, soil micronutrients, water infiltration 
rates, soil microbial communities, plant community structure, 
invertebrate community structure, pest populations, yields, and profit. 
Results: Regenerative outcomes were strongly correlated with our 
approach to farm scoring. Soil organic matter, fine particulate organic 
matter, total soil carbon, total soil nitrogen, phosphorous, calcium and 
sulfur all increased alongside regenerative matrix scores in one or 
both of the cropping systems. Water infiltration rates were 
significantly faster in more regenerative almond orchards. Soil 
bacterial biomass and Haney soil health test scores were higher as 
cropland incorporated more regenerative practices. Plant species 
diversity and biomass increased significantly with the number of 
regenerative practices employed on almonds and rangelands. 
Invertebrate species diversity and richness were positively associated 
with regenerative practices in corn, almonds, and rangelands, 
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whereas pest populations and almond yields were unaffected by the 
number of regenerative practices. Corn yields were negatively 
associated with more regenerative practices, while almond yields 
were unaffected by the number of regenerative practices. Profit was 
significantly higher on more regenerative corn and almond 
operations. 
Conclusions: Our scoring system scaled positively with desired 
regenerative outcomes, and provides the basis for predicting 
ecosystem responses with minimal information about the farming 
operation. Natural clusters in the number of regenerative practices 
used can be used to distinguish regenerative and conventional 
operations.
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Introduction
The term “regenerative agriculture” was first coined by  
Robert Rodale (1983). The name highlighted how industrialized 
agriculture was severely reducing its natural resource base, and 
that without rebuilding that natural resource base, “sustainable  
agriculture” and “conservation agriculture” were insufficient 
for supporting the food and natural resource needs of a growing  
human population. Regenerative agricultural systems increase 
soil health and promote biodiversity while producing nutri-
tious food profitably. Some outcomes of a regenerative opera-
tion are improved greenhouse gas relationships, balanced water  
relationships, reduced pollution from agrichemicals, increased 
resiliency of farms, more nutritionally robust foods, increased eco-
system services, etc. (Elevitch et al., 2018; Francis et al., 1986; 
Sherwood & Uphoff, 2000). A central challenge for researchers, 
policy makers, consumers, etc. is defining what a regenerative  
farm is and having a standardized method for discerning them 
from conventional farms (Newton et al., 2020; Schreefel et al.,  
2020).

The principles and philosophy that define regenerative systems 
have been well formulated by practitioners and educators  
(Lal, 2020; Schreefel et al., 2020; UnderstandingAG, 2020;  
USDA-NRCS, 2020). Essentially, regenerative practices can 
be distilled down to two central principles: 1) reduce uniform  
disturbance (such as tillage and agrichemical use), and 2) increase 
diversity (biodiversity, and the diversity of revenue streams from 
an operation). The first working formula for these principles was  
proposed by LaCanne & Lundgren (2018) and included four  
principles: 1) reduce or eliminate tillage, 2) never leave bare 
soil, 3) maximize plant diversity and productivity on a farm,  
and 4) integrate livestock and cropping operations. Here, we 
add a fifth principle: 5) reduce or eliminate synthetic agrichemi-
cals. In croplands, practices such as no-till, diverse crop rotations  
lasting more than four seasons, cover cropping, intercropping  
and interseeding, and livestock integration all contribute to 
a regenerative farming model (LaCanne & Lundgren, 2018; 
Rhodes, 2017). In rangelands, practices that actualize regenerative  
principles include reduction/elimination of synthetic agrichemi-
cals and adaptive multi-paddock grazing systems that allow a 
rangeland to rest following the punctuated disturbance of grazing  
(Teague & Kreuter, 2020; Wagner et al., 2020). Regenerative  
farms are also diverse and complementary in their enterprises, 
and adaptive in their management choices, ensuring that a  
farm is resilient and profitable in the face of adversity. These prac-
tices are dependent upon one another within a system for them  
to be optimally successful, and it is the system, not the individual 
practices, that drives the success of an operation.

Classifying regenerative farming operations has to balance  
precision with function. Adaptability and innovation are hall-
marks of operations that are guided by regenerative principles.  
Therefore, while a matrix of responses or practices must have  
sufficient nuance to accurately reflect a regenerative system,  
it cannot be a rigid formula that inhibits that critical adaptabil-
ity and ongoing innovation. Nor should a scoring system be so 
complex as to exclude adoption by regenerative farmers. Clas-
sification schema have been developed for other movements 

within ecological agriculture, including conservation agriculture  
(Hendrix et al., 1986; Kassam et al., 2012), organic agriculture 
(USDA-AMS, 2020), holistic management (Alfaro-Arguello  
et al., 2010), mob grazing (Gurda et al., 2018), etc. In these  
systems, the tangible manifestations of core principles are  
represented by a series of standards or practices. An inher-
ent risk is that regenerative agriculture will follow the same 
pattern, and come to be defined by specific standards or  
practices, rather than by the principles and goals of a regen-
erative system. There are a growing number of certification  
programs and definitions for regenerative farming that cap-
ture key themes of regenerative agriculture and assemble  
various practices that may produce intended outcomes (AGW, 
2020; Carbon_Underground, 2020; HMI, 2020; ROC, 2020;  
TerraGenesis, 2020). In the end, any labelling or certification 
system must be validated empirically to determine whether it  
results in the intended outcomes.

Regenerative agriculture needs to be defined by principles  
and supported by empirical data from farms displaying a wide 
range of management practices to ensure the implemented 
principles are achieving regenerative farming goals. The 
approach to defining a regenerative system must be transparent, 
simple, scalable, transferable, incorruptible, and replicable. 
Our team has created a series of questions for land managers 
that encapsulate the principles that drive regenerative agricul-
ture as defined by the farmers and ranchers (Fenster et al., 2021;  
LaCanne & Lundgren, 2018; Pecenka & Lundgren, 2019;  
Schmid & Lundgren, 2021). Each answer receives a score, and 
higher scores are indicative of more regenerative operations.  
A regenerative matrix score is attained by summing the scored 
results to these questions. The first goal of this paper is to deter-
mine whether key response variables pertaining to soil health, 
biodiversity, ecosystem function, and farm performance (Elevitch 
et al., 2018; Schreefel et al., 2020) scale with the assignment of 
scores from our regenerative matrix. Essentially, does a higher 
regenerative score in cropland and rangeland consistently scale 
positively with the desired outcomes of regenerative farming? 
The second goal of this paper is to determine whether there is a 
threshold score that can be used to distinguish between regen-
erative and conventional systems? If this matrix performs these 
functions, then this approach could be used to advance the field 
of regenerative agriculture by providing a clear, scalable and  
transferable approach to characterizing a regenerative farm. 

Methods
Two independent scoring systems based on a narrow suite of 
practices were used to define regenerative cropland and range-
land systems. Three food systems were examined in this project,  
corn in the Upper Midwest (LaCanne & Lundgren, 2018), 
almond orchards in California (Fenster et al., 2021), and range-
lands of the Northern Plains (Pecenka & Lundgren, 2019;  
Schmid & Lundgren, 2021). Farms included in these studies 
represented successful, established systems and were in their  
respective farming philosophies for at least three years. Some of 
the farms were targeted for their reputation as being leaders in  
regenerative farming, but the resulting fields and ranches in real-
ity represented a wide continuum from very conventional to very 
regenerative farming systems.
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We examined different suites of response variables that are  
considered representative of a regenerative system. In croplands  
(Table 1), the elimination of tillage, maintaining ground cover 
through planting cover crops or fostering resident vegetation, 
planting hedgerows, and use of organic amendments (compost, 
manure, mulch, compost teas), and grazing, were all considered  
regenerative (LaCanne & Lundgren, 2018; Soto et al., 2021).  
Tillage, maintaining bare soil, and spraying synthetic insecti-
cides, herbicides, fungicides, use of chemical fertilizers were 
all considered conventional practices. Regenerative practices 
were scored as 1, and conventional practices were scored as 0.  
In rangelands (Table 2), management systems were defined 
by their stocking density, rotation frequency, the duration 
that the pasture rested following grazing, and use of ivermec-
tin products. Cattle operations were categorized based upon  
their combination of these practices to form the different  
systems (Colley et al., 2019; Teague & Barnes, 2017). Use of  
ivermectin in the ranches was categorized as high (multiple 
applications during a year; scored as 0), low (single annual use,  
not applied during grazing period; scored as 1) and no ivermec-
tin (scored as 2). Operations’ stocking densities (animal units 
[AU] per ha), were categorized as fewer than 5 animal units  
(AU) per ha (scored as 0), 5–10 AU per ha (scored as 1), and 
more than 10 AU per ha (scored as 2). Operations were catego-
rized as having a rotation frequency of 30 d or more (scored 0), 
between 10–30 d (scored as 1), and less than 10 d (scored as 2).  
Finally, rest periods on ranches were scored as continuously 
grazed (no rest; scored as 0), allowed to rest 1 > and < 30 d (1), 
or >30 d (2) over a growing season. A simple questionnaire to  
obtain the necessary information to populate our matrices can be 
found as in Extended data (Lundgren, 2021).

The study systems
Corn was examined on 20 farms (each with four fields) in North 
Dakota, South Dakota, Minnesota, and Nebraska in 2015 and 
2016. Fields were a minimum of 4 ha in size, and the sampling 
area in each field was 61 × 61 m. All samples were taken at least  
12 m into the field to minimize border effects. Only three 
of these farms were certified organic. Genetically modified  
(Bt hybrid) corn was universally treated with neonicotinoid 
seed treatments and was regarded as insecticide-treated. In 
corn, we examined soil organic matter (SOM), fine particulate  
organic matter (fPOM), soil bulk density, water infiltration,  
invertebrate communities in the soil, on the soil surface and in the 
plant canopy, pest abundance, yields, and profits.

Sixteen California almond orchards were studied in 2018 and 
2019. Replicate plots (n = 4; 40 × 40 m) were established in  
each orchard. Plots were established 20 m into the field to 
avoid field margin effects. The orchards in the study ranged  
from the Northern half of the San Joaquin Valley through the  
Capay Valley to Chico. Orchards were 3–38 y old. Almond  
orchards are generally planted with at least two different varie-
ties, with over-lapping bloom periods to promote pollination.  
Therefore, all of the orchards in the study contained at least 
two varieties, and almond varieties varied among the orchards. 
In each orchard, we examined a full range of soil and water  
characteristics, soil microbial, plant, and invertebrate community 
characteristics, pest damage, yields, and economics.

Dung invertebrate communities were examined on 16 ranches 
in a 7,935 km2 region in eastern South Dakota during 2015  
and 2016. All sites were grazed by cattle for at least 5 y, but 
annual grazing intensity and grazing period varied. Herds ranged  
from 20 to 120 individuals, and the cattle differed in size, breed, 
and administered ivermectin products. Focal pastures were at  
least 4 ha in size. The systems were ranked from regenera-
tive to conventional based on several practices (Table 2). In our  
study, the designation of management systems was based 
upon the grouping of several management practices that were  
occasionally all present on the same cattle operation.

A second study of cattle ranches examined plant communi-
ties and helminth fecal parasites. Selected sites (n = 20 per 
grazing treatment) focused on rangelands in the Dakotas  
during 2019 and 2020. Grazing treatments were assigned based 
on a ranch management character matrix, which consisted of  
rancher-defined best management practices for regenerative and 
conventional ranching systems (Table 2). This character matrix 
was adapted from a similar study conducted in the region by  
Pecenka & Lundgren (2019). Grazing treatments were paired 
within each region and year. Each grazing system had been  
practiced on the site for at least 4 years.

Soil quality
Soil physical and chemical properties were assessed in corn 
fields and in almond orchards. SOM and bulk density (BD)  
were assessed in both of these systems. In cornfields and almonds, 
four soil cores (8.5 cm deep, 5 cm in diam) were randomly col-
lected from a single field on each of 20 farms; cores were col-
lected at locations that were at least 10 m apart. On each sample,  
vegetative material was removed from 60 g of soil by hand, and 
the resulting samples were stored in aluminum containers at  
105°C overnight. SOM in the soil sample was measured using  
the weight loss on ignition (LOI) technique (Davies, 1974). 
To measure bulk density, four soil cores of known volume per  
field were weighed before and after drying at 100°C for 55 h.

In cornfields, we also measured fine particulate organic mat-
ter (fPOM). Approximately 30 g of soil was weighed in  
sterile aluminum pans. The soil was soaked in 90 mL of hex-
ametaphosphate for 24 h, mixed for 5 min with a stainless-steel 
mixer, and were then sieved through screens with 500 μm and 
then 53 μm holes; the finer screen isolated the fPOM fraction.  
The isolated sample was then weighed, dried for 24 h at 105°C. 
Samples were then cooled in a desiccator cabinet, weighed, 
baked in a furnace for 4 h at 450°C. The samples were then  
cooled in a desiccator cabinet and weighed a final time.

In almond orchards, soil samples were collected at random 
locations in the inter-row area of each plot to determine total 
soil carbon (TSC) and total soil nitrogen (TSN). The probe  
(2.54 cm × 91.44 cm) was inserted 60 cm deep. Each core 
was placed into a plastic bag that was stored on ice until  
it could be transferred to a paper bag in the laboratory.  
Samples were weighed, dried, and weighed again. All visible 
pieces of rock and organic matter were removed from the sam-
ples. The samples were ground and were then passed through 
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Table 2. A matrix of farm practices in rangelands that can be used to distinguish 
regenerative and conventional ranches. Unshaded rows refer to ranches that were 
included in the dung invertebrate assessment. Shaded rows refer to ranches that were 
examined in the fecal parasite and plant community study.

Ranch location 
(Nearest town, 
State)

Ivermectin Stocking 
density

Rotation 
frequency

Rest 
period

Composite 
matrix 
score

Bruce, SD 1 0 0 0 1

Castlewood, SD 1 2 1 2 6 

Clear Lake, SD 2 2 2 2 8 

Estelline, SD 1 1 1 2 5 

Estelline, SD 0 1 0 0 1 

Flandreau, SD 0 0 0 0 0 

Gary, SD 2 2 2 2 8 

Goodwin, SD 2 2 2 2 8 

Madison, SD 0 1 1 2 4 

Milbank, SD 1 1 1 2 5 

Milbank, SD 0 0 0 2 2 

Sioux Falls, SD 2 2 2 2 8 

Summit, SD 1 1 1 2 5 

Thomas, SD 1 1 2 2 6 

Twin Brooks, SD 2 2 1 2 7 

Volga, SD 0 0 0 0 0 

Hayti, SD 0 0 0 0 0 

Hayti, SD 0 0 0 0 0 

Strandburg, SD 0 0 0 0 0 

Estelline, SD 0 0 0 0 0 

Watertown, SD 1 2 2 2 7 

Hayti, SD 1 1 2 2 6 

Estelline, SD 2 1 2 2 7 

Gary, SD 2 1 2 2 7 

Goodwin, SD 1 1 2 2 6 

Tuttle, ND 1 0 0 0 1 

Tuttle, ND 0 0 0 0 0 

Wing, ND 0 0 0 0 0 

Moffit, ND 1 0 0 0 1 

Fort Rice, ND 2 2 2 2 8 

ND7; Wing, ND 2 1 2 2 7 

Bismarck, ND 2 2 2 2 8 

Wing, ND 2 2 2 2 8 
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a sieve with 0.180 mm openings. Elemental analysis was con-
ducted on three subsamples (12–15 mg) that were housed on tin  
capsules (5 × 9 mm) (ECS 8020, NC Technologies, Milan, 
Italy). To control for the relative compaction and other  
circumstances, the mass (Mg) of TSC per ha was assessed using 
the Equivalent Soil Mass (ESM) method, in which a cubic spline 
of Mg of TSC per depth layer was calculated (Wendt & Hauser, 
2013). This resulted in the assessment of carbon as Mg of TSC/ha  
at 6,000 Mg (59.2 cm deep). 

Soil macro- and micronutrients were also quantified in the 
almond orchards. The samples were ground to pass a 2 mm  
sieve and divided into three subsamples (two were 4 g each 

and one weighed 40 g). The 40 g soil sample is analyzed with a  
24 h incubation test at 24oC. This sample is wetted through 
capillary action by adding 20 mL of deionized water to a  
237 mL glass jar and then capped. After 24 h, the gas inside 
the jar was analyzed using an infrared gas analyzer (IRGA)  
(Li-Cor 840A, LI-COR Biosciences, Lincoln NE) for CO

2
-C. The 

two 4 g samples were extracted with 40 mL of deionized water 
and 40 mL of H3A to extract the NO

3
-N, NH

4
-N, and PO

4
-P  

from the samples. The samples were shaken for 10 min, centri-
fuged for 5 min, and filtered through filter paper (Whatman 2V, 
Cytiva, Marlborough, MA). The water and H3A extracts were ana-
lyzed on a flow injection analyzer (Lachat 8000, Hach Company,  
Loveland CO). The water extract was also analyzed on a  

Ranch location 
(Nearest town, 
State)

Ivermectin Stocking 
density

Rotation 
frequency

Rest 
period

Composite 
matrix 
score

Moffit, ND 2 2 2 2 8 

Summit, SD 0 0 2 2 4 

Summit, SD 0 0 0 0 0 

Milbank, SD 2 1 1 2 6 

Milbank, SD 0 0 0 0 0 

Watertown, SD 2 2 2 2 8 

Castlewood, SD 0 0 0 0 0 

Summit, SD 2 0 2 2 6 

Milbank, SD 0 0 0 0 0 

Castlewood, SD 2 2 2 2 8 

Castlewood, SD 0 0 1 2 2 

Sheldon, ND 0 1 2 2 5 

Sheldon, ND 0 0 0 0 0 

Napoleon, ND 0 2 2 2 6 

Napoleon, ND 0 0 0 0 0 

Ellendale, ND 2 2 2 2 8 

Forbes, ND 1 0 1 2 4 

Forbes, ND 2 2 2 2 8 

Berlin, ND 0 1 1 0 2 
Management practices of cattle operations were scored 0-2 based, with higher numbers reflecting practices 
that promote biodiversity and soil quality. Ivermectin application frequency was divided into multiple 
applications (0), single application not during grazing season (1), and no ivermectin use (2). Stocking density 
(animal units; AU) was divided into <5 AU/ha (0), 5-10 AU/ha (1), and >10 AU/ha (2). Rotation frequency was 
divided into >30 d rotation (0), 10-30 d rotation (1), and <10 d rotation (2). Rest period was considered as 
continuously grazed during the growing season (0), a rest period of 1-30 d (1), and a rest of > 30 d (2).
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Teledyne-Tekmar Torch C:N analyzer for water-extractable  
organic C and total N. The H3A extract was also analyzed on 
a Thermo Scientific ICP-OES instrument for P, K, Mg, Ca, 
Na, Zn, Fe, Mn, Cu, S and Al. The Haney soil health score  
combines five independent measurements of a soil’s bio-
logical properties to provide a general estimate of the overall 
health of a soil system (Haney et al., 2018). It is calculated as  
1-d-CO

2
-Carbon/10 plus water extractable organic carbon 

(WEOC)/50 plus water extractable organic nitrogen (WEON)/10.

Water infiltration
We used the rainfall infiltration rate kits of the Natural  
Resource Conservation Service (NRCS) to sample water infiltra-
tion rates in northern cornfields and California almonds. A metal 
ring (15 cm diam, 13.5 cm tall) was hammered 6.5 cm into the 
soil. Water (444 mL) was poured into the ring, and the time it 
required to saturate into the soil was recorded. A second container  
of 444 mL of water was poured into the ring, and the time to satura-
tion was recorded again. In cornfields, this process was recorded 
during anthesis.

Microbial diversity
Microbial communities were only sampled in almond orchards 
using the Phospholipid fatty acid (PLFA) test. Soil cores  
(15 cm depth, 1.9 cm diam; N = 16), were taken from four rep-
licates per site per farm during the fruiting period. The samples 
were taken at random locations within each replicate, at least  
5 m apart, using a transect that diagonally bisected the plot.  
Soil cores for each orchard were combined in a sealed  
plastic bag and placed in a cooler with dry ice (Drenovsky 
et al., 2010). Soil samples were stored at -80˚C until they 
could be freeze-dried and ground to 2 mm particle sizes.  
Phospholipid fatty acid (PLFA) testing provided an index of  
a soil’s microbial biomass and composition (Frostegård  
et al., 2011). The microbial biomass and community composi-
tion were recorded as total microbial biomass, undifferentiated  
microbial biomass, total bacteria, Gram-positive bacteria,  
Actinomycetes, Gram-negative bacteria, Rhizobia bacteria, total 
fungi, arbuscular mycorrhizal fungi, saprophytic fungi, and  
Protozoa.

Plant community structure
Plant community structure was assessed solely as ground  
cover in the almond study. The ground cover height and compo-
sition in each of the replicates/plots was recorded during each 
of the three sampling periods. The percent ground cover was  
categorized as 0–25%, 25–50%, 50–75%, and 75–100%.  
Percent ground cover in the overall orchard was assessed using 
visual assessments of the percent ground cover in each invertebrate 
quadrat. 

Plant community diversity and green canopy cover were 
examined during the 2019 and 2020 grazing seasons of the  
rangeland study, while vegetation biomass was assessed only 
during the 2020 season. All three plant community metrics  
were measured during three periods of the grazing season; 
early June, mid-July, and late-August/early-September. At  
each pasture site, two 50 m transect lines were established 15 m  

apart and perpendicular to the slope of the land. Plant com-
munity diversity was assessed using the belt transect method 
for monitoring native prairie vegetation in the Dakotas  
(Grant et al., 2004). Briefly, plant community structure was  
recorded for a randomly selected 5 × 0.5 m2 belt along  
each transect line. Vegetation is classified in each 5 m segment 
according to a hierarchical breakdown of plant groups com-
mon to the region (Grant et al., 2004). Green canopy cover was  
documented using the smartphone app Canopeo, which quan-
tifies fractal green vegetation canopy cover area per unit area  
(Patrignani & Oschner, 2015). Quadrats (50 × 25 cm2) were 
established at 0, 25, and 50 m along transect lines to quantify  
green canopy cover with Canopeo. Lastly, a disc pasture 
meter was used to estimate above-ground vegetation biomass  
along each transect line and within their immediate surrounding 
area (<15 m). Compression height of vegetation was recorded 
by dropping a 0.13 m2 plate weighing 1.34 kg from a height  
of 183 cm.

Insect diversity
Insect surveys in cornfields and almonds involved sampling 
the epigeal community from 0.25 m2 sheet-metal quadrats  
(15 cm tall) inserted into the soil (Lundgren et al., 2006).  
Quadrats were placed in randomly selected locations between 
corn rows (n = 5 per plot) during anthesis. Invertebrates were 
exhaustively collected from the surface of the soil and beneath  
plant debris using handheld mouth aspirators. In almonds,  
sampling of the invertebrate communities occurred during the 
bloom, fruit development, and harvest periods. The inverte-
brate communities that could be collected from the soil surface  
and top 2 cm of the soil with mouth-operated aspirators in  
15 min were preserved in 70% ethanol.

In cornfields, we also sampled the foliar invertebrate com-
munity. The foliar invertebrate community was sampled using  
a destructive whole plant assessment. Corn plants (n = 25 per 
plot) were randomly selected, thoroughly examined, and inverte-
brates that were not sight-identified were collected using mouth  
aspirators. Plants were then severed at the ground level and were 
transported to the field margin where their leaves, stems, ears, 
whorls, and tassels were inspected and dissected on white sheets. 

Soil invertebrate and dung invertebrate communities were  
assessed using soil cores in corn fields and rangelands. In 
corn fields, five soil cores (10 cm diameter, 10 cm height) were  
collected per field in randomly selected locations within and 
between corn rows during anthesis. In rangelands, the same 
core approach was used to collect invertebrates from 2–5 d  
old dung pats and the soil directly beneath the pat (n = 10 per 
ranch). Samples were collected monthly from May to September.  
All cores were refrigerated for < 36 h, and then were placed 
into a Berlese collection system over 7 d, when they reached a  
constant weight.

All extracted invertebrates were identified microscopically 
and cataloged; each unique specimen was identified to the  
lowest taxonomic level possible representing a functional mor-
phospecies. Each morphospecies was placed into a trophic guild 
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(coprophage, predator, parasitoid, herbivore, or pest) based upon 
previous descriptions of the biology of arthropod community 
in these systems. Voucher specimens are housed in the Mark F. 
Longfellow Biological Collection at Blue Dasher Farm, Estelline, 
SD, USA.

Pests
In cornfields, pests included aphids, lepidopteran larvae, and 
corn rootworm adults that were identified from the foliar  
bioinventories. In almonds, pest incidence was assessed on 
500 almonds per farm in 2018 and 600 almonds per farm in 
2019 (< 20 from any one tree) (Bentley et al., 2001; Doll, 2009;  
Legner & Gordh, 1992). The almonds were each catego-
rized as having no pest damage, navel orange worm damage  
(Amyelois transitella [Walker]; Lepidoptera: Pyralidae), ant 
damage (Formicidae), oriental fruit moth damage (Grapholita  
molesta [Busck]; Lepidoptera: Tortricidae), peach twig borer  
damage (Anarsia lineatella Zeller; Lepidoptera: Gelechiidae), 
leaf footed plant bug or stinkbug damage (Hemiptera: Coreidae, 
Pentatomidae), and unknown pest damage (Bentley et al., 2001;  
Doll, 2009; Symmes, 2018).

Fecal oocyst counts of coccidia and egg counts of gastroin-
testinal nematodes belonging to the superfamilies Trichos-
trongyloidea and Strongyloidea were conducted on herds from 
the 2019 – 2020 rangeland study. Three grams of dung was  
collected from 2 – 4 d old cattle dung pats present in pastures  
(n = 5 pats sampled/site). Fecal samples were processed  
according to the Modified Wisconsin Sugar Float Technique 
(Cox & Todd, 1962). Coccidia oocysts and eggs of Trichos-
trongyles and Strongyles were quantified for 1 g of fecal 
sample. Sampling for internal parasites in the herds was  
conducted twice in 2019 (mid-July and late-August/early  
September) and three times in 2020 (early-June, mid-July, and  
late-August/early September). 

Yield and profit
In cornfields and almonds, responses from producer surveys  
were used to determine management practices, costs, and 
revenues that went into the direct net profitability of each  
operation. Gross profit analysis included yield, return on 
grain, and additional revenue that included livestock grazing  
and production. In cornfields, yield information provided by 
the farmers were confirmed by yields that were hand-gathered  
from three 3.5-m row sections from each replicate-field.  
Costs associated with corn production included corn seed,  
cover crop seed, drying/cleaning grain, crop insurance, till-
age, planting corn, planting cover crop, fertilizers, herbicides,  
and irrigation (additional information on profit/loss analysis 
can be found in LaCanne & Lundgren 2018). Operating costs  
in almonds included winter sanitation, sampling for tree nutri-
ent status and soil salinity, pH, and nutrient levels, irrigation and 
frost protection, fertilizers, insecticides, herbicides, fungicides, 
disease treatment sprays, trapping vertebrate pests, cover crop  
seed, tillage, mowing, flamers, grazers, and harvest.). Harvest 
in the almonds included the hourly labor to conduct the harvest 
and the price paid to external contractors (additional information 
on the almond profit/loss analysis can be found in Fenster et al.  
in prep). In both systems, only direct costs and revenues  
were used to calculate profitability.

Data analysis
Unless otherwise described, we used linear regressions to search 
for correlations between the regenerative matrix scores and 
response variables. In the almond study, clay percentages of the 
soils were considered as co-factors in all models that examined  
TSC. Plot values were composited across plots into single val-
ues in the almond study and linear regression analyses were 
used to compare regenerative scores and response variables. In  
instances where resampling a single farm was performed (either 
spatially or temporally) Linear Mixed Models were used to  
remove pseudoreplication and account for this dependence; 
field and farm were included as random factors in the corn mod-
els, and month was included as a fixed factor and farm as a  
random factor in the rangeland studies. All statistics were  
conducted using Systat 13.1 (Systat Software Inc., San Jose, CA)

Results
Soil physical and chemical properties
In cornfields, fPOM of the soil was strongly and positively 
associated with regenerative matrix scores (F

1, 17 
= 4.61;  

P = 0.047) (Figure 1A), but SOM (F
1, 17 

= 0.11; P = 0.75), bulk 
density (F

1, 17 
= 2.32; P = 0.15), and water infiltration rates  

(F
1, 11 

= 0.47; P = 0.51) of the soil were not correlated with 
matrix scores. The slowest water infiltration rates in the higher  
regenerative scoring farms were those that practiced tillage. 

In almond orchards, higher matrix scores correlated to  
significantly higher levels of TSC and TSN (500–6000 ESM  
layers) and SOM (15 cm depth). At the 0–6000 Mg ESM 
layer, there was a significant correlation between the orchards’ 
matrix scores and TSC (model: F

2, 13 
= 13.77, P = 0.001;  

score: t = 2.26, P = 0.04; clay: t = 4.73, P < 0.001) (Figure 2).  
At the 6000 Mg ESM layer there was a significant correla-
tion between the orchards’ matrix scores and TSN (model:  
F

2, 13 
= 17.73, P < 0.001; score: t = 1.94, P = 0.08; clay: t = 5.63, 

P < 0.001). In contrast to what we found in cornfields, in the top  
15 cm of soil there was a significant correlation between 
the orchards’ SOM%, matrix scores, and clay percentage  
(model: F

2, 13 
= 47.56, P < 0.001; score: t = 5.50, P < 0.001; clay:  

t = 8.05, P < 0.001) (Figure 1B).

In almonds, higher matrix scores and soil clay percentages  
correlated to higher levels of WEON (F

2, 13
 = 9.16, P = 0.003)  

and WEOC (F
2, 13

 = 15.61, P = 0.001) in the organic matter of 
the soils. Total phosphorus (model: F

2, 13 
= 4.32, P = 0.04; score:  

t = 2.65, P = 0. 02, clay: t = -1.28, P = 0.23) and inorganic phos-
phorus (model: F

2, 13
 = 4.56, P = 0.03, score: t = 2.74, P = 0.02,  

clay: t = -1.28, P = 0.22) were significantly and positively  
correlated with an orchard’s matrix score. Higher matrix  
scores correlated to higher levels of Calcium (F

2, 13
 = 5.97,  

P = 0.01) and Sulfur (F
1, 14 

= 10.80, P = 0.01), but lower levels of  
Aluminum (F

1, 14 
= 6.13, P = 0.03). There were no correla-

tions between other micronutrients and the regenerative matrix  
score (P > 0.05). Haney soil health test scores were posi-
tively correlated with regenerative matrix scores (model:  
F

2, 13 
= 7.82, P = 0.01, Score t = 2.99, P = 0.01, clay: t = 2.59,  

P = 0.02) (Figure 4). Soil respiration was unaffected by  
regenerative matrix scores (model: F

2, 13 
= 2.91, P = 0.09,  

Score t = 1.62, P = 0.13, clay: t = 1.77, P = 0.10).
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Figure 1. The relationships of regenerative farming intensity on fine particulate organic matter in cornfields of the Upper Midwest (A) and 
percent soil organic matter in California almond orchards (B).

Figure 2. Total soil carbon in California almond orchards as the orchards increase the number of regenerative practices.
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Higher regenerative-conventional matrix scores in almonds  
correlated to lower bulk densities (model F

2, 13 
= 8.95,  

P = 0.004; score: t = -3.91, P = 0.002, clay: t = -1.61, P = 0.13).  
Water infiltration rates increased alongside matrix scores  
for these orchards (model: F

2, 5
 = 11.43, P = 0.01; score: t = -4.50;  

P = 0.009, clay: t = 2.56, P = 0.05) (Figure 3).

Soil microbiology
In almond orchards, higher matrix scores correlated to 
higher amounts of bacterial biomass (F

1, 14 
= 6.25, P = 0.03)  

and higher Gram (+) biomass (F
1, 14 

= 9.12, P = 0.01). The 
percent composition in the microbial community was not 
affected by regenerative score (F

1, 14 
= 2.47, P = 0.14), indi-

cating greater overall microbial biomass rather than bacterial  
dominance. The remainder of these microbial community  
metrics were not correlated to the regenerative conventional  
matrix score (P > 0.05).

Plant community
More regenerative cropland and rangeland supported more 
diverse and robust plant communities. In almond orchards, 
higher matrix scores correlated to more ground cover  
(F

1, 14 
= 127, P < 0.001), more plant species (F

1, 14 
= 27.61,  

P < 0.001) (Figure 5A), and greater biomass height (F
1, 14 

= 9.90, 
P = 0. 01). In rangelands of the Northern Plains, there was a  
significant relationship between matrix score and plant  
biomass (Score: F

1, 53 
= 8.47, P = 0.01; month: F

2, 53 
= 0.45,  

P = 0.64) (Figure 5B), plant diversity (Score: F
1, 106 

= 14.22, 
P < 0.001; month: F

3, 106 
= 1.02, P = 0.39) (Figure 5C), and  

ground cover (Score: F
1, 106 

= 10.06, P = 0.002; month: F
3, 106 

= 14.76, 
P < 0.001).

Invertebrate community
Across cropland and rangeland, more regenerative farms had 
more robust invertebrate communities. Several aspects of  
invertebrate community structure in cornfields were strongly 
and positively correlated with how regenerative a field was 
scored. The abundance (F

1, 55 
= 6.53, P = 0.01), species richness  

(F
1, 55 

= 38.31, P < 0.001), and diversity (F
1, 55 

= 7.34, P = 0.01) 
(Figure 6A) of the epigeal invertebrate community was  
positively affected by matrix score. Similarly, matrix scores were  
positively associated with the species richness of the  
invertebrate community found in the soil column (F

1, 56 
= 12.96,  

P = 0.001), but the abundance was only marginally asso-
ciated with matrix score (F

1, 56 
= 3.41, P = 0.07), and the  

diversity of this community was unaffected by matrix score  
(F

1, 56 
= 2.45, P = 0.12). Foliar invertebrate abundance  

(F
1, 55 

= 0.99, P = 0.32), species richness (F
1, 55 

= 1.35, P = 0.25), 
and species diversity (F

1, 55 
= 0.20, P = 0.66) were not related to  

the matrix scores.

The invertebrate community on the soil surface was positively 
affected by the number of regenerative practices on almond 
orchards. Invertebrate abundance (F

1, 14
 = 10.28, P = 0.01),  

biomass (F
1, 14 

= 70.10, P < 0.001), species richness (F
1, 14

 = 14.44,  
P = 0.002) and species diversity indices (H: F

1, 14
 = 12.37,  

P = 0.003; DS: F
1, 14

 = 11.11, P = 0.01) (Figure 6B) were  
positively correlated with matrix score. There was a positive 
correlation between earthworm (square rooted to normalize  
residuals) abundance and matrix score on these orchards  
(F

1, 14
 = 9.87, P = 0.007).

In rangelands of the Northern Plains, the invertebrate commu-
nity associated with cattle dung was strongly and positively  
associated with the matrix score attained. The species rich-
ness (Score F

1, 74 
= 15.38, P < 0.001; month F

4, 74 
= 6.54,  

P < 0.001), and species diversity (Score F
1, 74 

= 16.10,  
P < 0.001; Date: F

4, 74 
= 1.50, P = 0.21) (Figure 7A) of the dung 

invertebrate community were positively associated with matrix 
score. Abundance of dung invertebrates was uncorrelated 
with matrix score (Score F

1, 74 
= 0.01, P = 0.99; month: F

4, 74 

= 4.83, P = 0.001). The abundances of two critical functional 
groups, dung beetles (Score F

1, 60 
= 10.05, P = 0. 006; month:  

F
4, 60 

= 5.70, P = 0.001) (Figure 7B) and invertebrate  
predators, (Score F

1, 74 
= 7.41, P = 0.01; month: F

4, 74 
= 4.09;  

P = 0.01) increased as a rangeland became more regenerative.

Figure 3. Water infiltration rates in the soils of California almond orchards in relation to the number of regenerative practices 
on each orchard.
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Figure 4. Haney test scores on soils from California almond orchards with increasing numbers of regenerative practices.

Pest populations
In all of these systems, pest populations were uniformly  
below any recognized economic thresholds. Pests were not 
correlated with the number of regenerative practices used in  
cornfields (pest abundance: F

1, 55 
= 2.18, P = 0.15) or in 

almond orchards (% damaged nuts: F
1, 14 

= 0.69; P = 0.42).  
In rangelands, there was no relationship between the matrix 
score and Trichostrongyles (Score: F

1, 88 
= 0.09, P =0.77; month:  

F
3, 88 

= 0.39, P = 0.76) or Coccidia (Score: F
1, 88 

= 1.78,  
P = 0.19; month: F

3, 88 
= 0.70, P = 0.56) fecal parasite loads.

Yields
Corn yields were negatively correlated with the regenerative  
matrix score (F

1, 56 
= 3.88, P = 0.05). Despite this, three of 

the top ten yielding cornfields were regenerative, indicating  
that regenerative practices are not necessarily tied with yield 
reductions. Standard deviations became greater proportions of  
the mean as a farm became more regenerative (variability  
in yields were higher among regenerative farms) (R2 = 0.79;  
F

1, 4 
= 5.12, P = 0.11). In almonds there was no relationship  

between almond yield and how regenerative an orchard  
was (F

1, 12
 = 0.86, P = 0.37). On a treatment level, regen-

erative farms had twice the variance in yield relative to the  
conventional orchards.

Economics
Although there was a positive relationship between matrix 
score and profitability in cornfields, this relationship was not  
significant (F

1, 53 
= 2.49, P = 0.12). In cornfields, there was a  

significant increase in the standard deviation of profit as a 
farm became more regenerative (e.g., standard deviation as a  
proportion of the mean; R2 = 0.72; F

1, 4 
= 7.68, P = 0.07). This 

indicates more variability in profits among the more regen-
erative producers. The top ten highest netting farms were all  
regenerative farms (scores of four and five). In almonds, profit 

was strongly and positively correlated with matrix scores  
(F

1, 11
 = 7.41, P = 0.02) (Figure 8). Operating costs were  

unaffected by matrix score (F
1, 13 

= 0.70, P = 0.42), but net 
income increased as regenerative scores increased (F

1, 11
 = 8.50,  

P = 0.01).

Discussion
Our approach to defining farms based on a small suite  
of carefully chosen practices was strongly associated with sev-
eral key metrics that define regenerative systems, including soil 
health, biodiversity promotion and profitability. With our matrix,  
we have distilled complex agricultural systems down to fewer 
than 10 practices that serve as useful indicators of regenerative 
operations in cropland and rangeland. These practices represent 
each of the five principles that define regenerative agriculture  
in cropland and in rangeland. We have determined that these 
practices are regenerative across cropping systems; the cropland 
matrix works in row crop systems as well as a perennial system  
including orchards. Also, it was noteworthy that none of the  
regenerative farm attributes attained an asymptote, which  
suggests that farms could become more regenerative if they 
continue to incorporate additional regenerative practices.  
This matrix can be used to categorize a farm as regenerative  
or conventional based on a threshold score.

Regenerative farming practices inherently increase plant  
biomass and diversity in both cropland and rangeland sys-
tems, and this plant community is a central mechanism for  
improving the soil health, biodiversity, and resilience of these 
farming operations. Farmers in this study enhanced their plant  
diversity and biomass (Figure 5) using a variety of tools.  
In almonds and cornfields, many of the farmers planted annual 
cover crops to improve the health of their soils. In some regen-
erative orchards, farmers allowed the native vegetation to  
persist. All of the regenerative orchards stopped the use of  
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Figure 5. Plant species richness on the orchard floor in California almonds (A), and plant diversity (Shannon H; B) and biomass index (C) in 
rangelands of the Northern Plains as they relate to how regenerative a farm is.
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Figure 6. The invertebrate species diversity (Shannon H) on the soil surface in cornfields of the Upper Midwest (A), and on the orchard floors 
of California almonds (B), as they relate to the number of regenerative practices implemented on farms.

synthetic herbicides, and this likely contributed to greater plant  
diversity. In rangelands, short-term, intense grazing stimulates 
plant communities to diversify and grow if the plant community  
is allowed to rest following a grazing event (Hillenbrand  
et al., 2019; Teague et al., 2011). Plants are a vital  
part of the carbon cycle, and as such they are the primary 
means whereby energy enters into an ecosystem (Weil & Brady, 
2017). Additionally, plant communities are requisite directly  
and indirectly to the genesis of healthy soils (Lucas, 2001). Plant 
roots provide the needed polysaccharides for microbial com-
munities to grow and perform key nutrient cycling services  
(Philippot et al., 2013). Physical properties of soils are also 
influenced by plants, including water infiltration rates, soil  
aggregate structure, bulk density, etc. (Gulick et al., 1994; Liu  
et al., 2005). Plant diversity and biomass scales positively 

with the diversity of nearly every other group of organisms  
(Bianchi et al., 2006; Saunders et al., 2013; Zak et al., 2003), 
and thus plant communities are a driver of biodiversity within 
agricultural habitats. Taken in sum, the relationships between  
plant communities and regenerative score illustrate an impor-
tant mechanism for how regenerative farms positively enhance  
many intended regenerative outcomes. 

Animal integration is another important tool for managing farms 
that improve regenerative outcomes. The most regenerative  
cropping operations observed in this set of studies always  
integrated livestock (chickens, sheep, or cattle), and these  
farms also had the greatest biodiversity, soil health, water infil-
tration rates, and economic metrics. Regeneratively-managed 
livestock in cropland improve soil chemical and physical  
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Figure 7. Invertebrate species diversity (Shannon H) in dung pats (A) and the abundance of dung beetles (B) as they relate to regenerative 
intensity on ranches in the Northern Plains.

properties, increase niche diversity which allows other organisms 
to thrive, and provides additional revenue and an additional 
plant management tool that can increase farm resilience  
(Colley et al., 2019; Delgado et al., 2011; Niles et al., 2018;  
Teague et al., 2016). Important logistical constraints influ-
ence the circumstances of integrating livestock into cropland,  
especially in standing crops like almonds. Barriers preventing  
farmers from integrating livestock into cropland should be  
removed so this important management tool is more commonly 
adopted.

Soil chemical and physical properties were positively affected 
by the number of regenerative practices in cropland. Bulk  
density was significantly lower in the more regenerative 
almond orchards. Soil carbon and soil organic matter were  
strongly associated with more regenerative farms. Although 

we did not conduct a carbon life cycle assessment on corn or 
almonds, these results support the idea that regenerative farm-
ing systems can help our cropland sequester more carbon 
and help to offset greenhouse gas emissions (Lal, 2020; Soto  
et al., 2021). Organic and inorganic phosphorous are also enhanced 
as almond orchards become more regenerative. Phosphorous, a 
mined agricultural nutrient, is becoming increasingly rare and 
is available at significant economic and environmental costs  
(Alewell et al., 2020), so enhancing the plant-available forms 
of phosphorous that are present in the soils is an important  
outcome of regenerative agriculture. Micronutrients calcium and  
sulfur were also enhanced by increasing the number of regen-
erative practices in almonds. In almonds, water infiltration rates 
were significantly improved by regenerative production practices.  
Water is becoming more scarce (Burri et al., 2019),  
especially in California (Mall & Herman, 2019), as climates 
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Figure 8. Net profit of California almonds as it relates to the number of regenerative practices on orchards.

continue to change and ground and surface waters are exhausted 
from conventional agricultural practices. Absorbing water into 
the soil when it becomes available is a crucial step in keeping 
these agricultural areas productive. Similar to previous studies  
(Pikul & Aase, 2003; Pikul et al., 2009), tilled cornfields had 
lower water infiltration rates and lower bulk density. This data 
supports the argument that no-till practices are an indispensable  
core component of regenerative agriculture, and argues in favor  
of mandating that regenerative operations be no-till.

All organismal groups measured were enhanced as farms 
became more regenerative. There was greater bacterial biomass 
and Gram+ bacteria from the farms with higher regenerative  
scores. In general, bacterial dominated soils are undesirable, as 
they tend to drive faster decomposition and reduce soil organic 
matter (Hendrix et al., 1986; Lehman et al., 2015). Bacteria 
dominated soils are produced through tillage, and by definition,  
regenerative farms are not tilled. Only two of the almond 
orchards in this study had been tilled; and this must be consid-
ered when comparing bacterial communities in regenerative  
versus conventional almond systems. Despite increasing bacterial  
biomass in the regenerative orchard soils, the proportion of 
bacteria to other microbial life did not increase. Furthermore  
our soil health metric, the Haney Test that accounts for micro-
bial function in a soil (Haney et al., 2018), was positively asso-
ciated with the regenerative score of a farm. This suggests  
that although soil bacterial biomass may be increasing on  
regenerative almond orchards, it is not at the expense of  
other microbial taxa and it enhances bacterial function. Inver-
tebrate biomass, diversity, and abundance in the soil, on the soil 
surface, and in the vegetation were positively affected by regen-
erative practices in all three study systems. This was particularly 
true for the epigeal communities. We hypothesize that promotion 
of the invertebrate community on the soil surface is a product of 

enhancing the plant community in this same stratum. Herbicides  
(Bohnenblust et al., 2016; Morton et al., 1972), fungicides  
(Johnson et al., 2013), insecticides (Bredeson & Lundgren, 2018; 
Pecenka & Lundgren, 2019; Seagraves & Lundgren, 2012),  
and synthetic fertilizers (Cuesta et al., 2008; Kromp, 1999)  
disrupt invertebrate communities. Regenerative farms that aban-
don these chemicals may experience enhanced invertebrate 
communities and biological diversity, which is important for 
farmers because it provides valuable services, including pest  
suppression. 

Pest populations of rangelands and croplands were below  
economically damaging levels, but these populations were 
suppressed using very different means in regenerative and  
conventional systems. In conventional systems, pests are kept 
low through genetically modified crops and insecticide applica-
tions. Conventional almond orchards in this study experienced up 
to five insecticide applications annually. All of the conventional  
corn farms are planted with genetically modified, insect resist-
ant (i.e., Bt) varieties that were treated with neonicotinoids.  
All of the most conventional ranches applied ivermectins in 
their animals to reduce fecal parasite loads. Our research shows 
that regenerative practices produce the same low pest popula-
tions as when cattle were treated with ivermectins, but with  
lower input costs. Other work in agricultural ecosystems has 
shown that invertebrate diversity is essential to mitigating pest 
populations (Crowder et al., 2010; Letourneau et al., 2009;  
Lundgren & Fausti, 2015; Lundgren & Fergen, 2014).  
This diversity within agricultural systems results in biologi-
cal control performed by invertebrates and pathogens keep-
ing pest populations at sub-economically damaging levels. 
We will test whether this same pattern was true in dung 
pats. Predation isn’t the only mechanism at work, and we 
also hypothesize that host plants and livestock are healthier  
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in regenerative systems, which contributes to fewer pests  
(Barbosa et al., 2009). Also, in almond orchards the more 
robust epigeal invertebrate community or livestock may be  
playing a key role in breaking down fallen mummy nuts in 
which navel orange worm larvae overwinter. There also are  
likely synergisms among organisms in regenerative systems 
that balance communities and resist outbreaks of specific  
pest populations. But in the end, the complexity of biological  
network interactions in complex ecosystems prevent us from  
understanding all of the mechanisms whereby regenerative  
systems consistently suppress pests without pesticide inputs.

Improved soil health and biodiversity on the studied farms 
was associated with increased profitability. In almonds, there 
was a clear relationship between more regenerative practices  
and the profitability of the orchards. In cornfields, the most 
regenerative farms were also the most profitable, but there was  
substantially more variance in this relationship. These higher  
net profits were the result of lowering seed costs, reducing  
chemical premiums, and value-added marketing of the most 
regenerative products. Yields did not follow the same pattern as 
the profitability with regards to matrix scores. Almond yield was 
not correlated with how regenerative a farm was, and corn yields 
were significantly reduced as regenerative practices were added  
to cornfields. It is important to interpret these results recognizing  
that regenerative agriculture is still in its infancy in many  
production systems. Three of the top 10 yielding corn fields were 
regenerative, meaning regenerative corn production methods  
do not necessarily lead to yield reductions. Given the low reli-
ance on corn as a human food source, and the lack of yield  
reductions in almonds, concerns over regenerative food  
systems’ ability to feed a growing human population are not 
supported by our research. All of this is to say that regenerative  
farming practices are correlated with increased profitabil-
ity of a farm, thus supporting the notion that we can improve  
farm resilience while promoting the natural resource base  
of a habitat (Schipanski et al., 2016).

In looking at the data on these established farm systems, there 
were consistently two distinct clusters of farms based on  
regenerative score that could be used to categorize regen-
erative and conventional farming operations. The natural 
groupings could be divided at scores of 5 and 3 for crop-
land and rangeland, respectively (in cornfields, this dividing 
line was around 3, since we did not ask all of the questions 
to corn farmers in that study). One explanation for this may  
be that farms have trouble staying in business when they only 
employ an intermediate number of regenerative practices. Farms 
in the “regenerative” and “conventional” categories are not  
all created equal, since changing the number of regenerative  

or conventional practices can produce a variance in farm  
performance within each category. Also, the range of scores in 
the regenerative ranches were greater than that for in cropland, 
and could indicate a transition in the adoption of regenerative  
practices by ranchers of the Northern Plains. The duration 
that a farm is in its respective system also will likely affect the 
observed regenerative outcomes, and this temporal factor should 
be considered in further interpretations of regenerative scores. 
Uses for this matrix might include regulation based on carbon 
sequestration, water use efficiency, or pollution. Certification 
of regenerative operations and marketing of regenerative label-
ling might also employ the matrix approach as we have laid  
out. In the Extended data, we provide a survey for producers to 
generate their regenerative scores. We hope that this work will 
be built upon and tested as we confront the challenge of how  
to empirically define regenerative farming systems.

Data availability
Underlying data
Open Science Framework: Matrix paper, https://doi.org/10.17605/
OSF.IO/G697Y (Lundgren, 2021) (registered 15th January 2021 
https://osf.io/7v4z2).

This project contains the following underlying data:

     -      Corn

     -      Regenerative Rangeland 1

     -      Almond

     -      Regenerative Rangeland 2

Extended data
Open Science Framework: Matrix paper, https://doi.org/10.17605/
OSF.IO/G697Y (Lundgren, 2021) (registered 15th January 2021 
https://osf.io/7v4z2).

This project contains the following extended data:

     -      CROPLAND Regenerative Score Calculator

     -      RANGELAND Regenerative Score Calculator

Data are available under the terms of the Creative Commons  
Zero “No rights reserved” data waiver (CC0 1.0 Public domain 
dedication).
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A regenerative agriculture matrix scoring system is proposed that can be used to evaluate the 
extent to which a farming system has adopted regenerative practices. This is an important study 
as it defines a standard for regenerative systems in a similar way to those for other farming 
systems such as organic using simple scoring matrix that can be used by farmers. This has the 
advantage that they can monitor the progress of their system over time and adjust accordingly. 
 
This paper represents a substantial amount of work, covering a large number of sites, fully 
replicated studies with a lot of samples and appropriate experimental designs. It includes three 
food production systems. The analysis was relevant and is described in good detail, and the 
statistics employed are robust. The paper uses a novel approach to overcome the problems of 
comparing the overall outcomes from the regenerative agriculture system between farms, with 
many different variables. The authors focus on methods that underly the principles of 
regenerative agriculture rather than defining it as a set of practices. This was achieved by defining 
a matrix scoring system compiled from sums of regenerative and conventional practices and 
looking for correlations between the matrix scores with detailed biological and physical 
measurements. This enabled them to compare a range of systems that exhibit few or many of the 
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different methodologies and their use in farming systems research. 
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substantial decreases in agrochemicals because 4 of the 9 points depending on not using 
inorganic fertilisers, herbicides, fungicides and insecticides. Nevertheless, the paper provides a 
contribution to scientific knowledge by allowing some broad comparisons to be made on the 
overall benefits of the regenerative agriculture approach.
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