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Multi-level cellular and functional annotation of
single-cell transcriptomes using scPipeline
Nicholas Mikolajewicz1,2, Rafael Gacesa1, Magali Aguilera-Uribe1,2,3, Kevin R. Brown 1,2,

Jason Moffat 1,2,3,4✉ & Hong Han 1,2✉

Single-cell RNA-sequencing (scRNA-seq) offers functional insight into complex biology,

allowing for the interrogation of cellular populations and gene expression programs at single-

cell resolution. Here, we introduce scPipeline, a single-cell data analysis toolbox that builds on

existing methods and offers modular workflows for multi-level cellular annotation and user-

friendly analysis reports. Advances to scRNA-seq annotation include: (i) co-dependency

index (CDI)-based differential expression, (ii) cluster resolution optimization using a marker-

specificity criterion, (iii) marker-based cell-type annotation with Miko scoring, and (iv) gene

program discovery using scale-free shared nearest neighbor network (SSN) analysis. Both

unsupervised and supervised procedures were validated using a diverse collection of scRNA-

seq datasets and illustrative examples of cellular transcriptomic annotation of developmental

and immunological scRNA-seq atlases are provided herein. Overall, scPipeline offers a flex-

ible computational framework for in-depth scRNA-seq analysis.
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S ingle-cell RNA-sequencing (scRNA-seq) has facilitated the
characterization of multi-cellularity at unprecedented
resolution, with the advancement of high-throughput pro-

tocols enabling profiling experiments that include millions of cells
in a single experiment. While experimental protocols such as
SMART-seq21, Drop-seq2, sci-RNA-seq33 and commercial 10X
genomics vary in approach and scale, gene expression matrices
(gene-by-cell count) are ultimately generated and represent a
common starting point for most downstream analyses.

The development of computational toolboxes like Seurat4–7,
Scanpy8, and Cell Ranger (10X Genomics, commercial) facilitates
scRNA-seq analyses broadly across a diverse array of research
topics. These tools offer application-tailored functionalities,
including data pre-processing, normalization, quality control
(QC) and clustering analysis. However, comprehensive analyses
still require a degree of computational expertise. With the more
recent emergence of interactive and notebook-based analysis
platforms, scRNA-seq analysis has become more accessible to
users lacking high-level computational skills9–11. However,
despite the user-friendly interface offered by these platforms,
difficulties can arise with custom-tailored analyses, or when data
integration between different scRNA-seq platforms is required, a
practice that is becoming more routine as complimentary and
comparable datasets emerge. To address these limitations, we
have developed scPipeline, a report-based single-cell analytic
toolbox. scPipeline is offered as a series of Rmarkdown scripts
that are organized into analysis modules that generate curated
reports. The modular framework is highly flexible and does not
require complete reliance on a single analysis platform. Addi-
tionally, the self-contained reports generated by each module
provide a comprehensive analysis summary and log of analytic
parameters and scripts, thereby ensuring reproducible and
shareable analysis workflows.

In tandem to scPipeline, we developed the scMiko R package
that comprises a collection of functions for application-specific
scRNA-seq analysis and generation of scPipeline analytic reports.
We validate proposed scRNA-seq methods implemented in
scMiko that facilitate multi-level cellular and functional annota-
tion. Specifically, using eight reference scRNA-seq datasets, we
validate the co-dependency index (CDI) as a differential expres-
sion (DE) method that identifies binary differentially-expressed
genes (bDEGs), propose a specificity-based resolution criterion to
identify optimal cluster configurations, describe the Miko scoring
pipeline for cell-type annotation, and introduce scale-free shared
nearest neighbor network (SSN) analysis as a gene program dis-
covery method.

The scMiko R package (https://github.com/NMikolajewicz/scMiko)
and scPipeline scripts (https://github.com/NMikolajewicz/scPipeline)
are available on GitHub. Step-by-step tutorials and documentation are
also provided at https://nmikolajewicz.github.io/scMiko/.

Results
Overview of scPipeline modules. Here we introduce scPipeline, a
modular collection of R markdown scripts that generate curated
analytic HTML reports for scRNA-seq analyses (Fig. 1a). For a
given gene expression matrix, the QC and preprocessing module
performs data filtering (based on mitochondrial content and gene
recovery) and normalizes the count matrix using the scTransform
algorithm implemented in Seurat12. The module outputs a Seurat
object (for downstream analyses), and a corresponding standa-
lone HTML report that summarizes the results13 (Fig. 1b). In the
case of multiple scRNA-seq datasets (e.g., experimental replicates,
multiple studies and/or public datasets), we provide an integra-
tion module that leverages the canonical correlation analysis and
reciprocal principal component analysis approaches implemented
in Seurat to facilitate data integration for downstream analyses5.

b

a

QC & Preprocessing

Integration

Cluster Optimization
Cell Annotation

Gene Expression & Association

scPipeline
R dashboard reports

gene x cell count matrix

.HTML
reports

cells

ge
ne

s

UMAP

gene
A

gene
B

gene
C

gene
D

Functional
Annotation

Cell-A Cell-A
Cell-A

Cell-BCell-B
Cell-D

Cell-A

Cell-C
Cell-A

Cell-C

ge
ne

s

clusters

gene A

ge
ne

 B

under-clustered over-clusteredoptimal

Gene Program Discovery

Fig. 1 Schematic of scPipeline analysis modules. a scPipeline is a modular collection of Rmarkdown scripts that generate reports for scRNA-seq analyses.
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Once data has been preprocessed, cells are clustered using the
cluster optimization module, where we introduce a specificity-
based criterion for identifying the optimal resolution for Louvain
community-based clustering. For each candidate cluster resolu-
tion, we also report DEGs identified using the Wilcox and CDI
DE methods, for which we highlight specific and distinct appli-
cations in our current work. Once the optimal cluster config-
uration has been identified, the annotation modules facilitate cell
type and cell state annotation using a priori cell-type markers,
analysis of gene expression and associations, and unsupervised
gene program discovery and functional annotation. Notably, the
cell annotation module utilizes our gene set scoring method (i.e.,
the Miko score) to reliably annotate cell clusters using cell-type-
specific markers. The Miko score is distinct from existing gene set
scoring methods in that it adjusts for inherent variations in gene
set size, thereby enabling direct comparison and ranking of gene
set scores computed across gene sets of varying size. To facilitate
gene expression exploration, we also developed a gene expression
and association module which enables users to explore the
expression pattern of query genes and predict gene function based
on gene co-similarity profiles. Similarity profiles can be con-
structed using various methods, including Spearman correlation,
rho proportionality, and CDI metrics14. These profiles are then
functionally annotated to identify putative pathways correlated
with the gene of interest. Finally, the gene program discovery
module is used for gene program detection and transcriptomic
network visualization. In addition to providing validated gene
program discovery methods (e.g., ICA and NMF), we introduce
the SSN method, which we demonstrate has superior recovery of
known gene ontologies (GO) and enrichment of STRING-curated
protein-protein interactions (PPI). Collectively, scPipeline offers a
streamlined and reproducible workflow with user-friendly and
intuitive reports and contributes to the current computational
resources available for scRNA-seq. Importantly, its modular fra-
mework provides a foundation upon which future analysis
modules can be developed to support additional scRNA-seq
analyses.

Co-dependency index identifies cell-type specific markers.
Robust identification of DEGs between cell populations is critical
in scRNA-seq analyses. DEGs can be further subclassified into
two different groups: graded DEGs (gDEG), in which genes are
expressed in both populations, but to varying degrees; and bDEG,
in which genes are exclusively expressed in one population but
not the other (Fig. 2a). Popular scRNA-seq DE methods, such as
the Wilcoxon method15, identify DEGs indiscriminately and
require additional downstream filters to parse out bDEGs. Thus, a
method tailored towards specifying bDEGs is needed.

Here we propose using the CDI to identify cluster-specific
bDEGs within scRNA-seq data. Using simulated and real scRNA-
seq datasets (Table 1), we identified DEGs using the CDI and
Wilcoxon methods, and then evaluated each method’s relative
performance and behavior. With simulated data, we demonstrated
that CDI selectively recovered bDEGs (AUROC= 0.982–0.999),
but not gDEGs (AUROC= 0.398–0.507), in a manner that was
independent of UMI:gene ratio, cell counts, and log-fold change
(LFC) magnitudes (Fig. 2b, c, Supplementary Fig. 1a). In contrast,
the Wilcoxon method recovered bDEGs (AUROC= 0.957–0.990)
and gDEGs (AUROC= 0.619–0.929), and gDEG recovery was
dependent on the magnitude of LFC between two groups (Fig. 2c,
Supplementary Fig. 1a). Comparing the two methods, bDEG
recovery was reliably recovered by both methods (AUROC >
0.95); however, CDI performed significantly better (Fig. 2c,
p= 0.012) and Wilcoxon could not discriminate between bDEGs
and gDEGs. We next extended our characterization of the CDI

method to real scRNA-seq data. Here we observed that CDI
method identified 66% fewer DEGs than the Wilcoxon method
(1241 vs. 3653 genes, p= 0.017) (Fig. 2d). Among the CDI-
derived DEGs, 99% were also recovered by the Wilcoxon method
(Fig. 2e) indicating that the CDI method selectively identifies a
subset of Wilcoxon-derived DEGs. Among all the significant
DEGs obtained by either method, the median Jaccard similarity
was 0.09; however, when only the top 50 DEGs [ranked by
−log10(p)] were considered, the Jaccard similarity increased to
0.266, suggesting a bias towards bDEGs among top DEGs
identified by Wilcoxon (Fig. 2e). We were also interested in
determining whether at higher cluster resolutions the CDI DEG
profile can discern between subpopulations. To address this, we
performed DE analyses on data clustered at varying resolutions
(Supplementary Fig. 1b, c). Despite higher cluster resolutions (i.e.,
more clusters) being associated with fewer DEGs per cluster, most
datasets consistently had at least one significant CDI and
Wilcoxon DEG (5% FDR) up to a resolution of 10. This signified
that although the CDI method recovers fewer DEGs than
Wilcoxon, the CDI DEG profile is still sufficient to characterize
clusters at higher resolutions. Consistent with prior reports, the
Wilcoxon method was systematically biased towards calling
highly-expressed genes differentially-expressed (Fig. 2f)15. We
next evaluated the cluster-discriminating characteristics of the top
50 genes identified by each method (Fig. 2g–i, Supplementary
Fig. 1d, e; see Methods for definition of cluster-discriminating
metrics). While the Wilcoxon method identified genes with higher
cluster-discriminating sensitivity (0.90 vs. 0.56, p= 9.8e-5; Fig. 2h)
and negative predictive value (NPV; 0.87 vs. 0.70, p= 1.2e-3;
Supplementary Fig. 1d), the CDI method had superior specificity
(0.95 vs. 0.75, p= 5.4e-3; Fig. 2g, i) and positive predictive value
(PPV; 0.91 vs. 0.75, p= 7.6e-4, Supplementary Fig. 1e). As an
illustrative example, we evaluated the top 50 DEGs in yolk-sac
mesoderm, where we observed a higher degree of cluster-
specificity among the top markers identified by the CDI method
(Fig. 2j). Together our analyses establish that the CDI method
selectively identifies bDEGs, compared to the Wilcoxon method
that indiscriminately identifies bDEGs and gDEGs.

Marker specificity-based criterion for identifying optimal
cluster resolutions. scRNA-seq-based cell type identification
relies on unsupervised clustering methods; however, resulting cell
clusters can vary drastically depending on what resolution is used
to perform clustering. Many approaches have been proposed to
guide the selection of the optimal resolution, including silhouette
index and resampling-based methods (e.g., chooseR and
MultiK16). However, these methods are motivated by theoretical
rather than biological criterion. Having demonstrated that the
CDI method yields cluster-specific markers (Fig. 2), we propose
to define cell types at a clustering resolution that maximizes the
specificity of markers obtained in each cluster. We proceed by
first clustering over a range of candidate resolutions, and the top
specific marker in each cluster at each resolution is identified
using the CDI method (Fig. 3a, step 1). Subsequently, specificity
curves are generated for each resolution and used to obtain
aggregate specificity metrics. The resolution at which maximal
specificity is observed is taken as the optimal resolution, Speak
(Fig. 3a, step 2).

Recognizing that there exist multiple resolutions that may be
biologically relevant (e.g., cell types vs. cell subtypes), an approach
to specifying the optimal set of resolutions that recovers this
hierarchical system of cellular classification is warranted. As the
cluster resolution increases and cell clusters are split into
progressively smaller and more homogeneous subpopulations,
differences between cell types will become smaller, as reflected by
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the incremental drops in the specificity metric along the
specificity curve as resolution increases (Fig. 3a, step 2). We
found that following such a drop, the specificity index proceeds to
remain relatively stable over a range of resolutions, resulting in a
characteristic “elbow” in the Specificity curve. We found that
these elbows typically coincide with higher-resolution cluster
configurations that reflect more resolved cell types, as showcased
in the Pijuan-Sala murine gastrulation atlas (Supplementary
Fig. 2), and thus we hypothesized that these “elbows” represent
biologically relevant and stable clustering configurations, and
termed these Selbow1 and Selbow2.

To evaluate the performance of our specificity-based resolution
selection criteria (Speak, Selbow1, and Selbow2), we used eight public
scRNA-seq datasets, and adopted author-curated cell types as

“ground-truth” clusters. We showed that our specificity-based
criteria favor clustering configurations that align with manually
curated cluster labels, as indicated by the lack of significant
difference between the adjusted Rand index (ARI; i.e., a measure
of classification consistency) obtained at Speak and ARImax

resolutions (Fig. 3b). By comparison, chooseR (a resampling-
based resolution selection criteria), Selbow1 and Selbow2 yielded
clusters with significantly lower ARI, suggesting that these cluster
configurations represent cell subtypes, whereas clusters obtained
at the Speak resolution represent well-defined cell type clusters
(Fig. 3b). In support of this, Speak clusters were associated with
significantly more specific markers (i.e., top markers were more
specific) than “ground truth” clusters (p= 0.045), whereas there
was no significant difference observed for the other cluster
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configurations compared to “ground truth” clusters. As a
representative example, we applied our specificity-based resolu-
tion selection approach to the human gastrulation scRNA-seq
data published by Tyser et al.17 (Fig. 3d). Compared to curated
clusters, Speak clusters were associated with a higher specificity
index (0.69 vs. 0.56) (Fig. 3e) which was verified by visual
inspection (Fig. 3f), and further, it was demonstrated that the top
markers associated with Speak clusters were significantly more
sensitive (i.e., high expression fraction; p= 0.02) than those

obtained in “ground truth” clusters (Fig. 3g). Our results
demonstrate that a specificity-based resolution selection criterion
reliably identifies cluster configurations that reflect biologically
relevant cell types.

Marker-based cluster annotation with Miko score. Transcriptome-
wide expression profiling has led to the generation and availability of
gene sets for cell-type identification. Nonetheless, the external
validity of these genes sets is remarkably inconsistent, largely

Table 1 Public scRNA-seq datasets used in the current study.

Dataset Description Species Method N Analyses

Cells (% subset) Cell Types

Tabula Muris69 Pan-atlas Mm 10X 100,000 (99%) 100 A, B, C
Tabula Sapiens60 Pan-atlas Hs 10X 100,000 (21%) 158 A, B, C
Cao 20193 Organogenesis Mm sci-RNAseq3 50,000 (100%) 37 A, B, C, E
Cao 202070 Fetus Hs sci-RNAseq3 100,000 (26%) 77 A, B, C, D, E
Pijuan-Sala 201921 Gastrulation Mm 10X 100,000 (77%) 38 A, B, C, D, E
Tyser 202117 Gastrulation Hs SMART-seq2 1,195 (100%) 18 A, B, C, D, E
La Manno 202127 Developing brain Mm 10X 100,000 (39%) 16, 136 A, B, C, E
Zeisel 201861 Adolescent brain Mm 10X 22,238 (100%) 39 A, B, C, E
Han 202271 neural differentiation Mm sci-RNAseq-3 26,117 (100%) - E
Ochocka 202125 immune cells Mm 10X 40,401 (100%) - E

Analyses in which the datasets were used are indicted as A: DE methods, B: cluster resolutions, C: cell type gene sets, D: Miko scoring, E: gene program discovery.
HsHomo sapiens (human), MmMus musculus (mouse).
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stemming from the fact that many gene sets are derived using one-
versus-all DE methods on genetic backgrounds that lack population-
level phenotypic diversity. While elucidating the exact conditions
under which a gene set reliably identifies a given cell type is beyond
the scope of the current study, we argue that cell-type specific gene

sets obtained using one-versus-all DE methods are most valid when
derived from diverse cell atlases. To complement our marker-based
cluster annotation efforts, we performed DE analysis on the eight
public scRNA-seq datasets presented in Table 1, each comprising
highly diverse cell types. Together with cell type markers reported in
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Zhao 201918 and the PanglaoDB, we provide a catalog of cell type
markers comprising 1043 (redundant) cell type-specific marker sets
spanning 11748 unique genes (Supplementary Data 1, Table S1).
Representing the cell-type marker catalog as a bipartite network
revealed major cell type hubs including epithelial, mesenchymal,
endothelial, and lymphoid/hematopoietic cell types, in addition to
tissue-specific cell ontologies like cardiac, neural, and glial cells
(Fig. 4a).

Many marker-based cell annotation methods have been
described;19, 20 however, one limitation of these methods is a
lack of consideration for gene set size. As the number of genes in
a gene set increases, pooled signature scores become less sensitive
to the influence of highly expressed individual genes. This gene
set size dependency leads to a bias, such that scores obtained from
smaller gene sets tend to have more spurious enrichments than
those obtained from larger gene sets (Fig. 4b), precluding
unbiased comparison of signature scores obtained over a range
of unevenly sized gene sets. Motivated by this limitation, we
introduce the Miko score, a cell cluster scoring method that
accounts for variations in gene set sizes. The Miko score also
provides a hypothesis-testing framework capable of rejecting non-
significantly enriched gene sets (Fig. 4). For a given single-cell
dataset, query and size-matched random gene sets are scored
using a standardized implementation of AddModuleScore(…),
and the difference between query and random module scores is
scaled using the size-adjusted standard deviation estimate
obtained from a gene set size-dependent null model (Fig. 4b) to
yield the Miko score (Fig. 4c). The standardized implementation
of AddModuleScore(…) accounts for cell-to-cell variation in gene
expression, while scaling by the size-adjusted standard deviation
estimate adjusts for size-related dependencies and results in a test
statistic from which a p value can be derived.

The performance of Miko score-based cell annotation was
evaluated using cell-type-specific gene sets derived for each cell
type in the mouse gastrulation dataset reported by Pijuan-Sala
et al.21. To assess the robustness of the Miko score and account
for inaccuracies in gene set definitions, each set was permuted to
varying extents, such that a subset of cell-type specific markers in
each gene set were replaced with an equal number of randomly
sampled genes (Fig. 4d). Using non-permuted gene sets, the Miko
score-based enrichments were 100% sensitive and 94% specific
for cluster-specific gene sets (Fig. 4e). When 25% of genes were
permuted, we observed 93% sensitivity and 96% specificity.
However, at higher permutation rates, we observed a significant
decline in sensitivity such that at 50% permutation there was 54%
sensitivity and 98% specificity. We also found that filtering
enrichments using a coherence criterion resulted in marginally
improved specificity at the cost of sensitivity (Fig. 4e). As an
illustrative example, we calculated Miko scores using our cell-type
marker catalogue (Fig. 4a; Pijuan-Sala-derived markers were
omitted to minimize overfitting) and demonstrated that author-
curated erythroid (Fig. 4f) and endoderm (Supplementary Fig. 3a)
populations were accurately annotated using our Miko score
pipeline. To benchmark the Miko scoring method against existing
marker-based scoring algorithms, including SCINA22, GSVA23,
scType24, and Seurat, a selection of scRNA-seq datasets were
scored and predicted cell annotations were compared to the
author-curated labels (i.e., ground truth) through ROC analysis
(Fig. 4g, Supplementary Fig. 3b, c). We found that the Miko
scoring method, coupled with post-hoc coherence filtering
(AUROC= 0.776), yielded superior results to GSVA (AUROC=
0.705) and SCINA (AUROC= 0.603), and marginally better
annotations than the Seurat (AUROC= 0.762) and scType
(AUROC= 0.759) algorithms (Fig. 4h). Collectively, our analyses
establish the Miko score as a marker-based scoring algorithm that
is robust to gene set inaccuracies and capable of facilitating

unbiased comparison across a large collection of unevenly sized
gene sets.

Gene program discovery using scale-free topology shared
nearest network analysis. Unsupervised gene program discovery
offers a complementary approach to annotating cell clusters in
scRNA-seq, which aim to group genes based on co-expression
similarity profiles. Here we introduce the SSN method to identify
gene expression programs (Fig. 5a). In brief, the gene expression
matrix is dimensionally reduced using principal component
analysis (PCA). Each gene’s K-nearest neighbors (KNN) are then
determined by Euclidean distance in PCA space. The resulting
KNN graph is used to derive a shared nearest neighbor (SNN)
graph by calculating the neighborhood overlap between each gene
using the Jaccard similarity index. Adopting the framework from
weighted gene correlation network analysis (WGCNA), an adja-
cency matrix that conforms to a scale-free topology is then
constructed by raising the SNN graph to an optimized soft-
thresholding power, which effectively accentuates the modularity
of the network (Fig. 5b). The resulting adjacency matrix is used to
construct the network UMAP embedding and to cluster genes
into programs (or modules) by Louvain community detection
[the optimal clustering configuration is determined using a
purity-based criterion (Supplementary Fig. 4)]. To reduce noise,
genes with low connectivity (i.e., low network degree) are pruned
so that only hub-like genes are retained for downstream anno-
tation and analysis.

Compared to independent component analysis (ICA) and non-
negative matrix factorization (NMF), SSN gene programs had
significantly superior GO term recovery and STRING PPI
enrichment (Fig. 5c, d). The importance of enforcing a scale-
free topology was evident in the comparison between SN (shared
nearest neighbor network without scale-free topology) and SSN
(shared nearest neighbor network with scale-free topology)
(Fig. 5c, d). On average, the relative computational runtimes
were 0.54, 1, and 3.9 for NMF, SSN, and ICA methods,
respectively, thereby establishing NMF as the fastest algorithm,
but only by a small margin over SSN which significantly
outperformed ICA (Fig. 5e). Nonetheless, the SSN method can
infer the gene association network for 50,000 cells and 5000 genes
in just under 5 min (Fig. 5e)

We demonstrated the use of SSN gene program discovery and
network visualization with two case examples (Fig. 5f–l). In the
first case, we constructed an SSN network using scRNA-seq data
of the murine immune compartment in brains engrafted with the
syngeneic GL261 GBM cell line25 (Fig. 5f). Functional annotation
of each gene program revealed a diverse transcriptomic landscape
(Fig. 5g), including interferon signaling and pro-inflammatory
programs that were highly active in monocyte/macrophage and
microglial sub-populations, respectively (Fig. 5h). In addition to
facilitating further cellular characterization, functionally anno-
tated gene programs offer opportunities to predict the function of
previously uncharacterized genes using a “guilt-by-association”
approach. For example, cross-referencing genes belonging to the
interferon-signaling gene program in the SSN graph with
PubMed-indexed publications, we find the gene Ms4a4c had
not been previously associated with “inflammation”, “macro-
phage” or “interferon”. The membrane-spanning 4A (MS4A)
family is conserved in vertebrates and includes 18 members with
a tetraspan structure in humans26. MS4A family members are
differentially and selectively expressed in immunocompetent cells
such as B cells (CD20/MS4A1) and macrophages (MS4A4A),
associate and modulate the signaling activity of different
immunoreceptors, and have been linked to different pathological
settings including cancer, infectious disease and
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neurodegeneration26. We predict that Ms4a4c, a previously
uncharacterized mouse gene, may have a role in the
macrophage-related inflammatory process (Fig. 5i).

In our second case example, we demonstrate how SSN gene
program discovery can identify and facilitate the refinement of
robust gene signatures (Supplementary Fig. 5). Briefly, we
constructed a SSN network from scRNA-seq data derived from
a murine developing brain27 (Supplementary Fig. 5a, b) and show
that the expression of each gene belonging to the angiogenesis
program is positively correlated with the aggregate gene program
score when examined in the developing murine brain data from
which the signature was derived (Supplementary Fig. 5c).
Notably, in two other independent datasets (murine and human
gastrulation), only a subset (albeit majority) of genes were
positively correlated with the program score (Supplementary
Fig. 5c). By taking the 3-way intersection of coherent genes across
these three relevant datasets, we find a 64-gene signature
(Supplementary Fig. 5d) that was specifically enriched among
the hematogenic endothelial populations in all three scRNA-seq
datasets (Supplementary Fig. 5e).

Discussion
We have described a pair of computational resources, scMiko (R
package) and scPipeline (dashboard analysis reports), and pro-
pose new methods to facilitate multiple levels of cluster annota-
tion in scRNA-seq data. Our computational tools follow
established scRNA-seq analytic practices, and offer modular
workflows that enable data preprocessing, normalization, inte-
gration, clustering, annotation, gene program discovery and gene
association analyses. Among the methods proposed in this work,
we validated the CDI as a DE method that identifies binary DEGs.
Given the inherent specificity of bDEGs, we then adopted the
CDI algorithm to derive a specificity-based resolution selection
criterion for determining optimal clustering configurations and
benchmarked the performance of this approach against ground
truth annotations. Upon identifying the optimal cluster resolu-
tion(s), we demonstrate how to annotate clusters using our Miko
Scoring pipeline, which facilitates unbiased scoring of a diverse
set of variable-sized cell type-specific gene sets and accepts or
rejects candidate annotations using a hypothesis-testing frame-
work. Finally, we describe SSN analysis as an approach to identify
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and functionally annotate gene sets in an unsupervised manner,
providing an additional layer of functional characterization of
scRNA-seq data.

There are several existing interactive single-cell analytic frame-
works available including Cellar28, SingleCAnalyzer29, and
ICARUS30, and each offers its own unique advantages including
user-friendly interfaces and cloud computing, which make single-
cell analyses accessible to the research community. While scPipe-
line offers many of the same functionality (e.g., data preprocessing,
integration and annotation), it is distinguished from prior frame-
works through its portability, customizability, and modular design.
Each scPipeline module is designed to generate a self-contained
HTML report that serves as a portable record of analysis that can be
shared and disseminated without any external dependencies. Fur-
thermore, since each module is provided as a Rmarkdown script,
more advanced R users have the option to customize analyses to
their specifications, whereas online tools are often limited to a
prespecified set of functions that cannot be modified by the user.
Finally, the modular design of scPipeline means that users can plug
in their data anywhere along the analytic pipeline, thereby allowing
for seamless integration across different analytic workflows. Thus,
we envision scPipeline as a toolbox that complements existing
frameworks and offers the research community with additional
flexibility to analyze single-cell data.

The annotation methods presented here, namely finding
bDEGs with CDI, cell-type annotation with Miko Scoring, and
gene program discovery and functional annotation with SSN
analysis, all complement and expand the extensive list of analysis
methods for scRNA-seq31, 32. It has become evident from sys-
tematic benchmarking efforts that no single method is enough to
probe single-cell datasets in-depth, and that different methods
offer unique advantages with regards to biological accuracy,
interpretability, computational complexity, visualization, or
accessibility14, 15, 33.

Reliable annotation begins with identifying the optimal clus-
tering configuration. Although there are many ways to cluster
single-cell data including K-means (SAIC, RaceID3), hierarchical
(CIDR, BackSPIN34, SINCERA) and density-based (Monocle2,
GiniClust35) clustering approaches, we used the community-
detection based Louvain approach implemented in Seurat due to
its low run time and high performance index36, 37, and focused on
optimizing the resolution that controls the number of resolved
clusters. If cells are clustered at an inappropriately low resolution
(i.e., under-clustered), there is a risk of amalgamating distinct cell
types into single populations, resulting in a loss of resolution in
cellular identity. In contrast, if the resolution is too high (i.e.,
over-clustered), multiple near-identical cellular lineages emerge
and obscure the true complexity of the dataset. Nevertheless, it is
recognized that clustering configurations at multiple different
resolutions may be biologically meaningful, and reflect different
layers of cellular identities, such as cell types at lower resolutions
(e.g., macrophage), and cellular sub-types (M1 vs. M2 polarized
macrophage) at higher resolutions16. There are different selection
criteria for identifying the optimal resolution(s), including the
silhouette index and resampling-based methods (e.g., chooseR,
MultiK16); however, these methods are motivated by theoretical
rather than biological criterion. The specificity-based resolution
selection criterion described in our current work identifies cluster
configurations coinciding with maximal marker specificity. This
is a desirable property for downstream applications that require
individual biomarkers to resolve cell types, such as flow cytometry
or imaging. Additionally, when evaluated over multiple candidate
resolutions, more than one biologically relevant resolution is
often identified, manifesting as “elbows” on the specificity-
resolution curve (i.e., akin to the elbow method used for selecting
the number of principal components on a Scree plot). We

benchmarked the performance of our specificity-based criterion
against author-curated “ground truth” annotations and demon-
strated that a specificity-based criterion outperforms the
resampling-based approach used in chooseR. We note that a
limitation of our method relates to the stability and reproduci-
bility of clusters, especially in single-replicate data sets. Artifact
genes (i.e., genes that are highly expressed exclusively in a small
subset of cells belonging to a single experimental replicate) have
been shown to produce distinct cellular clusters; in the absence of
experimental replicates it is difficult to determine whether these
clusters represent technical artifacts or real biology38, 38. While
this can be addressed by sampling multiple biological replicates38,
it may also be circumvented by expanding our specificity-based
criterion to consider the top 5–10 markers, rather than the top
single cluster-specific marker at each resolution. Finally, although
we evaluated our specificity-based criterion using the Louvain
clustering approach, the criterion may be applied to any clus-
tering method that requires optimization of the number of
resolved clusters (e.g., K-means). We expect that our specificity-
based criterion will complement existing optimization methods to
find meaningful cluster configurations.

The CDI DE method offers an approach to identifying bDEGs,
which have applications distinct from gDEGs. Whereas gDEGs
are useful for identifying differences that occur on a spectrum
(e.g., neural development), bDEGs have greater utility in identi-
fying cell-type-specific markers (e.g., FACS sorting of CD34+ for
hematopoietic stem cells), diagnostic biomarkers, disease targets
(e.g., CART-cell therapy), and artifact genes in scRNA-seq
datasets38. A known limitation of existing DE methods for
scRNA-seq is the failure to account for variation in biological
replicates, and the CDI approach is no exception15. Nonetheless,
we expect that with appropriate biological replicates and external
validation, the CDI DE method will contribute to the identifica-
tion of specific biomarkers.

The Miko scoring cell-type annotation workflow described in
this work supplements the existing repertoire of marker-based
annotation algorithms including scCatch39, SCSA40, SCINA22,
and CellAssign41. The hypothesis testing framework implemented
in the Miko scoring pipeline enables the rejection of unlikely cell-
type annotations, a property that is shared by SCINA and Cel-
lAssign. However, unlike its predecessors, Miko scoring explicitly
corrects for gene set size biases, thereby enabling unbiased
comparison of scores over a large collection of various-sized gene
sets. This property enables prioritization of the most likely
annotation if multiple marker sets are significantly scored for a
given population. Coupled with our word cloud-based visualiza-
tions introduced in scMiko and scPipeline, candidate cell-type
annotations can be easily examined.

To facilitate marker-based annotation of cell types, several
reference databases are available including CellMatch, CellMarker,
PanglaoDB, CancerSEA, and MSigDB (collection 8)42. We con-
tribute to these resources by deriving marker sets from diverse
single-cell atlases (Table 1), and through network-based visuali-
zation we demonstrate the hierarchical complexity of cell ontology
(Fig. 4a). While the network organization was generally coherent
with the cell-type annotations assigned to the marker sets, an
inspection of select local neighborhoods in our cell-type marker
network revealed occasional co-similarities between marker sets
from heterogeneous cell types, reflecting either inaccuracies in
marker curation or similarities in cellular processes across dis-
similar cell types. Based on these observations, we emphasize that
marker-based annotations are only as good as the cell-type pre-
scribed to the original dataset. Thus, integrating a large collection of
marker sets from multiple independent sources to achieve con-
sensus annotations, or alternatively, using a robustly validated
collection of marker sets can attain optimal results.
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The SSN method for gene program discovery was inspired by
the established SNN framework used in single-cell analyses to
reliably identify cell-to-cell distances in a sparse dataset, as well as
the scale-free topology transformation used under the assumption
that the frequency distribution of gene association in a tran-
scriptomic network follows the power law43–45. A UMAP-
embedded network, based on a SNN graph akin to that used in
our SSN procedure, has previously resolved gene modules cor-
responding to protein complexes and pathways, with Euclidean
distances in UMAP space out-performing correlation and PCA
distances in predicting protein-protein interactions46. Consistent
with these findings, we demonstrated that gene programs iden-
tified by SSN yielded superior GO term recovery and enrichment
of STRING PPIs compared to ICA and NMF methods, and that
the scale-free topology transform was critical in driving this
improvement in performance. Taken together, the SSN gene
program discovery method is robust to data sparsity, has a high-
performance index, offers network-based visualization, and has
run-times that scale well for larger datasets.

Future plans for scPipeline and scMiko involve continual review
and improvement of existing workflows, as well as development
and/or implementation of new methods that facilitate com-
plementary analyses such as characterization of ligand-receptor
interactions47, 48, regulon-based transcription factor inference49,
trajectory analyses3, 50, 51 and differential-abundance analyses52. As
innovative approaches to interrogate single cell data are proposed
by us and others, we will continue to build this “open” resource.

Methods
Software. Figure preparation: CorelDRAW x8 (Corel); Bioinformatic analyses: R v
4.0.3 (R Foundation for Statistical Computing).

Computational resources. Analyses were run on a desktop computer with an Intel
Core i9-10900L CPU (3.70 GHz, 10 cores, 20 threads) with 120 GB RAM running
Windows 10 Pro (v21H2).

Data preprocessing. scRNA-seq data sets were normalized, scaled, dimensionally
reduced and visualized on a UMAP using the Seurat (v 4.0.4) workflow4–7. In brief,
count matrices were loaded into a Seurat object and normalized using Normal-
izeData(…, normalization.method= “LogNormalize”, scale.factor = 10,000).
Variable features were identified using FindVariableFeatures (…, selection.-
method= ‘mvp’, mean.cutoff = c(0.1,8), dispersion.cutoff = c(1,Inf)) and then
data were scaled using ScaleData(…). Principal component analysis, and UMAP
embedding was performed using RunPCA(…) and RunUMAP(…, dims = 1:30),
respectively. Metadata from original publications were used to annotate cell types.

Differential expression analysis. Differential expression analyses were performed
usingWilcoxon rank sum (Wilcox) and codependency index (CDI)53, 54. The Wilcox
method was implemented using the wilcoxauc function (Presto R package, v 1.0.0)55.
Alternatively, the CDI was adopted to calculate the probability of cluster and gene co-
occurrence under a binomial distribution. For a given gene g and cluster k, the joint
probability of observed non-zero g expression in k is formulated as:

Pð g ¼ 1; k ¼ 1Þ ¼ Pð g ¼ 1ÞPðk ¼ 1Þ ¼ πg;k ð1Þ
The probability of observing a test statistic more extreme under the null

hypothesis that gene g and cluster k are independent is then:

peðπg;kÞ ¼ ∑
Ig;k ≤ x≤N

BinoðN; x; πg;kÞ ð2Þ

where BinoðN; x; πg;kÞ represents the probability of observed x successes in N trials
if the probability of success is πg;k , and Ig;k is the number of cells in which g and k
are coincident. CDI is then defined as:

CDI ¼ �log10½peðπg;kÞ� ð3Þ
We further normalized the CDI score using the CDI score corresponding to the

probability of observed a perfect co-dependency for cluster k:

nCDI ¼ CDI
�log10½peðπk;kÞ�

ð4Þ

where πk;k ¼ P ck ¼ 1; ck ¼ 1
� �

, under the assumption of independence. Possible
values of nCDI range between [0,1], such that nCDI ¼ 1 represents perfect co-
dependence between a gene and cluster, and nCDI ¼ 0 represents no co-dependence

but is not equivalent to mutual exclusivity which has been formulated elsewhere54.
The CDI DE method is implemented in R using the findCDIMarkers(…) function in
the scMiko package.

Since the CDI metric is influenced by the degree of sparsity in the single cell
count matrix, scoring data sets with varying sequencing depths (i.e., different
degrees of drop out) will yield heterogeneous CDI results. Thus, if using an
integrated Seurat object, heterogeneity in sequencing depth can be corrected by
processing the Seurat object using Seurat’s PrepSCTFindMarkers(…) function
which effectively down samples the count matrix to a homogenous sequencing
depth across all datasets. As a complementary approach, we have also provided the
findConservedCDIMarkers() function in the scMiko package [analogous to Seurat’s
FindConservedMarkers() function] that finds gene markers that are conserved
across independent groups by pooling the p values from independent group-
specific estimates using Fisher’s method56, 57.

The CDI, by definition, only computes genes that are “up-regulated” relative to
the comparison group, so to ensure fair comparison to the Wilcox method, only
gene subsets that had a positive log fold change (LFC) were considered in Wilcox
vs. CDI comparative analyses. Differentially expressed genes (DEGs) were deemed
significant at a 5% false discovery rate (FDR). The top 50 DEGs identified by each
method were subsequently characterized using sensitivity, specificity, positive
predictive value (PPV) and negative predictive value (NPV):

Sensitivity ¼ Pin

100%� Pin

� �þ Pin
ð5Þ

Specificity ¼ 100%� Pout

100%� Pout

� �þ Pout
ð6Þ

PPV ¼ Pin

Pin þ Pout
ð7Þ

NPV ¼ 100%� Pout

100%� Pout

� �þ ð100%� PinÞ
ð8Þ

where Pin and Pout represent the expressing percentage of cells within and outside a
cluster, respectively. Note that these metrics are intended as a descriptive
characterization of each DE method, rather than to measure of how sensitive/specific
each method is in detecting the true set of differential genes. We also computed the
Gini inequality index as a complementary surrogate for gene specificity:

Gini Index ¼
∑nclusters

k 1� xg;k �max xg
� �� �� �

nclusters � 1
ð9Þ

where xg;k is the average expression of gene g for cluster k, and nclusters is the number
of unique clusters.

To benchmark and compare the performance of CDI and Wilcoxon methods,
scRNA-seq datasets were simulated using splatSimulate(…) (Splatter R package,
v1.20.0) with nine sets of parameters (Table S2), each with two cluster groups. The
simulation parameters were varied to reflect differences in sequencing depth
(UMI:gene ratio), number of cells, and magnitude of difference (i.e., LFC
magnitude). True DEGs were defined as any feature with a Splatter DEFacGroup2
value not equal to 1. Half of the true DE genes were then assigned as bDEGs by
setting the count values of genes outside of Group2 to zero, and the remaining half
were specified as gDEGs. For each dataset, Wilcoxon and CDI methods were run
using getDEG(group.by = “Group”, …) and findCDIMarkers(features.x =
“Group”, features.y = rownames(seurat_object), …) functions, respectively, from
the scMiko R package using default parameters. Performance was evaluated using
ROC analysis where CDI and Wilcoxon recovered DEGs were compared to true
DEGs simulated by Splatter. ROC sensitivity and specificity were calculated using
confusionMatrix(…) (caret R package, v6.0-92).

Cluster optimization. To identify the optimal cluster resolution, we first clustered
samples over a range of candidate resolutions (0.05 to 3) using FindClusters(…,
algorithm= 1) in Seurat. At each resolution ρ, the top cluster-specific marker for each
cluster was identified using CDI-based DE analysis. Subsequently, specificity curves
were generated by plotting the proportion of clusters that exceed a threshold nCDI
score, for nCDI ranging [0,1]. The area under this curve (AUC) represents the
aggregate specificity index Sρ and possible values range between [0,1], with a score of
1 representing the ideal cluster configuration in which each cluster has at least one
marker satisfying nCDI = 1. Aggregate specificity indices were graphed over the
range of candidate resolutions, and resolutions at which a peak and subsequent
elbow(s) were manually observed were taken as optimal clustering resolutions for
downstream analyses. Cluster resolutions were also identified using chooseR algo-
rithm with default parameters (https://github.com/rbpatt2019/chooseR)58.

For each resolution, we computed the adjusted Rand index (ARI) between
unsupervised scRNA-seq clusters and author-curated cell-type clusters (i.e. ground
truth) using the adj.rand.index (fossil R package, v 0.4.0)59. ARI is a measure of
similarity between two data clusterings, adjusted for chance groupings. Across all
the candidate resolutions evaluated, the maximal ARI between our unsupervised
clusters and ground truth clusters was ~0.8 and the resolutions at which the max
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ARI was observed was denoted ARImax (Fig. 3b). The imperfect cluster similarity
here reflects differences in computational preprocessing across datasets and
possible manual cluster refinement performed by authors of the original datasets.
Nonetheless, this represents the maximal ARI that is achievable using the current
unsupervised cluster approach and serves as a positive control to which all other
cluster configurations were compared.

Cell-type marker catalog. To generate a cell-type marker reference catalog, cell-
type-specific markers were derived from eight diverse public scRNA-seq atlases
(Tabula Muris, Tabula Sapiens60, Cao 20193, Cao 2020, Pijuan Sala21, Tyser, La
Manno27, and Zeisel61) using the Wilcoxon DE method to identify DEGs across
author-curated cell types (Table 1). All markers satisfying logFC > 0.5,
AUROC > 0.95 and FDR < 1% were included. If less than 15 markers were
identified per a cell-type using these criteria, the top N markers (ranked by
logFC) with FDR < 1% were taken to ensure the minimum 15 markers per cell-
type requirement was satisfied. These markers were then consolidated with cell-
type-specific markers from PanglaoDB and CellMarkers18 to yield a cell-type
marker reference catalog. No additional filtering was performed, resulting in
many cell-types being represented by multiple gene sets from several indepen-
dent sources. We justified this redundancy as a strength of the catalog, as co-
enrichment of independent and coherent cell-type terms leads to higher con-
fidence cell-type annotations. To visualize the catalog using a bipartite network,
a gene × cell-type incidence matrix was generated using graph.incidence (igraph
R package, v 1.2.6) and the network was visualized using layout.auto (igraph).
Both human and murine cell-types are represented in this catalog. All cell-type
markers used in this study have been made available in our scMiko R package
and Table S1.

Cell-type annotation. The Miko score is a scaled cluster-level module score that
adjusts for cell-to-cell gene expression variation and gene set size. To compute the
Miko score, standardized module scores Zj for each cell jmust first be calculated by
subtracting the mean expression of control features Yj from the mean expression of
gene set features Xj , and then scaling the difference by the pooled standard
deviation of the gene set and control features:

Zj ¼
Xj � Yjffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffi

VarðXjÞ þ VarðYjÞ
q ð10Þ

Following the approach taken by Tirosh and colleagues62 and implemented
in AddModuleScore (Seurat), all analyzed features are binned based on averaged
expression and control features are randomly selected from each bin. As a
variance-corrected statistic, the standardized module score can be used as-is to
compute single-cell level significance [p ¼ Pr > Zj jð Þ]. However, in the absence of
a gene set-size correction, module score comparisons between gene sets are
invalid.

To correct for gene set size-dependencies, cell-level null standardized module
scores Znull;j are computed for randomly sampled gene sets that span over a range
of different sizes (2-100 genes per gene set by default). Random gene set-specific
Znull;j scores are then aggregated for each cluster k to yield a cluster-level null
standardized module score Znull;k :

Znull;k ¼
1

ncell;k
∑
ncell;k

j
Znull;j

� �
ð11Þ

where Znull;k and Znull;j represent the null standardized module scores for a
randomized gene set of a given size for cluster k or cell j, respectively, and ncell;k
represents the number of cells belonging to cluster k. The relationship between
gene set size and null standardized scores is then fit using a polynomial spline:

nullmodelmean ¼ glm Znull � bs size; degree ¼ 3; family ¼ gaussian
� �� � ð12Þ

This null mean model is used to predict gene set size-adjusted null standardized

scores Zpred
null . In theory, the expected value of Zpred

null is 0 and we approximate it as
such in our computational implementation. Separately, we calculate the observed
variance in Znull;k , denoted VarðZnull;kÞ, over a range of gene set sizes, and fit the
relationship between gene set size and VarðZnull;kÞ using a gamma-family
generalized linear model:

nullmodelvariance ¼ glm Var Zrand

� � � size; family ¼ Gamma
� � ð13Þ

This null variance model is used to predict gene set size-adjusted variance of

standardized scores VarðZpred
null Þ.

Finally, to derive the gene set-size corrected Miko score, we aggregate
standardized module scores Zj for each gene set into cluster-level means:

Zobs;k ¼
1

ncell;k
∑
ncell;k

j
Zj

� �
ð14Þ

and center and scale Zobs;k using gene set-size matched null mean Zpred
null and

variance VarðZpred
null Þ to yield the Miko score Mk for cluster k:

Mk ¼
Zobs;k � Zpred

nullffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffi
VarðZpred

null Þ
q ð15Þ

The Miko score is a cluster-level module score that is adjusted for gene set size-
related spurious effects and cell-to-cell variability. This ensures the valid
comparison of scores across differently sized gene sets, making it a valuable tool in
marker-based cell annotation. Another property of the Miko score is that it can be
handled as a Z statistic, thus facilitating p-value calculation and hypothesis testing:

p ¼ Pr > Mk

		 		� � ð16Þ
This facilitates cell cluster annotation based on which cell-type-specific gene sets

are significantly active.
In addition to the Miko score, we propose two post-scoring filters which serve

to fine tune which gene sets are considered enriched. The first is a coherence filter
in which a positive correlation between component gene expression and the Miko
score is enforced for a minimum fraction of component genes. The second is a
frequent flier filter, which flags gene sets that exceed a minimum significance rate
and represent gene sets that enrich across most cell clusters.

To benchmark the performance of Miko scoring, three public scRNAseq
datasets (Cao 2020, Tyser 2021 and Pijuan Sala 2019; see Table 1) were annotated
using Miko scoring, SCINA22, scType24, Seurat (AddModuleScore function), and
GSVA23. Each dataset was annotated using our cell marker catalog (Table S1)
excluding the marker sets that were derived from the dataset being annotated to
prevent overfitting. Miko scoring was performed with default parameters, with [MS
(CF>0.5)] and without [MS (CF>0)] the coherence filter (CF). SCINA was
performed using SCINA(rm_overlap = 0, …) using otherwise default parameters
(SCINA R package, v 1.2.0). GSVA was performed with default parameters using
gsva(…) (GSVA R package, v 1.44.2). Seurat scoring was performed using
AddModuleScore(…) with default parameters (Seurat R package, v 4.0.4). ScType
scoring was performed using sctype_score(…) using default parameters and the
script provided on github (https://github.com/IanevskiAleksandr/sc-type/). Gene
set-specific scores from scType, Seurat, GSVA, and SCINA were then averaged over
each cell cluster and performance was evaluated using ROC analysis using author-
curated labels as ground-truths. ROC sensitivity and specificity were calculated
using confusionMatrix(…) (caret R package, v 6.0-92).

Gene program discovery. Scale-free topology shared nearest neighbor network
(SSN) analysis is a gene program discovery algorithm that groups genes based on
co-expression similarity profiles and visualizes the network layout using a UMAP-
based embedding. Features used for gene program discovery can be pre-specified
using a variety of criteria, including minimum expression thresholds, high varia-
bility or deviance, however in the current study we select features using a minimal
expression criteria (expressing fraction >0.5 within at least one cluster). The
cell × gene expression matrix (transposed from the Seurat object) is then subject to
principal component analysis [RunPCA(…, ndim = 50)] and the top components
explaining >90% of the variance are used to construct a K-nearest neighbor graph
K [FindNeighbors(…, k.param = 20)], from which a shared-nearest neighbor (SSN)
graph G is constructed by calculating the neighborhood overlap (Jaccard Index)
between every gene and its K-nearest neighbors. Adopting the framework from
WGCNA, a scale-free topology transform is then applied to the SNN graph by
raising the SNN graph (gene × gene matrix) to an optimized soft-threshold power:

G0 ¼ Gsoft power ð17Þ
where G0 represents a scale-free topology-conforming SNN graph and is the
adjacency matrix that will be used for downstream network construction. The
optimal soft-threshold power used to derive G0 is identified by calculating the
signed R2 statistic for the following relationship:

log p Wð Þ� � � log Wð Þ ð18Þ
where W represents connectivity w discretized into n bins (default 20), and pðWÞ
represents the proportion of nodes (i.e., genes) within the W bin. Connectivity wg

for gene g is calculated as row-wise sum of G:

wg ¼ ∑Gg;�g ð19Þ
where g and �g represent the row and column indices corresponding to gene g and
all genes except gene g, respectively. The soft threshold power is evaluated over a
range of candidate values (default 1–5), and the optimal power is taken as the
smallest power for which signed R2<� 0:9:

argmin
soft power2½0:5;5�

signedR2
soft power<� 0:9

� �
ð20Þ

To visualize the transcriptomic network, the scale-free SNN graph G0 is
embedded in a UMAP using RunUMAP(…, graph = G′, umap.method = “umap-
learn”). Network nodes represent individual genes, whereas network linkages
represent G0 edges thresholded at a specified quantile (0.9 by default).
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To identify gene programs from the scale-free SNN graph G0 , Louvain
clustering is performed. We identify the optimal clustering resolution using a
nearest neighbor purity criterion which seeks to optimize the cluster consistency, or
purity, within individual gene neighborhoods by maximizing the similarity of genes
within programs compared to other programs (analogous to silhouette score63).
For a candidate cluster resolution ρ, the gene-level purity score is defined as the
proportion of genes within gene g’s neighborhood that belong to the most
represented cluster within that neighborhood (Supplementary Fig. 5):

pρ;g ¼
jkρ;g 2 modeðkρ;g Þj

jKg j
¼ nρ;g

Ng
ð21Þ

where pρ;g is the gene g’s purity at ρ resolution, the denominator Ng represents the
cardinality ðjjÞ, or size, of gene g’s K-nearest neighborhood Kg (20 by default), the
numerator nρ;g represents the number of genes in gene g’s neighborhood that
belong to the most represented cluster [i.e., majority cluster, modeðkρ;g Þ] and kρ;g is
a vector of cluster memberships for all genes belonging to gene g’s neighborhood.
For each candidate resolution, gene-level purity scores pρ;g are then aggregated as
means to yield the global purity score Pρ :

Pρ ¼
1
N
∑
g
pρ;g ð22Þ

where N is the number of genes in the SSN graph. Finally, the optimal cluster
resolution is the maximal resolution at which the target purity Ptarget (0.8 by
default) is satisfied:

argmax
ρ2½0;�

ðjPtarget � PρjÞ ð23Þ

Possible purity scores range between 0 to 1. Neighborhoods in which genes
belong to many different clusters are considered “impure” (low purity score)
whereas neighborhoods in which genes belong to a single cluster are “pure” (high
purity score). In general, higher cluster resolutions are associated with lower the
purity scores, however we recommend using a target purity between 0.7 (more gene
programs) and 0.9 (fewer programs).

To minimize spurious gene program associations, genes with low connectivity
(i.e., low network degree) are pruned so that only hub-like genes are retained for
downstream annotation and analysis. Here connectivity for each gene g is
calculated as described above for wg , however in this case we use the scale-free SSN
graph G0 instead of G. Connectivity scores wi are L2 normalized and those below a
prespecified threshold (0.1 by default) are pruned.

SSN performance evaluation. To benchmark the performance of SSN, gene
program discovery was performed using SSN, ICA, and non-negative matrix fac-
torization (NMF) on eight public scRNA-seq data sets (Table 1). The ICA method
was selected for comparison because it was the top performing algorithm in a prior
systematic benchmarking review of 42 routinely used gene program discovery
algorithms33, whereas NMF is a popular discovery algorithm used in scRNA-seq
analyses64, 65. For each dataset, a common subset of genes that was expressed by
>50% of cells in at least one cell cluster were used (typically ranging between 1000
and 4000 genes). ICA was performed using RunICA(…) implemented in Seurat
(default parameters), and NMF was performed using nnmf(…, k = c(5, 10, 15), loss
= “mse”, rel.tol = 1e-4, max.iter = 50) (NNLM R package, v 0.4.4). For NMF
analysis, scaled gene expression values were truncated at zero. Graph modularity
was compared between SSN graphs before (SN) and after (SSN) scale-free topology
transformation using modularity(…) (igraph R package, v 1.2.6). GO gene set
recovery was evaluated following the approach taken by Saelens and colleagues,
where the Jaccard similarity between observed (SSN, ICA, NMF) and known (GO)
gene programs was calculated to yield an observed × known gene program simi-
larity matrix. Then, for each known gene program (matrix column), the max
column-wise Jaccard similarity score was taken, representing the best recovery
achieved by the unsupervised gene program detection algorithm for that known
gene program, and the best Jaccard indices averaged over all known programs
yielded the overall recovery score. The overall recovery score was compared across
gene program detection methods. To evaluate the extent of STRING protein-protein
interaction enrichment in gene programs identified by each method, within-
program interaction enrichment was performed using get_ppi_enrichment(…)
(STRINGdb R package, v 2.0.2) and enrichment ratios were compared across gene
program discovery methods66. Finally, we used the murine gastrulation scRNA-seq
data set to benchmark the computing times required to run each method. The data
set was subsampled to 1000, 10000, 25000, 50000 and 100000 cells and for each
data subset, 500, 1000, 2500, 5000, and 10000 genes were used for gene program
discovery. The run times, relative to SSN, as well as the absolute run times for SSN
across different cell/gene count settings were reported.

Gene set enrichment analysis. To functionally annotate gene programs identified
by SSN, ICA, and NMF, we perform hypergeometric overrepresentation analysis
using fora (fgsea R package, v 1.14.0)67. Annotated gene sets used for enrichment
analyses included GO ontology (biological processes, cellular components, mole-
cular functions) and gene-set collections curated by the Bader Lab68.

Data visualization. Unless otherwise specified, the ggplot2 R package (v 3.3.5) was
used for data visualization. scRNA-seq gene expression was visualized using Fea-
turePlot function (Seurat) or DotPlot function (Seurat). Venn diagrams were
generated using either ssvFeatureEuler (seqsetvis R package, v 1.8.0) or ggVenn-
Diagram (ggVennDiagram R package, v 1.1.4). Box plots are comprised of center
line, median; box limits, upper and lower quartiles; whiskers; 1.5x interquartile
ranges; points, raw data.

Statistics and reproducibility. All pairwise comparisons were performed using
the signed Wilcoxon rank sum test (two-sided), and p values were adjusted for
multiple comparisons using the Benjamini–Hochberg procedure, as indicated. In
cases where methods were compared across a common set of data, paired Wil-
coxon tests (two-sided) were performed. Sample sizes reflected the number of
scRNA-seq datasets evaluated, and not number of cells per dataset (see Table 1).

Reporting summary. Further information on research design is available in the Nature
Research Reporting Summary linked to this article.

Data availability
scRNA-seq data from Ochocka et al. (2021) was obtained from Gene Expression
Omnibus (GEO; accession number GSE136001);25 Cao et al. (2019) from GEO
(accession number GSE119945);3 Cao et al. 2020 from GEO (accession number
GSE156793); Zeisel et al. (2018) from http://mousebrain.org/adolescent/downloads.html;
La Manno et al. (2021) from http://mousebrain.org/development/downloads.html;
Tabula Muris from FigShare; Tabula Sapiens from FigShare; Pijuan-Sala (2019) from the
MouseGastrulationData R Package; and Tyser et al. (2021) from http://www.human-
gastrula.net/17. Data and scripts used to generate figures have been deposited on figshare
(https://doi.org/10.6084/m9.figshare.21202757.v1).

Code availability
scMiko R package (https://doi.org/10.5281/zenodo.7111634) and scPipeline (https://doi.
org/10.5281/zenodo.7111632) are freely available and documentation and tutorial
vignettes can be found here: https://nmikolajewicz.github.io/scMiko/.
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