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INTRODUCTION 
 

Worldwide, lung cancer cases and deaths are increasing. 

In 2018, GLOBOCAN [1] estimated that there were 

2.09 million new cases (11.6% of the total number of 

cancer cases) and 1.76 million deaths (18.4% of the 

total number of cancer deaths), which is higher than the 

rate reported in 2012 (1.8 million new cases and 1.6 

million deaths), making it the most common cause of 

cancer and cancer deaths in both men and women [2]. 

Lung cancer includes multiple subtypes, and the 

proportion of lung adenocarcinoma (LUAD) has 

increased in recent years. Despite significant advances 

in chemotherapy and molecular targeted therapy, the 

survival rate of LUAD remains unsatisfactory. Tumor 

recurrence and metastasis are major challenges in the 

clinical treatment of LUAD [3]. To improve the 

prognosis of patients with LUAD, more targeted 
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ABSTRACT 
 

Rho-GTPase activating protein 30 (ARHGAP30) can enhance the intrinsic hydrolysis of GTP and regulates Rho-
GTPase negatively. The relationship between ARHGAP30 expression and lung adenocarcinoma is unclear. 
Therefore, the present study aimed to assess the differences in expression of ARHGAP30 between lung 
adenocarcinoma tissues and normal tissues and the relationship between DNA methylation and ARHGAP30 
expression in lung adenocarcinoma. To determine the role of ARHGAP30 expression in the prognosis and 
survival of patients with lung adenocarcinoma, gene set enrichment analysis of ARHGAP30 was performed, 
comprising analyses of Kyoto Encyclopedia of Genes and Genomes pathways, Panther pathways, Reactome 
pathways, Wikipathways, Gene Ontology, Kinase Target Network, Transcription Factor Network, and a 
protein-protein interaction network. The association of ARHGAP30 expression with tumor-infiltrating 
lymphocytes, immunostimulators, major histocompatibility complex molecules, chemokines, and chemokine 
receptors in lung adenocarcinoma tissues was also analyzed. DNA methylation of ARHGAP30 correlated 
negatively with ARHGAP30 expression. Patients with lung adenocarcinoma with high DNA methylation of 
ARHGAP30 had poor prognosis. The prognosis of patients with lung adenocarcinoma with low ARHGAP30 
expression was also poor. ARHGAP30 expression in lung adenocarcinoma correlated positively, whereas 
methylation of ARHGAP30 correlated negatively, with levels of tumor infiltrating lymphocytes. Gene set 
enrichment analysis revealed that many pathways associated with ARHGAP30 should be studied to improve 
the diagnosis, treatment, and prognosis of lung adenocarcinoma. We speculated that DNA methylation of 
ARHGAP30 suppresses ARHGAP30 expression, which reduces tumor immunity, leading to poor prognosis for 
patients with lung adenocarcinoma. 
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molecules should be identified to diagnose, treat, and 

determine the prognosis of patients. We suggest that 

ARHGAP30 might have potential as a new targeting 

molecule. 

 

The Rho protein family belongs to the small GTP-

binding proteins of the Ras superfamily (including the 

Ras, Rho, Rab, Ran, and Rrf families), which have a 

molecular weight between 20 and 30 kDa and control 

numerous signal transduction pathways as molecular 

switches in eukaryotic cells [4]. Rho proteins act as 

signal converters in the signal transduction pathway of 

cells, acting on the cytoskeleton or target proteins, and 

produce a variety of biological effects [5]. Rho GTPase 

activating protein 30 (ARHGAP30), a Rho-specific Rho 

GAP, has been reported to enhance the intrinsic 

hydrolysis of GTP and might regulate Rho GTPase 

negatively [6].  

 

Recent studies have demonstrated a close relationship 

between Rho-GTPases and the development and 

metastasis of various human tumors [7]. In some 

studies on the relationship between ARHGAP30 and 

cancer, upregulation of ARHGAP30 attenuated 

pancreatic cancer progression by inactivating the β-

catenin pathway [8]. In addition, ARHGAP30 

promotes p53 acetylation and function in colorectal 

cancer [9]. However, whether there is a difference in 

the expression of ARHGAP30 in LUAD, a 

relationship between the expression of ARHGAP30 in 

LUAD and DNA methylation, and whether these 

affect patient’s prognosis, survival, and tumor 

immune infiltration, are unclear and require  

further study. 

 

This present study aimed to investigate the differential 

expression of ARHGAP30 between LUAD tissues and 

normal tissues and the relationship between 

ARHGAP30 expression and DNA methylation in 

LUAD. The role of ARHGAP30 expression in the 

prognosis and survival of patients with LUAD was 

studied. In addition, gene set enrichment analysis 

(GSEA) of ARHGAP30 was performed using various 

bioinformatic analyses, including Kyoto Encyclopedia 

of Genes and Genomes (KEGG) pathways, Panther 

pathways, Reactome pathways, Wikipathways, Gene 

ontology (GO; biological process, cellular component, 

and molecular function), Kinase Target Network, 

Transcription Factor Network, and a protein-protein 

interaction (PPI) network in the Biological General 

Repository for Interaction Datasets (BI-OGRID). The 

association of ARHGAP30 expression with tumor-

infiltrating lymphocytes (TILs), immunostimulators, 

major histocompatibility complex (MHC) molecules, 

chemokines, and chemokine receptors in LUAD 

tissues were also analyzed. We believe that 

ARHGAP30 can be developed as a new biomarker for 

LUAD. The study of ARHGAP30-associated immune 

infiltration will provide a new direction for 

immunotherapy of lung adenocarcinoma. 

 

RESULTS 
 

Differential expression of the ARHGAP30 mRNA 

and protein in LUAD tissues and normal tissues 

 

Figure 1A shows a summary view of the different 

transcriptional levels of ARHGAP30 in various 

cancers in the Oncomine [10] database. The red line 

in the figure shows that the expression level of 

ARHGAP30 in lung cancer tissue was significantly 

lower than that in normal tissue. Figure 1B1–1B6 

show that the mRNA expression levels of ARHGAP30 

were considerably higher in LUAD than in normal 

tissue. Figure 1B1–1B3 show the fold change, 

associated p-values, and overexpression Gene Rank, 

based on Oncomine 4.5 analysis [10], including box 

plots of ARHGAP30 mRNA levels in the Hou Lung, 

Selamat Lung, and Okayama Lung datasets. Figure 

1B4, 1B5 show the expression of ARHGAP30 in 

LUAD based on SurvExpress [11] analysis. Figure 1 

(B6) shows the expression of ARHGAP30 in LUAD 

based on GEPIA [12]. P values as described in the 

figure are statistically significant. According to 

analysis at the Warner [13] database, the abundance of 

the different exons of the ARHGAP30 gene show an 

uneven balance between normal and tumor tissues in 

patients with LUAD (Figure 2A). Figure 2A1 shows 

the expression of ARHGAP30 in normal tissues (n = 

58) and Figure 2A2 shows the expression of 

ARHGAP30 in tumor tissues (n = 488). The data 

shown in Figure 2A4, 2A5 indicates that ARHGAP30 

expression correlated negatively with the level of 

DNA methylation.  

 

Differential expression of ARHGAP30 mRNA in 

LUAD tissues and normal tissues 

Figure 1C shows mRNA expression levels of 

ARHGAP30 in subgroups of patients with LUAD, 

stratified based on sample type, individual cancer 

stage, ethnicity, sex, age, smoking habit, nodal 

metastasis status, and TP53 mutation status 

(UALCAN [14]). The P-value of the comparison 

between each is shown in Supplementary Table 1. 

Figure 1C1 shows a significant difference between 

normal tissue and lung adenocarcinoma tissue (P < 

0.001). Figure 1C2–1C8 show that in addition to the 

differential expression between tumor tissues and 

normal tissues, there were statistically significant 

differences between Stage 1 and Stage 3, Stage 1 and 

Stage 4, Stage 2 and Stage 3, male and female, and 

N0 and N2.  
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Figure 1. Comparison of mRNA and protein expression of ARHGAP30 in lung cancer tissues and normal tissues. (A) Summary 

view of ARHGAP30. The transcription level of ARHGAP30 in different types of cancer. P-value < 0.05, Note: The Z-score standardizes the color 
to describe the relative value in the row. Among them, red indicates overexpression or copy acquisition of genes in the analysis; blue 
indicates low expression or copy loss of genes in these analyses. Datasets comprised samples represented as microarray data measuring 
mRNA expression in primary tumors, cell lines, or xenografts. (B) Transcription of ARHGAP30 in lung adenocarcinoma (from Oncomine, 
SurvExpress, and GEPIA databases). mRNA expression levels of ARHGAP30 were significantly higher in lung adenocarcinoma than in normal 
tissue. (B1–B3) The fold change, associated p-values, and overexpression Gene Rank, based on Oncomine 4.5 analysis. Box plots show 
ARHGAP30 mRNA levels in the Hou Lung, Selamat Lung, and Okayama Lung datasets. (B4, B5) The expression of ARHGAP30 in LUAD based on 
SurvExpress analysis; (B6) The expression of ARHGAP30 in LUAD based on GEPIA analysis; P values as described in the figure are statistically 
significant. (C) ARHGAP30 transcription in subgroups of patients with lung adenocarcinoma, stratified based on sex, age, and other criteria 
(UALCAN). (C1) Sample types. (C2) Individual cancer stages. (C3) Ethnicity. (C4) Sex. (C5) Age. (C6) Smoking habits. (C7) Nodal metastasis 

status. (C8) TP53 mutation status. ☆, P < 0.05; ☆☆, P < 0.01; ☆☆☆, P < 0.001. (D) Differential abundance of the ARHGAP30 protein in 

patients with lung adenocarcinoma, stratified by sex, age, and other criteria. (D1) Sample types. (D2) Individual cancer stages. (D3) Ethnicity. 

(D4) Sex. (D5) Age. (D6) Weight. (D7) Tumor grade. (D8) Tumor histology. ☆, P < 0.05; ☆☆, P < 0.01; ☆☆☆, P < 0.001. 
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Figure 2. DNA methylation and the differential expression of ARHGAP30 between lung adenocarcinoma and normal tissues. 
(A) The abundance of the different exons of the ARHGAP30 gene shows an uneven balance in normal and tumor tissues in patients with lung 
adenocarcinoma according to the Wanderer database. (A1) Expression of ARHGAP30 in normal tissues (n = 58); (A2) Expression of ARHGAP30 
in tumor tissues (n = 488); (A3) Comparison of the mean expression of ARHGAP30 between normal tissue and lung adenocarcinoma tissue. 
(A4, A5) The expression of ARHGAP30 correlated negatively with the level of DNA methylation. (B) Highly mutated genes and the expression 
of ARHGAP30 in the TCGAportal database. The value adjacent to the highly mutated gene is the permutation test p-value of gene expression 
between the driver mutated (red) and not-mutated (gray) samples. (C1, C2) Box plots of the mRNA expression of ARHGAP30 in lung 
adenocarcinoma before and after mutation of highly mutated genes (KEAP1, STK11) in the Linkedomics database. (D) Heat map of ARHGAP30 
methylation in lung adenocarcinoma. (E1, E2) Kaplan–Meier plots of the survival of patients with lung adenocarcinoma with different 
ARHGAP30 DNA methylation levels (Different methylation probes cg07837534 and cg00045607 in the MethSurv database). (F) Gene 
expression and methylation of ARHGAP30 in samples of primary tumors and solid tissues analyzed at the TCGAportal database. Spearman T: 
Spearman correlation between expression and methylation in primary tumor samples. Spearman N: Spearman correlation between 
expression and methylation in solid tissue standard samples. Mean T: Mean value of the methylation beta-value in primary tumor samples. 
Mean N: Mean value of methylation in normal solid tissue samples. 
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Differential abundance of the ARHGAP30 protein in 

LUAD tissues and normal tissues 

Figure 1D shows the protein levels of ARHGAP30 in 

subgroups of patients with LUAD, stratified based on 

sample type, individual cancer stage, ethnicity, sex, 

age, weight, tumor grade, and tumor histology 

(assessed using UALCAN [14] and CPTAC [15]). The 

P-value of the comparison between each is shown in 

Supplementary Table 2. Figure 1D1 shows a 

significant difference between normal tissue and 

LUAD tissue (P < 0.001). Figure 1D1–1D8 show that 

in addition to the differential abundance between 

tumor tissues and normal tissues, there were 

statistically significant differences between age 41–60 

years and 61–80 years; and Grade 2 and Grade 3.  

 

Effect of mutations in common hypermutated genes 

and DNA methylation of ARHGAP30 on the 

expression of ARHGAP30 in lung adenocarcinoma 

versus normal tissues 

 

The location of ARHGAP30 methylation in the lung 

adenocarcinoma cases was on chromosome 1, 

161015000 to 161,069905. Figure 2B shows that 

ARHGAP30 expression was affected by some highly 

mutated genes in the analysis using the TCGAportal 

[16] database. Among them, KRAS (encoding KRAS 

proto-oncogene, GTPase), KEAP1 (encoding kelch 

like ECH associated protein 1), STK11 (encoding 

serine/threonine kinase 11), and NF1 (encoding 

neurofibromin 1) genes had statistically significant P 

values. Figure 2C1, 2C2 show that ARHGAP30 

mRNA expression in LUAD was significantly lower 

than that in normal tissues after mutation of highly 

mutated genes (KEAP1 and STK11) in the 

Linkedomics [17] database. These results indicate that 

mutations in KEAP1 and STK11 significantly reduce 

ARHGAP30 gene expression and affect LUAD 

development. 

 

Figure 2D shows a heatmap of ARHGAP30 DNA 

methylation (using four probes: cg07837534, 

cg12081303, cg00045607, cg03089651) in LUAD 

based on analysis at the Methsurv [18] database, 

which showed that ARHGAP30 DNA methylation 

levels were markedly increased in LUAD. A Kaplan–

Meier map for patients with LUAD with different 

levels of ARHGAP30 DNA methylation showed that 

patients with hypomethylation had a statistically 

significant better survival prognosis (Figure 2E1, 

2E2) [18]. The Spearman correlation between 

expression and methylation in primary tumor  

samples was significantly higher than the  

Spearman correlation between expression and 

methylation in normal samples of solid tissues  

(Figure 2F) [16]. 

Prediction of the prognosis of patients with LUAD 

according to ARHGAP30 mRNA levels 

 

We found that the prognosis of patients with LUAD 

with high ARHGAP30 mRNA expression levels was 

significantly better than that of patients with low 

ARHGAP30 mRNA expression levels, as demonstrated 

by the 12 overall survival curves shown in Figure 3 (all 

P < 0.01). Figure 3A1, 3A2 represent the two overall 

survival curves from the GEPIA [12] database; Figure 

3C–3J represent the eight overall survival curves from 

the Oncolnc [19], Ualcan [14], UCSC [20], TCGA 

portal [16], TISIDB [21], KMplot [22], TIMER [23], 

and Linkedomics [17] databases. The two survival 

curves in Figure 3K1, 3K2 represent the overall survival 

curves from the PrognoScan [24] database. Figure 3B1, 

3B2 show two disease-free survival curves from the 

GEPIA database, which indicate that the prognosis of 

patients with LUAD with high expression of 

ARHGAP30 mRNA was significantly higher than that 

of patients with low expression of ARHGAP30 mRNA 

(P < 0.01). The two survival curves in Figure 3L1, 3L2 

represent recurrence-free survival curves from the 

PrognoScan [24] database), which show that the 

prognosis of patients with LUAD with high expression 

of ARHGAP30 mRNA were significantly higher than 

that of patients with low expression of ARHGAP30 

mRNA (P < 0.05). 

 

Genes, miRNAs, and lncRNAs correlated highly 

with ARHGAP30 in lung adenocarcinoma 

 

We analyzed the genes and microRNAs (miRNAs) that 

correlated with ARHGAP30 based on the Linkedomics 

[17] database. Figure 4A shows a volcano plot of genes 

that correlated highly with ARHGAP30 in LUAD. 

Figure 4B shows a heatmap of genes that correlated 

highly and positively with ARHGAP30 in LUAD. 

Figure 4C shows a heatmap of genes that correlated 

highly and negatively with ARHGAP30 in LUAD. 

Figure 4D1–4D18 show scatter plots of the top 18 genes 

that correlated positively with ARHGAP30 in LUAD: 

ITGAL, DOCK2, MYO1F, SNX20, IL10RA, SASH3, 
IKZF1, NCKAP1L, SPN, CSF2RB, FAM78A, WAS, 

ARHGAP25, PIK3R5, CD37, FGD2, PTPRC, and 

CYTH4. Figure 4E1–4E18 show scatter plots of the top 

18 genes that correlated negatively with ARHGAP30 in 

LUAD: SNRPE, HSPE1, DPY30, PSMB5, TMEM223, 
MRPS18A, PFDN6, C15orf63, YWHAE, APOA1BP, 

ACP1, TMEM9, TMEM183A, ILF2, SRP9, FBXO22OS, 
SF3B14, and CCT3. 

 

Figure 5A shows a volcano plot of miRNAs that 

correlated highly with ARHGAP30 in LUAD. Figure 5B 

shows a heatmap of miRNAs that correlated highly and 

positively with ARHGAP30 in LUAD. Figure 5C shows 
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Figure 3. Overall survival curves, recurrence-free survival curves, and disease-free survival curves of ARHGAP30 in lung 
adenocarcinoma. The blue curves represent patients with lung adenocarcinoma with low ARHGAP30 expression, and the red curves 

represent patients with lung adenocarcinoma with high ARHGAP30 expression. (A1, A2) Two overall survival curves (in months and days, 
respectively) from the GEPIA database; (B1, B2) Two disease-free survival (DFS) curves for ARHGAP30 in the GEPIA database (in months and 
days, respectively). (C–J) Eight overall survival curves from the databases of Oncolnc, Ualcan, UCSC, TCGAportal, TISIDB, KMplot, TIMER, and 
Linkedomics, respectively. (K1, K2) Two survival curves representing the overall survival curves from the PrognoScan database. (L1, L2) Two 
survival curves representing recurrence-free survival curves from the PrognoScan database. 
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Figure 4. Genes that correlated highly with ARHGAP30 in lung adenocarcinoma (LUAD). (A) Volcano map of ARHGAP30-

correlated genes in LUAD, the red dots on the right represent the positively related genes, and the green dots on the left re present 
the negatively related genes. (B, C) Heat maps showing the genes that correlated positively and negatively with ARHGAP30 in LUAD 
(top 50). Red indicates positively correlated genes; green indicates negatively correlated genes. ( D1–D18) Scatter plots of the first 18 
genes that correlated positively with ARHGAP30 in LUAD. (E1–E18) Scatter plots of the first 18 genes that correlated negatively with 
ARHGAP30 in LUAD. 
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Figure 5. MiRNAs correlated highly with ARHGAP30 in lung adenocarcinoma (LUAD). (A) Volcano map of ARHGAP30-

correlated miRNAs in LUAD, the red dots on the right represent the positively associated miRNAs, and the green dots on the le ft 
represent the negatively associated miRNAs. (B, C) Heat maps showing the miRNAs that correlated positively and negatively with 
ARHGAP30 in LUAD (top 50). Red indicates positively correlated miRNAs; green indicates negatively correlated miRNAs. ( D1–D18) 
Scatter plots of the first 18 miRNAs that correlated positively with ARHGAP30 in LUAD. (E1–E18) Scatter plots of the first 18 miRNAs 
that correlated negatively with ARHGAP30 in LUAD. 
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a heatmap of miRNAs that correlated highly and 

negatively with ARHGAP30 in LUAD. Figure 5D1–

5D18 show scatter plots of the top 18 miRNAs that 

correlated positively with ARHGAP30 in LUAD: hsa-

mir-150, hsa-mir-155, hsa-mir-146a, hsa-mir-511-1, 

hsa-mir-140, hsa-mir-142, hsa-mir-342, hsa-mir-511-2, 

hsa-mir-146b, hsa-mir-598, hsa-mir-378, hsa-mir-101-

2, hsa-mir-133a-1, hsa-mir-1976, hsa-mir-218-2, hsa-

mir-29c, hsa-mir-139, and hsa-mir-223. Figure 5E1–

5E18 show scatter plots of the top 18 mRNAs that 

corelated negatively with ARHGAP30 in LUAD: hsa-

mir-183, hsa-mir-182, hsa-mir-877, hsa-mir-1276, hsa-

mir-3691, hsa-mir-151, hsa-mir-96, hsa-mir-760, hsa-

mir-18b, hsa-mir-130b, hsa-mir-1254, hsa-mir-556, hsa-

mir-200c, hsa-mir-421, hsa-mir-301b, hsa-mir-106b, 

hsa-mir-1266 and hsa-mir-561. 

 

We analyzed the long noncoding RNAs (lncRNAs) that 

correlated with ARHGAP30 based on the TANRIC [25] 

database. Figure 6A1–6A20 show scatter plots of 

lncRNAs that are highly and positively correlated with 

ARHGAP30 in LUAD: ENSG00000257824.1, ENSG 

00000268802.1, ENSG00000261644.1, ENSG00000 

255197.1, ENSG00000267074.1, ENSG0000023303 

8.1, ENSG00000245164.2, ENSG00000229645.4, ENS 

G00000272908.1, ENSG00000265148.1, ENSG00000 

247774.2, ENSG00000238121.1, ENSG000002701 

07.1, ENSG00000242258.1, ENSG00000237484.5, EN 

SG00000239636.1, ENSG00000225331.1, ENSG00000 

228427.1, ENSG00000258810.1, ENSG0000022487 

5.2. Figure 6B1–6B10 show survival curves with a 

better prognosis for those lncRNAs with low expression 

associated with ARHGAP30: ENSG00000182057.4, 

ENSG00000235570.1, ENSG00000250838.1, ENSG00 

000251059.1, ENSG00000229656.2, ENSG000002 

32527.3, ENSG00000261521.1, ENSG00000233903.2, 

ENSG00000186615.6, and ENSG00000215394.4 (all P 

< 0.05). Figure 6C1–6C10 show survival curves with a 

better prognosis for highly expressed lncRNAs 

associated with ARHGAP30: ENSG00000256691.1, 

ENSG00000266312.1, ENSG00000270182.1, ENSG00 

000231335.1, ENSG00000249717.1, ENSG00000 

267259.1, ENSG00000256984.1, ENSG000001789 

77.3, ENSG00000264469.1, and ENSG00000258670.1 

(all P < 0.05).  

 

Gene set enrichment analysis of ARHGAP30 in lung 

adenocarcinoma 

 

We performed gene set enrichment analysis (GSEA) 

[26] of ARHGAP30 using the Linkedomics [17] 

database for KEGG Pathway [27], Panther Pathway 

[28], Reactome Pathway [29], Wikipathway [30], Gene 

ontology Biological Process [31, 32], Gene ontology 

Cellular Component [31, 32], Gene ontology Molecular 

Function [31, 32], Kinase Target Network, 

Transcription Factor Network, and PPI BIOGRID 

Network [33]. We identified many genes related to 

tumor immunity in the enrichment results.  

 

The results of KEGG pathway enrichment analysis are 

shown in Figure 7A. Significantly enriched pathways 

were identified using false discovery rate (FDR) less 

than 0.05 and the absolute value of the normalized 

enrichment score greater than 1. Figure 7B1, 7B2 show 

the enrichment profiles of some statistically significant 

gene sets in the KEGG analysis. Supplementary Figures 

1–9 show the bar charts and enrichment profiles for 

ARHGAP30 GSEA of the Panther Pathway, Reactome 

Pathway, Wikipathway, Gene ontology Biological 

Process, Gene ontology Cellular Component, Gene 

ontology Molecular Function, Kinase Target Network, 

Transcription Factor Network, and PPI BIOGRID 

Network. Tables 1–10 detail the results of ARHGAP30 

GSEA for the Panther Pathway, Reactome Pathway, 

Wikipathway, Gene ontology Biological Process, Gene 

ontology Cellular Component, Gene ontology 

Molecular Function, Kinase Target Network, 

Transcription Factor Network, and PPI BIOGRID 

Network, respectively, which were statistically 

significant (absolute normalized enrichment score (NES 

values greater than 1, FDR and P values less than 0.05). 

 

From the results of KEGG pathway GSEA (Table 1), 

Primary immunodeficiency, Th1 and Th2 cell 

differentiation, Chemokine signaling pathway, T cell 

receptor signaling pathway, Th17 cell differentiation, 

and Fc gamma R-mediated phagocytosis were 

associated with immunity. From the results of Panther 

Pathway GSEA (Table 2), T cell activation, B cell 

activation, Inflammation mediated by chemokine and 

cytokine signaling pathway, Interleukin signaling 

pathway, and Toll receptor signaling pathway were 

associated with immunity. From the results of Reactome 

Pathway GSEA (Table 3), Defensins, Translocation of 

ZAP-70 to Immunological synapse, Generation of 

second messenger molecules, Costimulation by the 

CD28 family, PD-1 signaling, Interleukin-2 family 

signaling, Interleukin-10 signaling, Interleukin-3, 

Interleukin-5 and GM-CSF signaling, DAP12 

interactions, Immunoregulatory interactions between a 

Lymphoid and a non-Lymphoid cell, Phosphorylation 

of CD3 and TCR zeta chains, DAP12 signaling, 

Interleukin receptor SHC signaling, Antigen activates B 

Cell Receptor (BCR) leading to generation of second 

messengers, RHO GTPases Activate NADPH Oxidases, 

Chemokine receptors bind chemokines, Interferon-

gamma signaling, and Regulation of actin dynamics for 

phagocytic cup formation were associated with 

immunity. From the results of Wikipathway GSEA 

analysis (Table 4), T-Cell antigen Receptor (TCR) 

Signaling Pathway, T-Cell antigen Receptor (TCR) 
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Figure 6. LncRNAs correlated highly with ARHGAP30 in lung adenocarcinoma (LUAD). (A1–A20) Scatter plots of lncRNAs that are 

positively associated with ARHGAP30 in LUAD. (B1–B10) ARHGAP30 correlated lncRNAs, in which low expression has a better prognosis 
according to the survival curve of the lncRNAs. (C1–C10) ARHGAP30 correlated lncRNAs, in which high expression has a better prognosis 
according to the survival curve of lncRNAs. 
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pathway during Staphylococcus aureus infection, 

Allograft Rejection, IL-3 Signaling Pathway, Type II 

interferon signaling (IFNG), Interactions between 

immune cells and microRNAs in the tumor 

microenvironment, Cancer immunotherapy by PD-1 

blockade, IL-2 Signaling Pathway, IL-9 Signaling 

Pathway, IL-7 Signaling Pathway, Macrophage 

markers, Chemokine signaling pathway, Selective 

 

 
 

Figure 7. KEGG pathway-based GSEA of ARHGAP30 in lung adenocarcinoma (LUAD). (A) Bar chart of KEGG pathway-based GSEA of 

ARHGAP30 in LUAD (FDR < 0.05). (B1–B16) GSEA enrichment analysis Plots of 16 tumor immune-related KEGG gene sets (FDR < 0.05). 
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Table 1. KEGG pathway based gene set enrichment analysis of ARHGAP30 in lung adenocarcinoma. 

Gene set Description Size 
Leading edge  

number 
ES NES P Value FDR 

hsa05310 Asthma 28 18 0.92455 1.6939 0 0 

hsa05340 Primary immunodeficiency 36 24 0.89598 1.6822 0 0 

hsa05320 Autoimmune thyroid disease 48 27 0.88334 1.6799 0 0 

hsa05140 Leishmaniasis 71 41 0.88206 1.6794 0 0 

hsa04672 Intestinal immune network for IgA production 45 34 0.88949 1.676 0 0 

hsa05330 Allograft rejection 35 31 0.89287 1.6643 0 0 

hsa04640 Hematopoietic cell lineage 93 58 0.86219 1.6628 0 0 

hsa05150 Staphylococcus aureus infection 52 36 0.87392 1.6576 0 0 

hsa05321 Inflammatory bowel disease (IBD) 63 41 0.85768 1.6417 0 0 

hsa04658 Th1 and Th2 cell differentiation 90 46 0.85202 1.6391 0 0 

hsa05416 Viral myocarditis 56 32 0.8628 1.6368 0 0 

hsa05332 Graft-versus-host disease 37 27 0.86783 1.6327 0 0 

hsa04940 Type I diabetes mellitus 41 30 0.86296 1.6313 0 0 

hsa04514 Cell adhesion molecules (CAMs) 137 54 0.8432 1.6295 0 0 

hsa05012 Parkinson disease 115 66 -0.59262 -2.2319 0 0 

hsa03020 RNA polymerase 31 21 -0.74745 -2.237 0 0 

hsa00970 Aminoacyl-tRNA biosynthesis 43 30 -0.67799 -2.2413 0 0 

hsa03430 Mismatch repair 23 11 -0.80357 -2.2495 0 0 

hsa00020 Citrate cycle (TCA cycle) 30 19 -0.7776 -2.3534 0 0 

hsa03060 Protein export 22 17 -0.79558 -2.3539 0 0 

hsa03030 DNA replication 36 19 -0.76463 -2.4152 0 0 

hsa03010 Ribosome 131 100 -0.83153 -3.4961 0 0 

hsa04062 Chemokine signaling pathway 185 73 0.82904 1.6039 0 9.82E-05 

hsa05323 Rheumatoid arthritis 85 42 0.83117 1.6084 0 0.000104 

hsa05144 Malaria 46 27 0.84172 1.6104 0 0.000111 

hsa04660 T cell receptor signaling pathway 98 35 0.83662 1.6002 0 0.000176 

hsa04659 Th17 cell differentiation 105 54 0.83277 1.6019 0 0.000185 

hsa04380 Osteoclast differentiation 126 57 0.83591 1.5957 0 0.00025 

hsa04064 NF-kappa B signaling pathway 90 42 0.81436 1.5757 0 0.00091 

hsa04666 Fc gamma R-mediated phagocytosis 86 17 0.81881 1.5724 0 0.001016 

hsa03008 Ribosome biogenesis in eukaryotes 70 37 -0.65008 -2.1763 0 0.001061 

hsa05152 Tuberculosis 174 65 0.80199 1.5575 0 0.001535 

hsa00900 Terpenoid backbone biosynthesis 22 17 -0.74335 -1.9428 0 0.002387 

hsa03420 Nucleotide excision repair 45 16 -0.59231 -1.9806 0 0.002387 

hsa00563 
Glycosylphosphatidylinositol (GPI)-anchor 

biosynthesis 
25 10 -0.71989 -1.9597 0 0.002546 

hsa01230 Biosynthesis of amino acids 69 27 -0.59257 -2.0052 0 0.002604 

hsa05010 Alzheimer disease 152 67 -0.49713 -1.9717 0 0.002728 

hsa01200 Carbon metabolism 110 38 -0.47465 -1.9118 0 0.002808 

hsa03050 Proteasome 44 34 -0.60203 -2.0108 0 0.002865 

hsa03022 Basal transcription factors 44 18 -0.63104 -1.9781 0 0.002938 

hsa03018 RNA degradation 73 27 -0.50119 -1.9041 0 0.003183 

hsa03410 Base excision repair 33 13 -0.68657 -1.8682 0 0.004523 

hsa04932 Non-alcoholic fatty liver disease (NAFLD) 143 55 -0.46729 -1.8446 0 0.005729 

hsa00240 Pyrimidine metabolism 96 42 -0.4934 -1.836 0 0.005911 

hsa00130 Ubiquinone and other terpenoid-quinone biosynthesis 11 5 -0.76111 -1.6567 0 0.027882 



 

www.aging-us.com 25811 AGING 

Table 2. Panther pathway gene set enrichment analysis of ARHGAP30 in lung adenocarcinoma. 

Gene set Description Size 
Leading edge 

number 
ES NES P Value FDR 

P00053 T cell activation 75 30 0.87572 1.6754 0 0 

P02738 De novo purine biosynthesis 26 16 -0.79062 -2.2412 0 0 

P00017 DNA replication 19 10 -0.79041 -2.2625 0 0 

P00023 General transcription regulation 28 14 -0.72986 -2.101 0 0.001287 

P00010 B cell activation 58 19 0.84216 1.5819 0 0.004295 

P00055 Transcription regulation by bZIP transcription factor 45 14 -0.58101 -1.8961 0 0.005792 

P00038 JAK/STAT signaling pathway 15 9 0.9035 1.5543 0.002381 0.006872 

P02746 Heme biosynthesis 12 6 -0.73501 -1.7337 0.011364 0.013998 

P02740 De novo pyrimidine ribonucleotides biosynthesis 10 7 -0.79533 -1.7549 0.009901 0.014894 

P00031 
Inflammation mediated by chemokine and cytokine signaling 

pathway 
196 72 0.78311 1.524 0 0.015463 

P00051 TCA cycle 10 5 -0.83656 -1.7588 0 0.017377 

P02739 De novo pyrimidine deoxyribonucleotide biosynthesis 13 8 -0.74772 -1.7772 0 0.019307 

P00009 Axon guidance mediated by netrin 30 12 0.81439 1.4941 0.008511 0.035736 

P00014 Cholesterol biosynthesis 12 8 -0.76183 -1.6443 0.010101 0.039902 

 

Table 3. Wikipathway gene set enrichment analysis of ARHGAP30 in lung adenocarcinoma. 

Gene set Description Size 
Leading edge 

number 
ES NES P Value FDR 

R-HSA-110373 
Resolution of AP sites via the multiple-nucleotide patch 

replacement pathway 
26 15 -0.80592 -2.1643 0 0 

R-HSA-114604 GPVI-mediated activation cascade 34 14 0.86846 1.613 0 0.003124 

R-HSA-1268020 Mitochondrial protein import 52 35 -0.82458 -2.784 0 0 

R-HSA-1461973 Defensins 21 5 0.92843 1.7135 0 0 

R-HSA-162599 Late Phase of HIV Life Cycle 121 59 -0.61857 -2.4395 0 0 

R-HSA-191859 snRNP Assembly 49 19 -0.78096 -2.5186 0 0 

R-HSA-194441 Metabolism of non-coding RNA 49 19 -0.78096 -2.5186 0 0 

R-HSA-198933 
Immunoregulatory interactions between a Lymphoid and 

a non-Lymphoid cell 
122 79 0.86427 1.6654 0 0.000368 

R-HSA-202427 Phosphorylation of CD3 and TCR zeta chains 20 20 0.93356 1.6673 0.002353 0.00042 

R-HSA-202430 Translocation of ZAP-70 to Immunological synapse 17 16 0.94274 1.6844 0 0 

R-HSA-202433 Generation of second messenger molecules 30 22 0.94177 1.7411 0 0 

R-HSA-2029482 
Regulation of actin dynamics for phagocytic cup 

formation 
60 14 0.83348 1.5954 0 0.005648 

R-HSA-2172127 DAP12 interactions 38 21 0.87591 1.6582 0 0.000327 

R-HSA-2299718 Condensation of Prophase Chromosomes 69 47 -0.66539 -2.1895 0 0 

R-HSA-2424491 DAP12 signaling 29 15 0.88744 1.6332 0 0.00084 

R-HSA-379724 tRNA Aminoacylation 42 32 -0.71306 -2.3694 0 0 

R-HSA-380108 Chemokine receptors bind chemokines 45 26 0.84855 1.5991 0 0.004982 

R-HSA-388841 Costimulation by the CD28 family 67 34 0.88459 1.7064 0 0 

R-HSA-389948 PD-1 signaling 21 20 0.93832 1.7049 0 0 

R-HSA-451927 Interleukin-2 family signaling 44 28 0.89201 1.6924 0 0 

R-HSA-512988 Interleukin-3, Interleukin-5 and GM-CSF signaling 47 24 0.86993 1.6512 0 0.000294 

R-HSA-5621480 Dectin-2 family 24 10 0.90122 1.6503 0 0.000245 

R-HSA-5668599 RHO GTPases Activate NADPH Oxidases 13 5 0.94977 1.6075 0 0.003718 

R-HSA-5696399 Global Genome Nucleotide Excision Repair (GG-NER) 84 31 -0.63145 -2.2073 0 0 

R-HSA-606279 
Deposition of new CENPA-containing nucleosomes at 

the centromere 
63 36 -0.70907 -2.5507 0 0 

R-HSA-6781827 
Transcription-Coupled Nucleotide Excision Repair (TC-

NER) 
77 34 -0.6929 -2.399 0 0 
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R-HSA-6782135 Dual incision in TC-NER 64 27 -0.72714 -2.3136 0 0 

R-HSA-6783783 Interleukin-10 signaling 45 28 0.86974 1.6503 0 0.000267 

R-HSA-6790901 rRNA modification in the nucleus and cytosol 52 35 -0.80009 -2.6392 0 0 

R-HSA-69202 Cyclin E associated events during G1/S transition 82 50 -0.61312 -2.2508 0 0 

R-HSA-69206 G1/S Transition 124 75 -0.64433 -2.4821 0 0 

R-HSA-69618 Mitotic Spindle Checkpoint 101 56 -0.67804 -2.3397 0 0 

R-HSA-69656 Cyclin A:Cdk2-associated events at S phase entry 84 50 -0.60739 -2.4501 0 0 

R-HSA-72165 mRNA Splicing - Minor Pathway 46 20 -0.74059 -2.3252 0 0 

R-HSA-73863 RNA Polymerase I Transcription Termination 30 12 -0.81293 -2.5196 0 0 

R-HSA-73864 RNA Polymerase I Transcription 106 43 -0.61126 -2.3211 0 0 

R-HSA-73884 Base Excision Repair 39 17 -0.77946 -2.3177 0 0 

R-HSA-73933 Resolution of Abasic Sites (AP sites) 39 17 -0.77946 -2.3177 0 0 

R-HSA-774815 Nucleosome assembly 63 36 -0.70907 -2.5507 0 0 

R-HSA-877300 Interferon gamma signaling 90 53 0.82409 1.5933 0 0.00553 

R-HSA-912526 Interleukin receptor SHC signaling 27 15 0.88441 1.6345 0 0.000905 

R-HSA-983695 
Antigen activates B Cell Receptor (BCR) leading to 

generation of second messengers 
32 18 0.86 1.6179 0 0.002744 

 

Table 4. Reactome pathway gene set enrichment analysis of ARHGAP30 in lung adenocarcinoma. 

Gene set Description Size 
Leading edge 

number 
ES NES P Value FDR 

WP3937 Microglia Pathogen Phagocytosis Pathway 40 25 0.93221 1.7523 0 0 

WP69 T-Cell antigen Receptor (TCR) Signaling Pathway 89 39 0.86566 1.6825 0 0 

WP3863 
T-Cell antigen Receptor (TCR) pathway during Staphylococcus aureus 

infection 
61 26 0.86662 1.6615 0 0 

WP3945 TYROBP Causal Network 59 40 0.88146 1.6593 0 0 

WP2328 Allograft Rejection 87 55 0.86119 1.6499 0 0 

WP286 IL-3 Signaling Pathway 48 22 0.87343 1.6334 0 0 

WP78 TCA Cycle (aka Krebs or citric acid cycle) 18 13 -0.79775 -2.1053 0 0 

WP4752 Base Excision Repair 31 13 -0.76263 -2.224 0 0 

WP4521 Glycosylation and related congenital defects 25 13 -0.78449 -2.2261 0 0 

WP466 DNA Replication 36 19 -0.75101 -2.3665 0 0 

WP623 Oxidative phosphorylation 37 27 -0.81707 -2.3904 0 0 

WP405 Eukaryotic Transcription Initiation 42 24 -0.77435 -2.4676 0 0 

WP477 Cytoplasmic Ribosomal Proteins 88 72 -0.77946 -2.4707 0 0 

WP107 Translation Factors 50 28 -0.76662 -2.4884 0 0 

WP4324 Mitochondrial complex I assembly model OXPHOS system 44 39 -0.84395 -2.6711 0 0 

WP111 Electron Transport Chain (OXPHOS system in mitochondria) 73 61 -0.83256 -2.9456 0 0 

WP4595 Urea cycle and associated pathways 21 9 -0.73691 -2.0795 0 0.000281 

WP531 DNA Mismatch Repair 22 10 -0.77183 -2.0484 0 0.000515 

WP619 Type II interferon signaling (IFNG) 37 22 0.87609 1.625 0 0.000533 

WP4753 Nucleotide Excision Repair 44 16 -0.59965 -2.0373 0 0.000713 

WP2446 Retinoblastoma Gene in Cancer 86 45 -0.55877 -1.9707 0 0.001443 

WP4022 Pyrimidine metabolism 83 39 -0.49658 -1.9718 0 0.001546 

WP4559 
Interactions between immune cells and microRNAs in tumor 

microenvironment 
28 20 0.86424 1.6013 0 0.001864 

WP4585 Cancer immunotherapy by PD-1 blockade 23 15 0.88715 1.6016 0 0.00205 

WP49 IL-2 Signaling Pathway 42 17 0.84445 1.6036 0 0.002278 

WP22 IL-9 Signaling Pathway 17 9 0.92271 1.6042 0 0.00233 

WP205 IL-7 Signaling Pathway 25 12 0.89998 1.5928 0 0.003417 

WP4146 Macrophage markers 9 8 0.97473 1.5863 0 0.003594 

WP3929 Chemokine signaling pathway 163 62 0.82524 1.5876 0 0.003728 

WP4494 Selective expression of chemokine receptors during T-cell polarization 29 20 0.86987 1.5752 0 0.003837 
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WP581 EPO Receptor Signaling 26 8 0.87123 1.5768 0 0.003844 

WP2849 Hematopoietic Stem Cell Differentiation 55 18 0.84073 1.5807 0 0.003852 

WP4582 Cancer immunotherapy by CTLA4 blockade 14 7 0.91643 1.5725 0 0.004038 

WP2583 T-Cell Receptor and Co-stimulatory Signaling 29 13 0.86168 1.5679 0 0.004807 

WP23 B Cell Receptor Signaling Pathway 96 39 0.81089 1.5636 0 0.005498 

WP453 Inflammatory Response Pathway 30 15 0.84311 1.5595 0 0.005676 

WP24 Peptide GPCRs 73 19 0.81715 1.5604 0 0.005858 

WP2453 TCA Cycle and Deficiency of Pyruvate Dehydrogenase complex 16 11 -0.77333 -1.9018 0 0.006183 

WP127 IL-5 Signaling Pathway 40 13 0.82934 1.5565 0 0.006321 

WP4553 
FBXL10 enhancement of MAP/ERK signaling in diffuse large B-cell 

lymphoma 
32 10 -0.59305 -1.8368 0 0.011093 

WP1946 Cori Cycle 17 8 -0.72333 -1.8214 0 0.012022 

WP4629 Computational Model of Aerobic Glycolysis 11 7 -0.77655 -1.8124 0 0.013017 

WP197 Cholesterol Biosynthesis Pathway 13 9 -0.76865 -1.7715 0.009901 0.019786 

WP4240 
Regulation of sister chromatid separation at the metaphase-anaphase 

transition 
15 9 -0.68148 -1.7149 0 0.035479 

WP438 Non-homologous end joining 10 2 -0.78427 -1.6835 0.024194 0.040727 

WP4320 
The effect of progerin on the involved genes in Hutchinson-Gilford 

Progeria Syndrome 
36 14 -0.57494 -1.6836 0 0.042578 

 

Table 5. Gene ontology biological process based gene set enrichment analysis of ARHGAP30 in lung 
adenocarcinoma. 

Gene set Description Size 
Leading edge 

number 
ES NES P Value FDR 

GO:0006968 cellular defense response 53 26 0.85607 1.6667 0 0 

GO:0000959 mitochondrial RNA metabolic process 33 22 -0.67592 -2.0538 0 0 

GO:0002181 cytoplasmic translation 84 50 -0.58607 -2.0597 0 0 

GO:0098781 ncRNA transcription 93 46 -0.54515 -2.0641 0 0 

GO:0071806 protein transmembrane transport 59 27 -0.70316 -2.1031 0 0 

GO:0034502 protein localization to chromosome 68 39 -0.61386 -2.1257 0 0 

GO:0042769 DNA damage response, detection of DNA damage 38 15 -0.70411 -2.1428 0 0 

GO:0006490 oligosaccharide-lipid intermediate biosynthetic process 20 9 -0.8074 -2.1678 0 0 

GO:0006354 DNA-templated transcription, elongation 84 27 -0.54275 -2.1898 0 0 

GO:0045454 cell redox homeostasis 59 24 -0.65482 -2.1915 0 0 

GO:0061641 CENP-A containing chromatin organization 24 16 -0.77476 -2.2312 0 0 

GO:0036260 RNA capping 30 13 -0.79033 -2.3135 0 0 

GO:0006353 DNA-templated transcription, termination 69 26 -0.69744 -2.3511 0 0 

GO:0072350 tricarboxylic acid metabolic process 38 21 -0.73574 -2.4276 0 0 

GO:0033108 mitochondrial respiratory chain complex assembly 68 53 -0.82238 -2.4489 0 0 

GO:0010257 NADH dehydrogenase complex assembly 49 41 -0.83836 -2.4807 0 0 

GO:0006289 nucleotide-excision repair 106 39 -0.64825 -2.4996 0 0 

GO:0006414 translational elongation 123 82 -0.83503 -3.2155 0 0 

GO:0032623 interleukin-2 production 63 31 0.83578 1.6105 0 0.000291 

GO:0032609 interferon-gamma production 102 56 0.84241 1.6107 0 0.000317 

GO:0070661 leukocyte proliferation 272 122 0.84138 1.6349 0 0.000349 

GO:0002285 lymphocyte activation involved in immune response 165 68 0.83527 1.6137 0 0.000349 

GO:0007159 leukocyte cell-cell adhesion 310 135 0.83054 1.6142 0 0.000388 

GO:0001773 myeloid dendritic cell activation 27 15 0.86561 1.6095 0 0.000403 

GO:0050690 regulation of defense response to virus by virus 29 12 0.85941 1.639 0 0.000437 

GO:0002250 adaptive immune response 366 175 0.835 1.6177 0 0.000437 

GO:0042110 T cell activation 437 184 0.83599 1.6255 0 0.000499 
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GO:0050867 positive regulation of cell activation 298 126 0.82659 1.608 0 0.000499 

GO:0032633 interleukin-4 production 34 21 0.88557 1.6508 0 0.000582 

GO:0045730 respiratory burst 27 10 0.90536 1.6256 0 0.000582 

GO:0031123 RNA 3'-end processing 111 48 -0.62236 -1.9837 0 0.000584 

GO:0016073 snRNA metabolic process 82 42 -0.56867 -1.9865 0 0.000611 

GO:0051131 chaperone-mediated protein complex assembly 19 6 -0.74976 -2.0021 0 0.00064 

GO:0042107 cytokine metabolic process 106 43 0.83001 1.6024 0 0.000698 

GO:0071706 tumor necrosis factor superfamily cytokine production 133 54 0.82167 1.6013 0 0.000764 

GO:1990868 response to chemokine 86 44 0.84852 1.6524 0 0.000873 

GO:0030101 natural killer cell activation 79 30 0.83376 1.5967 0 0.000873 

GO:0002694 regulation of leukocyte activation 461 199 0.82149 1.5987 0 0.000924 

GO:0042113 B cell activation 221 86 0.82221 1.5887 0 0.000998 

GO:0050866 negative regulation of cell activation 172 78 0.82699 1.5914 0 0.001011 

GO:0002764 immune response-regulating signaling pathway 452 159 0.80813 1.5818 0 0.001215 

GO:0032613 interleukin-10 production 46 24 0.83341 1.5734 0 0.001293 

 

Table 6. Gene ontology cellular component based gene set enrichment analysis of ARHGAP30 in lung 
adenocarcinoma. 

Gene set Description Size 
Leading edge 

number 
ES NES P Value FDR 

GO:0042611 MHC protein complex 19 16 0.91235 1.6397 0 0 

GO:0036452 ESCRT complex 23 12 -0.7271 -1.9814 0 0 

GO:0101031 chaperone complex 21 13 -0.7488 -2.089 0 0 

GO:0005732 small nucleolar ribonucleoprotein complex 20 14 -0.84007 -2.2357 0 0 

GO:0005844 polysome 70 44 -0.64071 -2.2843 0 0 

GO:0009295 nucleoid 36 27 -0.76327 -2.3211 0 0 

GO:1905368 peptidase complex 85 54 -0.68339 -2.4793 0 0 

GO:0005681 spliceosomal complex 155 64 -0.60446 -2.5676 0 0 

GO:0030964 NADH dehydrogenase complex 43 39 -0.82377 -2.6221 0 0 

GO:0070069 cytochrome complex 29 22 -0.87423 -2.6756 0 0 

GO:0070469 respiratory chain 84 62 -0.82349 -2.6858 0 0 

GO:0120114 Sm-like protein family complex 69 28 -0.78085 -2.7326 0 0 

GO:0030684 preribosome 66 39 -0.73361 -2.7355 0 0 

GO:0001772 immunological synapse 32 17 0.85713 1.5928 0 0.000759 

GO:1905348 endonuclease complex 23 10 -0.7109 -1.8954 0 0.003019 

GO:0098552 side of membrane 459 171 0.80484 1.5734 0 0.00354 

GO:0098636 protein complex involved in cell adhesion 35 14 0.83327 1.5509 0 0.00531 

GO:0042629 mast cell granule 21 9 0.85342 1.5417 0 0.006069 

GO:0001891 phagocytic cup 21 12 0.85394 1.536 0 0.006575 

GO:0042581 specific granule 152 44 0.77662 1.5083 0 0.010431 

GO:0070820 tertiary granule 155 43 0.77958 1.5136 0 0.010837 

GO:0005657 replication fork 62 21 -0.52303 -1.7674 0 0.012616 

GO:1990204 oxidoreductase complex 95 61 -0.47317 -1.7327 0 0.017008 

GO:0031970 organelle envelope lumen 73 28 -0.44485 -1.7196 0 0.017172 

GO:0030667 secretory granule membrane 279 76 0.75106 1.4744 0 0.023264 

GO:0005697 telomerase holoenzyme complex 20 10 -0.62191 -1.6713 0.017241 0.032323 

GO:0043235 receptor complex 391 143 0.73726 1.437 0 0.047337 

GO:0036019 endolysosome 19 9 0.82188 1.4317 0.004587 0.047999 
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Table 7. Gene ontology molecular function-based gene set enrichment analysis of ARHGAP30 in lung 
adenocarcinoma. 

Gene set Size 
Leading edge 

number 
ES NES P Value FDR Description 

GO:0042287 MHC protein binding 24 16 0.90783 1.6451 0 0 

GO:0008135 translation factor activity, RNA binding 81 34 -0.59488 -2.1067 0 0 

GO:0043021 ribonucleoprotein complex binding 117 44 -0.55984 -2.1205 0 0 

GO:0000049 tRNA binding 50 32 -0.61345 -2.1332 0 0 

GO:0015002 heme-copper terminal oxidase activity 24 16 -0.84644 -2.3002 0 0 

GO:0030515 snoRNA binding 28 19 -0.80939 -2.3053 0 0 

GO:0016675 oxidoreductase activity, acting on a heme group of donors 25 16 -0.84613 -2.3757 0 0 

GO:0019843 rRNA binding 60 42 -0.74059 -2.4081 0 0 

GO:0051082 unfolded protein binding 108 52 -0.69233 -2.6499 0 0 

GO:0003735 structural constituent of ribosome 154 119 -0.83969 -3.289 0 0 

GO:0016502 nucleotide receptor activity 22 14 0.87811 1.6115 0 0.00054724 

GO:0035586 purinergic receptor activity 26 16 0.86825 1.6126 0 0.00082086 

GO:0004896 cytokine receptor activity 88 49 0.84639 1.6087 0 0.0016417 

GO:0017069 snRNA binding 34 10 -0.67977 -1.9375 0 0.0022837 

GO:0003684 damaged DNA binding 67 26 -0.49758 -1.9239 0 0.0028547 

GO:0016779 nucleotidyltransferase activity 114 44 -0.47695 -1.9243 0 0.0031142 

GO:0035004 phosphatidylinositol 3-kinase activity 81 25 0.82041 1.5905 0 0.0032834 

GO:0019865 immunoglobulin binding 22 12 0.86362 1.5831 0.0022272 0.003518 

GO:0038187 pattern recognition receptor activity 20 11 0.87926 1.5833 0 0.0041043 

GO:0052813 phosphatidylinositol bisphosphate kinase activity 73 24 0.81306 1.5743 0 0.0045147 

GO:0043548 phosphatidylinositol 3-kinase binding 30 11 0.84191 1.546 0 0.0073877 

GO:0003823 antigen binding 52 25 0.83357 1.5482 0.0020367 0.0080262 

GO:0019239 deaminase activity 27 9 0.84449 1.5368 0 0.010149 

GO:0042169 SH2 domain binding 33 9 0.83581 1.5289 0 0.010229 

GO:0015026 coreceptor activity 39 20 0.83108 1.5324 0 0.010261 

GO:0019955 cytokine binding 119 53 0.7923 1.5183 0 0.012547 

GO:1990782 protein tyrosine kinase binding 76 18 0.79568 1.5158 0 0.012587 

GO:0031491 nucleosome binding 66 20 -0.49926 -1.7891 0 0.016689 

GO:0017056 structural constituent of nuclear pore 22 3 -0.61094 -1.758 0 0.023653 

GO:0016790 thiolester hydrolase activity 31 13 -0.5909 -1.7292 0 0.028166 

GO:0038024 cargo receptor activity 77 26 0.76716 1.4694 0 0.03776 

GO:0104005 hijacked molecular function 70 14 0.77566 1.4646 0 0.039884 

GO:0004713 protein tyrosine kinase activity 174 56 0.75063 1.4588 0 0.042685 

GO:0003697 single-stranded DNA binding 93 41 -0.46853 -1.6551 0 0.044247 

GO:0051087 chaperone binding 96 27 -0.46803 -1.6357 0 0.045003 

GO:0030506 ankyrin binding 20 2 0.81515 1.4498 0.0090703 0.04856 

GO:0051540 metal cluster binding 59 26 -0.53488 -1.6196 0 0.048846 

 

Table 8. Kinase target network gene set enrichment analysis of ARHGAP30 in lung adenocarcinoma. 

Gene set Description Size 
Leading edge 

number 
ES NES P Value FDR 

Kinase_LYN LYN proto-oncogene, Src family tyrosine kinase 50 23 0.88163 1.69 0 0 

Kinase_SYK spleen associated tyrosine kinase 35 20 0.88807 1.6638 0 0 

Kinase_LCK LCK proto-oncogene, Src family tyrosine kinase 43 25 0.87754 1.6409 0 0 

Kinase_HCK HCK proto-oncogene, Src family tyrosine kinase 23 14 0.90568 1.6236 0 0.000453 

Kinase_BTK Bruton tyrosine kinase 9 4 0.96245 1.5569 0 0.014843 

Kinase_FGR FGR proto-oncogene, Src family tyrosine kinase 12 7 0.90291 1.5354 0.004819 0.023015 

Kinase_FYN FYN proto-oncogene, Src family tyrosine kinase 66 21 0.79674 1.5309 0 0.023306 

Kinase_PRKCQ protein kinase C theta 28 10 0.83313 1.5386 0.002179 0.023834 

Kinase_ITK IL2 inducible T-cell kinase 8 6 0.95805 1.5163 0 0.030592 

Kinase_JAK3 Janus kinase 3 12 8 0.8914 1.5164 0.005051 0.033991 
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Table 9. Transcription factor network gene set enrichment analysis of ARHGAP30 in lung adenocarcinoma. 

Gene set Size Leading edge number ES NES P Value FDR 

V$PU1_Q6 211 48 0.7456 1.4539 0 0.027156 

V$PEA3_Q6 242 73 0.74837 1.4483 0 0.027497 

RACCACAR_V$AML_Q6 241 66 0.74025 1.4434 0 0.028904 

RGAGGAARY_V$PU1_Q6 460 107 0.7462 1.4553 0 0.030226 

STTTCRNTTT_V$IRF_Q6 175 68 0.75524 1.4614 0 0.030856 

V$PAX5_02 15 7 0.85689 1.4665 0.009346 0.035138 

V$ISRE_01 234 77 0.75508 1.4722 0 0.038255 

V$IRF_Q6 229 78 0.76436 1.482 0 0.039042 

V$ELF1_Q6 220 69 0.77176 1.5138 0 0.039672 

V$ETS_Q4 238 55 0.72616 1.4108 0 0.043159 

TGTYNNNNNRGCARM_UNKNOWN 81 26 0.73366 1.4113 0 0.046284 

V$ICSBP_Q6 230 75 0.71252 1.3885 0 0.047526 

V$ETS1_B 237 76 0.71314 1.3914 0 0.047543 

V$STAT6_02 241 60 0.71256 1.3852 0 0.0477 

V$AML_Q6 239 75 0.72796 1.4135 0 0.047915 

GGGNNTTTCC_V$NFKB_Q6_01 130 51 0.76183 1.4879 0 0.048173 

YNTTTNNNANGCARM_UNKNOWN 66 16 0.73294 1.3927 0.00202 0.048562 

 

Table 10. PPI BIOGRID network gene set enrichment analysis of ARHGAP30 in lung adenocarcinoma. 

Gene set Size Leading edge number ES NES P Value FDR 

PPI_BIOGRID_M856 27 20 -0.80351 -2.2385 0 0 

PPI_BIOGRID_M299 43 23 -0.77865 -2.3323 0 0 

PPI_BIOGRID_M422 41 25 -0.78055 -2.38 0 0 

PPI_BIOGRID_M298 50 37 -0.8034 -2.6225 0 0 

PPI_BIOGRID_M300 49 42 -0.88664 -3.0801 0 0 

PPI_BIOGRID_M272 85 44 -0.53652 -2.1103 0 0.000404 

PPI_BIOGRID_M428 43 23 -0.62913 -2.1148 0 0.000471 

PPI_BIOGRID_M441 36 15 -0.63714 -2.0772 0 0.000706 

PPI_BIOGRID_M734 30 11 -0.69304 -2.0258 0 0.00113 

PPI_BIOGRID_M848 22 11 -0.67958 -1.9924 0 0.001177 

PPI_BIOGRID_M857 14 13 -0.83146 -2.0371 0 0.001256 

PPI_BIOGRID_M581 56 23 -0.63221 -2.0062 0 0.001284 

PPI_BIOGRID_M172 31 14 -0.63806 -1.9488 0 0.001507 

PPI_BIOGRID_M544 20 12 -0.7468 -1.9646 0 0.001521 

PPI_BIOGRID_M438 16 6 -0.74768 -1.9459 0 0.001589 

PPI_BIOGRID_M597 13 6 -0.85103 -1.9511 0 0.001614 

PPI_BIOGRID_M309 238 89 0.83885 1.6286 0 0.003523 

PPI_BIOGRID_M185 32 21 -0.63805 -1.8991 0 0.003822 

PPI_BIOGRID_M702 15 8 -0.76267 -1.8672 0 0.006592 

PPI_BIOGRID_M722 46 24 -0.58535 -1.8575 0 0.007286 

PPI_BIOGRID_M189 11 7 -0.86049 -1.8475 0 0.008616 

PPI_BIOGRID_M717 23 12 -0.67161 -1.8398 0 0.008732 

PPI_BIOGRID_M583 69 27 -0.54002 -1.8412 0 0.008744 

PPI_BIOGRID_M951 10 5 -0.81538 -1.8293 0.008929 0.010809 

PPI_BIOGRID_M190 11 7 -0.79575 -1.8176 0.016949 0.012359 

PPI_BIOGRID_M819 10 8 -0.80619 -1.8117 0 0.012656 
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expression of chemokine receptors during T-cell 

polarization, Cancer immunotherapy by CTLA4 

blockade, T-Cell Receptor and Co-stimulatory 

Signaling, B Cell Receptor Signaling Pathway, 

Inflammatory Response Pathway, and IL-5 Signaling 

Pathway were associated with immunity. From the 

results of Gene ontology Biological Process GSEA 

(Table 5), the GO terms cellular defense response, 

interleukin-2 production, interferon-gamma production, 

leukocyte proliferation, lymphocyte activation involved 

in immune response, leukocyte cell-cell adhesion, 

myeloid dendritic cell activation, adaptive immune 

response, T cell activation, interleukin-4 production, 

cytokine metabolic process, tumor necrosis factor 

superfamily cytokine production, response to 

chemokine, natural killer cell activation, regulation of 

leukocyte activation, B cell activation, immune 

response-regulating signaling pathway, and interleukin-

10 production were associated with immunity. From the 

results of the Gene ontology Cellular Component GSEA 

(Table 6), the GO terms MHC protein complex, 

immunological synapse, and mast cell granule were 

associated with immunity. From the results of Gene 

ontology Molecular Function GSEA (Table 7–10) the 

GO terms MHC protein binding, cytokine receptor 

activity, immunoglobulin binding, antigen binding, and 

cytokine binding were associated with immunity. 

 

The relationship between TILs, immunostimulators, 

MHC molecules, chemokines, and chemokine 

receptors and the expression and DNA methylation 

of ARHGAP30 in lung adenocarcinoma 

 

The relationship between ARHGAP30 expression and 

TILs, immunostimulators, MHC molecules, 

chemokines, and chemokine receptors in LUAD 

Figures 8A, 9A, 10A, 11A, 12A, respectively, show 

heat maps of the relationship between the abundance of 

TILs, immunostimulators, MHC molecules, 

chemokines, and chemokine receptors and the 

expression of ARHGAP30. These heatmaps were mostly 

red, indicating that most of the TILs, 

immunostimulators, MHC molecules, chemokines, and 

chemokine receptors correlated positively with the 

expression of ARHGAP30. Also, dark red areas 

indicated that some of them had a strong positive 

correlation with the expression of ARHGAP30.  

 

Figure 8B1–8B28 show scatter plots of the relations the 

abundance of TILs and ARHGAP30 expression. The 

results showed that effector memory CD8 T cells, T 

follicular helper cells, type 1 T helper cells, regulatory 

T cells, myeloid derived suppressor cells, activated B 

cells, immature B cells, natural killer cells, natural killer 

T cells, macrophages, eosinophils, and mast cells 

showed a strong positive correlation with the expression 

of ARHGAP30 in LUAD (Spearman correlation 

coefficient, r > 0.6; p value < 0.01). Figure 9B1–9B39 

shows scatter plots of the relationship between the 

abundance of immunostimulators and ARHGAP30 

expression. The results showed that C10orf54, CD28, 

CD40LG, CD48, CD80, CD86, ICOS, KLRK1, LTA, 

and TNFRSF8 showed a strong positive correlation 

with the expression of ARHGAP30 in LUAD 

(Spearman correlation coefficient, r > 0.6; p value < 

0.01). Figure 10B1–10B21 show scatter plots of the 

relationship between the abundance of MHC molecules 

and ARHGAP30 expression. The results showed that 

HLA-DMB, HLA-DOA, HLA-DPA1, HLA-DPB1, 

HLA-DQA1, and HLA-DRA showed a strong positive 

correlation with the expression of ARHGAP30 in 

LUAD (Spearman correlation coefficient, r > 0.6; p 

value < 0.01). Figure 11B1–11B30 show scatter plots of 

the relationship between the abundance of chemokines 

and ARHGAP30 expression. The results showed that 

CCL19 showed a strong positive correlation with the 

expression of ARHGAP30 in LUAD (Spearman 

correlation coefficient, r > 0.6; p value < 0.01). Figure 

12B1–12B15 show scatter plots of the relationship 

between the abundance of chemokine receptors and 

ARHGAP30 expression. The results showed that CCR1, 

CCR2, CCR4, CCR5, CCR6, CCR7, CCR8, CXCR3, 

CXCR5, and CXCR6 showed a strong positive 

correlation with the expression of ARHGAP30 in 

LUAD (Spearman correlation coefficient, r > 0.6; p 

value < 0.01). 

 

The relationship between DNA methylation of 

ARHGAP30 and TILs, immunostimulators, MHC 

molecules, chemokines, and chemokine receptors in 

LUAD 

Figures 13A and Supplementary Figures 10A, 11A, 

12A, 13A, respectively, show heat maps of the 

relationship between TILs, immunostimulators, MHC 

molecules, chemokines, and chemokine receptors and 

DNA methylation of ARHGAP30. The results showed 

that in LUAD, most of them were blue, indicating that 

most of the TILs, immunostimulators, MHC molecules, 

chemokines, and chemokine receptors correlated 

negatively with DNA methylation of ARHGAP30. Also, 

some of them were very dark blue, indicating that they 

had a strong negative correlation with DNA methylation 

of ARHGAP30. 

 

Figure 13B1–13B28 show scatter plots of the 

relationship between the abundance of TILs and DNA 

methylation of ARHGAP30. The results showed that 

activated B cell, immature B cell, myeloid derived 

suppressor cell, natural killer T cell, effector memory 

CD8 T cell, type 1 T helper cell, and regulatory  

T cell had a strong negative correlation with the  

DNA methylation of ARHGAP30 in LUAD 
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Figure 8. The correlation between the abundance of tumor-infiltrating lymphocytes (TILs) and expression of ARHGAP30. (A) 

Heat map of the relationship between the abundance of TILs and ARHGAP30 expression. (B1–B28) Scatter plots showing the positive 
correlation between ARHGAP30 expression and TILs in the treatment of lung adenocarcinoma. Act_CD8, Activated CD8 T cell; Tcm_CD8, 
Central memory CD8 T cell; Tem_CD8, Effector memory CD8 T cell; Act_CD4, Activated CD4 T cell; Tcm_CD4, Central memory CD4 T cell; 
Tem_CD4, Effector memory CD4 T cell; Tgd, Gamma delta T cell; Tfh, T follicular helper cell; Th1, Type 1 T helper cell; Th17, Type 17 T helper 
cell; Th2, Type 2 T helper cell; Treg, Regulatory T cell; MDSC, Myeloid derived suppressor cell; Act_B, Activated B cell; Imm_B, Immature B 
cell; Mem_B, Memory B cell; NK, Natural killer cell; CD56brigh, CD56bright natural killer cell; CD56dim, CD56dim natural killer cell; NKT, 
Natural killer T cell; Act_DC, Activated dendritic cell; iDC, Immature dendritic cell; pDC, Plasmacytoid dendritic cell; Mast, Mast cell. 
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Figure 9. The correlation between the abundance of tumor-infiltrating lymphocytes (TILs) and the methylation of ARHGAP30. 
(A) Heat map of the relationship between the abundance of TILs abundance and ARHGAP30 DNA methylation. (B1–B39) Scatter plots showing 
the negative correlation between ARHGAP30 DNA methylation and TILs in the treatment of lung adenocarcinoma. Act_CD8, Activated CD8 T cell; 
Tcm_CD8, Central memory CD8 T cell; Tem_CD8, Effector memory CD8 T cell; Act_CD4, Activated CD4 T cell; Tcm_CD4, Central memory CD4 T 
cell; Tem_CD4, Effector memory CD4 T cell; Tgd, Gamma delta T cell; Tfh, T follicular helper cell; Th1, Type 1 T helper cell; Th17, Type 17 T helper 
cell; Th2, Type 2 T helper cell; Treg, Regulatory T cell; MDSC, Myeloid derived suppressor cell; Act_B, Activated B cell; Imm_B, Immature B cell; 
Mem_B, Memory B cell; NK, Natural killer cell; CD56brigh, CD56bright natural killer cell; CD56dim, CD56dim natural killer cell; NKT, Natural killer T 
cell; Act_DC, Activated dendritic cell; iDC, Immature dendritic cell; pDC, Plasmacytoid dendritic cell; Mast, Mast cell. 
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Figure 10. The correlation between the expression of ARHGAP30 and immune inhibitors. (A) Heat map of Spearman 
correlations between ARHGAP30 expression and immune inhibitors across human cancers. (B1–B21) Scatter plots showing the positive 
correlation between ARHGAP30 expression and immune inhibitors in the treatment of lung adenocarcinoma. 



 

www.aging-us.com 25821 AGING 

 
 

Figure 11. The correlation between the DNA methylation of ARHGAP30 and immune inhibitors. (A) Heat map of Spearman 
correlations between DNA methylation of ARHGAP30 and immune inhibitors across human cancers. (B1–B30) Scatter plots  
showing the negative correlation between DNA methylation of ARHGAP30 and immune inhibitors in the treatment of lung 
adenocarcinoma. 
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Figure 12. The correlation between the expression of ARHGAP30 and immunostimulators. (A) Heat map of  
Spearman correlations between ARHGAP30 expression and immunostimulators across human cancers. (B1–B15) Scatter  
plots showing the positive correlation between ARHGAP30 expression and immunostimulators in the treatment of lung 
adenocarcinoma. 
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(Spearman correlation coefficient, r < - 0.6; p value < 

0.01). Supplementary Figure 10B1–10B39 show scatter 

plots of the relationship between the abundance of 

immunostimulators and DNA methylation of 

ARHGAP30. The results showed that CD28, CD48, 

LTA, and TNFRSF8 had a strong negative correlation 

with the DNA methylation of AGHGAP30 in LUAD 

(Spearman correlation coefficient, r < - 0.6; p value < 

0.01). Supplementary Figure 11B1–11B21 show scatter 

plots of the relationship between the abundance of 

MHC molecules and DNA methylation of ARHGAP30. 

Supplementary Figure 12B1–12B30 show scatter plots 

of the relationship between the abundance of 

chemokines and DNA methylation of ARHGAP30. 

Supplementary Figure 13B1–13B15 show scatter plots 

of the relationship between the abundance of chemokine 

receptors and DNA methylation of ARHGAP30. The 

results showed that CCR5 and CCR6 had a strong 

negative correlation with the DNA methylation of 

ARHGAP30 in LUAD (Spearman correlation 

coefficient, r < - 0.6; p value < 0.01). 

 

DISCUSSION AND CONCLUSIONS 
 

In this study, we showed that the expression of 

ARHGAP30 in LUAD tissues was significantly lower 

than that in normal tissues. There were differences in 

ARHGAP30 mRNA expression levels in patients with 

LUAD with different sexes, cancer stages, and nodal 

metastatic status (Figure 1). The expression of 

ARHGAP30 in LUAD tissues was significantly lower in 

the presence of KEAP1 and STK11 mutations. The 

correlation between DNA methylation of ARHGAP30 

and its mRNA expression levels was considerably 

higher in LUAD tissues than in normal tissues (Figure 

2). There are some studies on the differential expression 

of ARHGAP30 in cancer [8, 34, 35]. The high DNA 

methylation level of ARHGAP30 might also be one of 

the reasons for the decreased ARHGAP30 expression in 

LUAD tissues. Genetic mutations in KEAP1 and STK11 

might also be another reason for decreased expression 

of ARHGAP30 in LUAD tissues. These were not 

reported in previous studies. 

 

Patients with LUAD with low ARHGAP30 expression 

had a significantly better prognosis than those with high 

ARHGAP30 expression (Figure 3). A study by Mao and 

Tong [35] also supports this point. Although some 

prognostic molecular markers have been found in patients 

with LUAD [36–43], ARHGAP30 might be developed as 

a molecular marker to evaluate the prognosis of patients 

with LUAD after surgery or in patients with advanced 

disease. We identified genes, miRNAs, and lncRNAs that 

were highly associated with ARHGAP30 in LUAD 

(Figures 4–6), which could provide new ideas and targets 

for epigenetic studies of ARHGAP30 in LUAD.  

We identified many pathways related to tumor immunity 

from the enrichment results of KEGG Pathway, Panther 

Pathway, Reactome Pathway, and Wikipathway 

(Figures 7, 14 and Supplementary Figures 1–3). Recent 

studies have demonstrated a close relationship between 

Rho GTPases and the development and metastasis of a 

variety of human tumors [7]. KEGG pathways included 

Primary immunodeficiency, Th1 and Th2 cell 

differentiation, Chemokine signaling pathway, T cell 

receptor signaling pathway, Th17 cell differentiation, 

and Fc gamma R-mediated phagocytosis. Panther 

pathways included T cell activation, B cell activation, 

Inflammation mediated by chemokine and cytokine 

signaling pathway, Interleukin signaling pathway and 

Toll receptor signaling pathway. Reactome Pathways 

Defensins, Translocation of ZAP-70 to Immunological 

synapse, Generation of second messenger molecules, 

Costimulation by the CD28 family, PD-1 signaling, 

Interleukin-2 family signaling, Interleukin-10 signaling, 

Interleukin-3, Interleukin-5 and GM-CSF signaling, 

DAP12 inter-actions, Immunoregulatory interactions 

between a Lymphoid and a non-Lymphoid cell, 

Phosphorylation of CD3 and TCR zeta chains, DAP12 

signaling, Interleukin receptor SHC signaling, Antigen 

activates B Cell Receptor (BCR) leading to generation 

of second messengers, RHO GTPases Activate NADPH 

Oxidases, Chemokine receptors bind chemokines, 

Interferon gamma signaling and Regulation of actin 

dynamics for phagocytic cup formation. Wikipathways 

included T-Cell antigen Receptor (TCR) Signaling 

Pathway, T-Cell antigen Receptor (TCR) pathway 

during Staphylococcus aureus infection, Allograft 

Rejection, IL-3 Signaling Pathway, Type II interferon 

signaling (IFNG), Interactions between immune cells 

and microRNAs in tumor microenvironment, Cancer 

immunotherapy by PD-1 blockade, IL-2 Signaling 

Pathway, IL-9 Signaling Pathway, IL-7 Signaling 

Pathway, Macrophage markers, Chemokine signaling 

pathway, Selective expression of chemokine receptors 

during T-cell polarization, Cancer immunotherapy by 

CTLA4 blockade, T-Cell Receptor and Co-stimulatory 

Signaling, B Cell Receptor Signaling Pathway, 

Inflammatory Response Pathway, and IL-5 Signaling 

Pathway. 

 

We further observed that the levels of TILs, 

immunostimulators, MHC molecules, chemokines, 

chemokine receptors and ARHGAP30 expression 

correlated positively in LUAD (Figures 8–13); 

however, these factors correlated negatively with the 

DNA methylation level of ARHGAP30 (Supplementary 

Figures 10–13). Anti-tumor immunotherapy is 

promising treatment modality in the fight against 

tumors; however, previous application found that its 

efficacy was not as good as expected. Through in-depth 

studies, it has been found that immune tolerance in the 
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tumor microenvironment might be the most important 

reason leading to the unsatisfactory effects of 

immunotherapy [44, 45]. Defects in the development or 

function of CD8+ cytotoxic T lymphocytes (CTLs), 

CD4+ Th1 helper T cells, or natural killer (NK) cells all 

lead to more frequent tumorigenesis and/or more rapid 

growth [46]. Immunostimulators could accumulate in 

tumors and significantly inhibit tumor growth [47]. 

 

 
 

Figure 13. The correlation between the DNA methylation of ARHGAP30 and Immunostimulators. (A) Heat map of Spearman 
correlations between DNA methylation of ARHGAP30 and immunostimulators across human cancers. (B1–B28) Scatter plots showing the 
negative correlation between DNA methylation of ARHGAP30 and immunostimulators in the treatment of lung adenocarcinoma. 



 

www.aging-us.com 25825 AGING 

A tumor can escape T cell reactions by losing major 

histocompatibility complex (MHC) molecules [48]. 

Chemokines and chemokine receptors mediate the host 

response to cancer by directing leukocytes into the 

tumor microenvironment [49, 50]. Our results supported 

the above points. ARHGAP30 expression correlated 

positively with TILs, immunostimulators, MHC 

molecules, chemokines, and chemokine receptors in 

 

 
 

Figure 14. Immune-related statistically significant KEGG pathway annotations. (A) Chemokine signaling pathway (hsa04062). (B) 

Th1 and Th2 cell differentiation (hsa04658). (C) Th17 cell differentiation (hsa04659). (D) T cell receptor signaling pathway (hsa04660). (E) Fc 
gamma R-mediated phagocytosis (hsa04666). (F) Primary immunodeficiency (hsa05340). Red denotes leading-edge genes; green denotes the 
remaining genes. 
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LUAD (Figures 8–12), which might be related to the 

significantly reduced ARHGAP30 expression in LUAD. 

Levels of TILs, immunostimulators, MHC molecules, 

chemokines, and chemokine receptors were decreased 

in LUAD. Reduced or functional defects in tumor 

immune function result in more frequent occurrence and 

more rapid proliferation and growth of LUAD. 

 

Therefore, we proposed that DNA methylation of 

ARHGAP30 and mutations in KEAP1 and STK11 genes 

inhibit ARHGAP30 expression in LUAD. Decreased 

ARHGAP30 expression might inhibit TILs, 

immunostimulators, MHC molecules, chemokines, and 

chemokine receptors in lung adenocarcinoma through 

pathways identified in the enrichment analysis, which in 

turn inhibits tumor immunity and ultimately promotes 

the formation and growth of LUAD. 

 

Our study is the first to perform prognostic analysis and 

evaluation of ARHGAP30 in patients with LUAD, to 

carry out GSEA of ARHGAP30, and to investigate the 

relationship between ARHGAP30 and TILs, 

immunostimulators, MHC molecules, chemokines, and 

chemokine receptors in LUAD. These findings have 

important implications for the diagnosis, prognostic 

evaluation, and cancer immunotherapy of patients with 

LUAD 

 

Our study was limited by a lack of further experimental 

validation. We could also assess the relationship of 

ARHGAP30 with other types of lung cancer to determine 

the specific role of ARHGAP30 expression in the 

diagnosis and treatment of different types of lung cancer. 

 

Overall, our results suggest that DNA methylation of 

ARHGAP30, as well as mutations in KEAP1 and 

STK11, inhibit ARHGAP30 expression in LUAD, which 

in turn promotes LUAD formation and growth through 

multiple pathways that suppress tumor infiltrating 

immunity, thus contributing to poor prognosis of 

patients with LUAD. 

 

MATERIALS AND METHODS 
 

We used the Oncomine 4.5 [10] database to analyze the 

differential expression of ARHGAP30 in various 

cancers and in the Hou lung, Selamat lung, and 

Okayama lung adenocarcinoma datasets. We used the 

SurvExpress [11] database to analyze the differential 

expression of ARHGAP30 in two lung adenocarcinoma 

datasets. We used the GEPIA [12] database to analyze 

the differential expression of ARHGAP30 in lung 

adenocarcinoma. We used the Warner [13] database to 

explore the abundance of different exons of the 

ARHGAP30 gene in normal and tumor tissues of 

patients with LUAD. We used the Ualcan [14] database 

to analyze the differences of ARHGAP30 mRNA 

expression in subgroups of patients with lung 

adenocarcinoma patients according to sample type, 

individual cancer stage, ethnicity, sex, age, smoking 

habit, nodal metastasis status, and TP53 mutation status. 

We used the Ualcan [14] and CPTAC [15] databases to 

analyze the differential expression of ARHGAP30 

protein in patients with LUAD stratified by sample 

type, individual cancer stage, ethnicity, sex, age, 

weight, tumor grade, and tumor histology. 

 

We used the TCGA portal [16] database to analyze the 

differential expression of ARHGAP30 after highly 

mutated gene mutation. We also used the TCGA portal 

database to analyze the correlation between ARHGAP30 

gene expression and DNA methylation in primary 

tumors and normal tissue samples. We analyzed the 

mRNA expression of ARHGAP30 in LUAD before and 

after mutation of highly mutated genes (KEAP1, STK11) 

using the Linkedomics [17] database. We analyzed the 

heatmap of ARHGAP30 methylation in lung 

adenocarcinoma using the MethSurv [18] database. The 

Kaplan–Meier plots of patients with LUAD assessed 

using different ARHGAP30 methylation probes 

(cg07837534 and cg00045607) were analyzed.  

 

We used GEPIA [12], Oncolnc [19], Ualcan [14], 

UCSC [20], TCGAportal [16], TISIDB [21], KMplot 

[22], TIMER [23], Linkedomics [17], and PrognoScan 

[24] databases to analyze the overall survival (OS) 

curves for patients with LUAD. We used the GEPIA 

[12] database to analyze the disease-free survival (DFS) 

curves for patients with LUAD (in months and days, 

respectively). We used the PrognoScan database to 

analyze the recurrence-free survival (RFS) curves in 

patients with LUAD. 

 

We analyzed the genes and mRNAs that were highly 

associated with ARHGAP30 in LUAD using the 

Linkedomics [17] database and obtained the 

corresponding volcano plots, heat plots, and scatter 

plots. We analyzed the lncRNAs that were highly 

associated with ARHGAP30 in LUAD using the 

TANRIC [25] database and obtained the corresponding 

scatter plots and survival curves. 

 

We used the TISIDB [21] database to analyze the 

relationship between TILs, immunostimulators, MHC 

molecules, chemokines, chemokine receptors and the 

expression and DNA methylation of ARHGAP30 in 

LUAD. 

 

Statistical methods 

 

We used a t-test to analyze the differential expression 

levels of ARHGAP30 in normal and tumor samples. We 
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analyzed the DNA methylation expression levels of 

ARHGAP30 in normal and tumor samples using the 

Wilcoxon rank sum test. We used Pearson correlation 

[51–54] to analyze ARHGAP30-associated genes, 

miRNAs, and lncRNAs. We performed survival 

analysis and plotted Kaplan–Meier curves for 

ARHGAP30. We performed gene set enrichment 

analysis (GSEA) [26] of ARHGAP30 for KEGG 

Pathway [27], Panther Pathway [28], Reactome 

Pathway [29], Wikipathway [30], Gene ontology 

Biological Process [31, 32], Gene ontology Cellular 

Component [31, 32], Gene ontology Molecular 

Function [31, 32], Kinase Target Network, 

Transcription Factor Network, and PPI BIOGRID 

Network [33]. 
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SUPPLEMENTARY MATERIALS 

 

Supplementary Figures 

 

 

 

 
 

Supplementary Figure 1. Panther pathway-based GSEA of ARHGAP30 in lung adenocarcinoma (LUAD). (A) Bar chart of Panther 

Pathway-based GSEA of ARHGAP30 in LUAD (FDR < 0.05). (B1–B14) GSEA enrichment analysis Plots of 14 tumor immune-related Panther 
Pathway gene sets (FDR < 0.05). 
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Supplementary Figure 2. Reactome pathway-based GSEA of ARHGAP30 in lung adenocarcinoma (LUAD). (A) Bar chart of 

Reactome Pathway-based GSEA of ARHGAP30 in LUAD (FDR < 0.05). (B1–B18) GSEA enrichment analysis Plots of 18 tumor immune-related 
Reactome Pathway gene sets (FDR < 0.05). 
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Supplementary Figure 3. Wikipathway-based GSEA of ARHGAP30 in lung adenocarcinoma (LUAD). (A) Bar chart of Wikipathway-

based GSEA of ARHGAP30 in LUAD (FDR < 0.05). (B1–B18) GSEA enrichment analysis Plots of 18 tumor immune-related Wikipathway gene 
sets (FDR < 0.05). 
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Supplementary Figure 4. Gene ontology biological process-based GSEA of ARHGAP30 in lung adenocarcinoma (LUAD). (A) Bar 

chart of Gene Ontology Biological Process-based GSEA of ARHGAP30 in LUAD (FDR < 0.05). (B1–B18) GSEA enrichment analysis plots of 18 
tumors immune-related Gene Ontology Biological Process gene sets (FDR < 0.05). 
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Supplementary Figure 5. Gene ontology cellular component-based GSEA of ARHGAP30 in lung adenocarcinoma (LUAD). (A) 
Bar chart of Gene Ontology Cellular Component-based GSEA of ARHGAP30 in LUAD (FDR < 0.05). (B1–B18) GSEA enrichment analysis plots of 
18 tumors immune-related Gene Ontology Cellular Component gene sets (FDR < 0.05). 
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Supplementary Figure 6. Gene ontology molecular function-based GSEA of ARHGAP30 in lung adenocarcinoma (LUAD). (A) 
Bar chart of Gene Ontology Molecular Function-based GSEA of ARHGAP30 in LUAD (FDR < 0.05). (B1–B18) GSEA enrichment analysis plots of 
18 tumors immune-related Gene Ontology Molecular Function gene sets (FDR < 0.05). 
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Supplementary Figure 7. Kinase target network-based GSEA of ARHGAP30 in lung adenocarcinoma (LUAD). (A) Bar chart of 
Kinase Target Network-based GSEA of ARHGAP30 in LUAD (FDR < 0.05). (B1–B10) GSEA enrichment analysis plots of 10 tumor immune-
related Kinase Target Network gene sets (FDR < 0.05). 
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Supplementary Figure 8. Transcription factor network-based GSEA of ARHGAP30 in lung adenocarcinoma (LUAD). (A) Bar 

chart of Transcription Factor Network-based GSEA of ARHGAP30 in LUAD (FDR < 0.05). (B1–B17) GSEA enrichment analysis plots of 17 tumor 
immune-related Transcription Factor Network gene sets (FDR < 0.05). 
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Supplementary Figure 9. PPI BIOGRID network-based GSEA of ARHGAP30 in lung adenocarcinoma (LUAD). (A) Bar chart of PPI 
BIOGRID Network-based GSEA of ARHGAP30 in LUAD (FDR < 0.05). (B1–B18) GSEA enrichment analysis plots of 18 tumor immune-related PPI 
BIOGRID Network gene sets (FDR < 0.05). 
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Supplementary Figure 10. The correlation between the expression of ARHGAP30 and MHC molecules. (A) Heat map of 

Spearman correlations between ARHGAP30 expression and MHC molecules across human cancers. (B1–B39) Scatter plots showing the 
positive correlation between ARHGAP30 expression and MHC molecules in the treatment of lung adenocarcinoma. 
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Supplementary Figure 11. The correlation between the DNA methylation of ARHGAP30 and MHC molecules. (A) Heat map of 
Spearman correlations between DNA methylation of ARHGAP30 and MHC molecules across human cancers. (B1–B21) Scatter plots showing 
the negative correlation between DNA methylation of ARHGAP30 and MHC molecules in the treatment of lung adenocarcinoma. 
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Supplementary Figure 12. The correlation between the expression of ARHGAP30 and chemokines. (A) Heat map of Spearman 

correlations between ARHGAP30 expression and chemokines across human cancers. (B1–B30) Scatter plots showing the positive correlation 
between ARHGAP30 expression and chemokines in the treatment of lung adenocarcinoma. 
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Supplementary Figure 13. The correlation between the expression of ARHGAP30 and Chemokine Receptors. (A) Heat map of 

Spearman correlations between ARHGAP30 expression and chemokine receptors across human cancers. (B1–B15) Scatter plots showing the 
positive correlation between ARHGAP30 expression and chemokine receptors in the treatment of lung adenocarcinoma. 
  



 

www.aging-us.com 25844 AGING 

Supplementary Tables 
 

Supplementary Table 1. Expression of ARHGAP30 mRNA in different subgroups. 

Comparison Statistical significance  Comparison Statistical significance 

Sample types   Age(21-40Yrs)-vs-Age(81-100Yrs) 2.99E-01 

Normal-vs-Primary 1.62E-12  Age(41-60Yrs)-vs-Age(61-80Yrs) 2.83E-01 

Individual cancer stages   Age(41-60Yrs)-vs-Age(81-100Yrs) 6.00E-02 

Normal-vs-Stage1 1.11E-16  Age(61-80Yrs)-vs-Age(81-100Yrs) 1.18E-01 

Normal-vs-Stage2 1.11E-16  Patient's smoking habit  

Normal-vs-Stage3 1.62E-12  Normal-vs-Non smoker 1.34E-11 

Normal-vs-Stage4 1.66E-13  Normal-vs-Smoker <1E-12 

Stage1-vs-Stage2 2.62E-01  Normal-vs-Reformed smoker1 1.62E-12 

Stage1-vs-Stage3 2.19E-04  Normal-vs-Reformed smoker2 <1E-12 

Stage1-vs-Stage4 1.71E-02  Non smoker-vs-Smoker 2.04E-01 

Stage2-vs-Stage3 3.79E-02  Non smoker-vs-Reformed smoker1 4.57E-01 

Stage2-vs-Stage4 1.30E-01  Non smoker-vs-Reformed smoker2 2.59E-01 

Stage3-vs-Stage4 9.91E-01  Smoker-vs-Reformed smoker1 5.14E-01 

Patient's race   Smoker-vs-Reformed smoker2 6.98E-01 

Normal-vs-Caucasian 1.62E-12  Reformed smoker1-vs-Reformed smoker2 7.22E-01 

Normal-vs-African American 1.75E-12  Nodal metastasis status  

Normal-vs-Asian 9.72E-07  Normal-vs-N0 1.62E-12 

Caucasian-vs-African American 3.96E-01  Normal-vs-N1 <1E-12 

Caucasian-vs-Asian 1.38E-01  Normal-vs-N2 <1E-12 

African American-vs-Asian 2.29E-01  Normal-vs-N3 5.83E-02 

Patient's gender   N0-vs-N1 1.20E-01 

Normal-vs-Male 1.11E-16  N0-vs-N2 1.28E-03 

Normal-vs-Female <1E-12  N0-vs-N3 9.73E-01 

Male-vs-Female 1.78E-02  N1-vs-N2 2.39E-01 

Patient's age   N1-vs-N3 8.20E-01 

Normal-vs-Age(21-40Yrs) 1.54E-03  N2-vs-N3 5.56E-01 

Normal-vs-Age(41-60Yrs) 1.62E-12  TP53 mutation status  

Normal-vs-Age(61-80Yrs) <1E-12  Normal-vs-TP53-Mutant 1.62E-12 

Normal-vs-Age(81-100Yrs) 1.59E-04  Normal-vs-TP53-NonMutant <1E-12 

Age(21-40Yrs)-vs-Age(41-60Yrs) 6.98E-01  TP53-Mutant-vs-TP53-NonMutant 9.66E-01 

Age(21-40Yrs)-vs-Age(61-80Yrs) 5.40E-01    
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Supplementary Table 2. Expression of different subgroups of ARHGAP30 protein. 

Comparison Statistical significance  Comparison Statistical significance 

Sample types   Age(41-60Yrs)-vs-Age(61-80Yrs) 6.09E-03 

Normal-vs-Primary 2.03E-08  Age(41-60Yrs)-vs-Age(81-100Yrs) 3.89E-01 

Individual cancer stages   Age(61-80Yrs)-vs-Age(81-100Yrs) 6.12E-01 

Normal-vs-Stage1 9.45E-05  Patient's weight  

Normal-vs-Stage2 4.59E-05  Normal-vs-Normal Weight 3.09E-07 

Normal-vs-Stage3 1.49E-02  Normal-vs-Extreme Weight 6.86E-02 

Normal-vs-Stage4 NA  Normal-vs-Obese 4.74E-02 

Stage1-vs-Stage2 1.95E-01  Normal-vs-Extreme Obese 5.93E-01 

Stage1-vs-Stage3 9.76E-01  Normal Weight-vs-Extreme Weight 6.60E-02 

Stage1-vs-Stage4 NA  Normal Weight-vs-Obese 6.49E-01 

Stage2-vs-Stage3 2.94E-01  Normal Weight-vs-Extreme Obese 8.59E-01 

Stage2-vs-Stage4 NA  Extreme Weight-vs-Obese 4.18E-01 

Stage3-vs-Stage4 NA  Extreme Weight-vs-Extreme Obese 8.34E-01 

Patient's race   Obese-vs-Extreme Obese 9.64E-01 

Normal-vs-Caucasian 3.61E-02  Tumor's grade  

Normal-vs-African American NA  Normal-vs-Grade1 6.90E-03 

Normal-vs-Asian NA  Normal-vs-Grade2 6.10E-05 

Caucasian-vs-African American NA  Normal-vs-Grade3 5.87E-04 

Caucasian-vs-Asian NA  Grade1-vs-Grade2 2.75E-01 

African American-vs-Asian NA  Grade1-vs-Grade3 6.04E-01 

Patient's gender   Grade2-vs-Grade3 <1E-12 

Normal-vs-Male 2.68E-05  Tumor histology  

Normal-vs-Female 3.91E-06  Normal-vs-Lepidic adenocarcinoma 1.99E-01 

Male-vs-Female 2.29E-01  Normal-vs-Papillary adenocarcinoma 9.59E-02 

Patient's age   Normal-vs-Squamous cell carcinoma NA 

Normal-vs-Age(21-40Yrs) 9.32E-02  Normal-vs-Adenocarcinoma 5.52E-04 

Normal-vs-Age(41-60Yrs) 9.87E-08  Normal-vs-Colloid adenocarcinoma NA 

Normal-vs-Age(61-80Yrs) 1.25E-03  Normal-vs-Acinar adenocarcinoma 1.58E-03 

Normal-vs-Age(81-100Yrs) 9.39E-01  Normal-vs-Solid adenocarcinoma 6.70E-02 

Age(21-40Yrs)-vs-Age(41-60Yrs) 6.06E-01  Normal-vs-Other 2.70E-03 

Age(21-40Yrs)-vs-Age(61-80Yrs) 1.93E-01  Papillary adenocarcinoma-vs-Other 4.01E-01 

Age(21-40Yrs)-vs-Age(81-100Yrs) 2.93E-01  Adenocarcinoma-vs-Other 2.56E-01 

 


