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Abstract: Studies have evidenced that epigenetic marks associated with type 2 diabetes (T2D) can be
inherited from parents or acquired through fetal and early-life events, as well as through lifelong
environments or lifestyles, which can increase the risk of diabetes in adulthood. However, epigenetic
modifications are reversible, and can be altered through proper intervention, thus mitigating the
risk factors of T2D. Mind–body intervention (MBI) refers to interventions like meditation, yoga, and
qigong, which deal with both physical and mental well-being. MBI not only induces psychological
changes, such as alleviation of depression, anxiety, and stress, but also physiological changes like
parasympathetic activation, lower cortisol secretion, reduced inflammation, and aging rate delay,
which are all risk factors for T2D. Notably, MBI has been reported to reduce blood glucose in patients
with T2D. Herein, based on recent findings, we review the effects of MBI on diabetes and the
mechanisms involved, including epigenetic modifications.

Keywords: mind–body intervention; epigenetic modification; diabetes

1. Introduction
1.1. Epigenetics

Epigenetic mechanisms allow control of gene activity without altering the DNA se-
quence, and through this process, genes are able to adapt to the changing environment [1].
Epigenetic information is either inherited or acquired. They might exert long-term ef-
fects but have been shown to be reversible. Any exposure before and during pregnancy
can affect the parental germ cells and the fetus, inducing epigenetic changes. Besides
these, the environment or lifestyle could also cause epigenetic changes in an individual.
Epigenetic marks can be divided into three main types: DNA methylation, histone mod-
ification, and small non-coding RNA. These epigenetic modifications are spatially and
temporally controlled and exhibit gene-expression regulatory functions. For example, the
addition of methyl groups to cytosine can stimulate chromatin condensation, causing the
transcriptional machinery to lose access to DNA, thus suppressing gene expression. The
environment of subjects, such as exercise, diet, and stress, can increase or decrease the
methylation modification in the target genomic region, followed by reduction or increase in
the corresponding gene activity, respectively. For example, six months of exercise interven-
tion increased DNA methylation of some genes in human adipose tissue, including several
candidate genes related to diabetes, with a notable decrease in the corresponding mRNA
expression [2]. In contrast, Barrѐs et al. [3] revealed that one bout of exercise reduces the
promoter DNA methylation of substrate metabolite genes in the human skeletal muscle,
and increases their gene activity. Similarly, acetylation and deacetylation of histones cause
chromatin to become loose or tight, respectively, to activate or inhibit gene transcription
along the genome. Moreover, microRNA controls the stability of mRNA and access to the
translation machinery, thereby affecting protein production [4].
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1.2. Epigenetic Changes and Diabetes

Type 2 diabetes (T2D) is characterized by a chronic increase in blood glucose level,
which is caused by inadequate insulin secretion or insulin resistance. Aging, a sedentary
lifestyle, and obesity are all well-known contributors to insulin resistance. The pancreatic
islet cells, which secrete insulin, become dysfunctional in insulin regulation after prolonged
exposure to high levels of lipids and glucose [5,6].

1.2.1. Diabetes-Related Epigenetic Changes in Parents, and During Prenatal and Early Life

Notably, individuals with diabetes have been observed to have significant changes
related to DNA methylation in the insulin-producing (pancreatic islets) and insulin-targeted
tissues (adipose tissue, skeletal muscle, liver). This finding suggests that the epigenetic
mark is associated with the incidence of T2D [7,8]. As follows, studies have revealed that
these epigenetic marks can be inherited from parents or acquired during fetal or early life
and through lifelong environment or lifestyle.

Epigenetic information can be passed on to the offspring by changing the reproductive
cells of the parental generation. The pups of male mice on a high-lipid diet exhibited
an altered metabolism phenotype, including obesity and beta cell dysfunction [9]. More-
over, environment-induced parental stress can cause epigenetic changes. A restraint stress
mouse model revealed that the increased glucocorticoid level of stressed parent mice
caused excessive DNA methylation in the Sfmbt2 gene promoter in sperm cells, which
induced hyperglycemia in the offspring by increasing gluconeogenesis through reduced
miR-488b-3p expression, followed by enhanced expression of PEPCK [10]. This finding
indicated that epigenetic marks acquired due to parental stress conditions can be passed
down to their offspring.

The fetus is vulnerable to epigenetic changes depending on the environment. During
the fetal development, individuals exposed to conditions such as malnutrition, xenobiotic
expansion, substance use, placental insufficiency, gestational diabetes or prenatal stress
have been noted to have abnormalities in glucose and lipid metabolism besides a higher
risk of developing T2D [11]. A rat model revealed that a mother’s low-protein diet changed
the expression of certain transcription factors in the fetal pancreas, inhibiting beta cell
proliferation and promoting cell differentiation [12]. Consequently, the number of beta cells
decreased in the offspring, thereby increasing the risk of T2D during adulthood. Similarly,
several reports have implied that intrauterine exposure increases the risk of T2D in humans.
Children born to mothers with T2D during pregnancy were more likely to develop T2D
and obesity than those born to non-diabetic mothers [13,14]. Moreover, people exposed to
famine during fetal stage were noted to have glucose intolerance in adulthood [15].

Maternal antenatal stress has also been noted to affect body weight and glucose
metabolism in the offspring [16]. According to a meta-analysis, body mass index (BMI)
(18 studies) and body fat (5 studies) were significantly higher when under fetal stress [17].
In the placenta, HSD11B2 exists to reduce exposure to the maternal glucocorticoid hormone,
converting cortisol or corticosterone into inactive metabolites. However, the maternal stress
experienced during the prenatal period can induce an increase in DNA methylation of
certain CpG sites located in the HSD11B2 gene promoter and downregulate expression of
the enzyme in the placenta [18]. Notably, both human and animal models have observed
epigenetic changes after prenatal stress in fetuses and children [18,19] including methyla-
tion changes of the glucocorticoid receptor gene (NR3C1, receptor for cortisol). For example,
changes in NR3C1 promoter methylation were detected in the cord blood of newborns
born to a mother with depression during pregnancy [20]. Moreover, newborns exposed to
prenatal stress were noted to have methylation in the NR3C1 promoter in umbilical cord
blood samples [21].

The risk factors of T2D were evidenced to be induced not only by the lifestyle during
adulthood, but also by the living conditions during early life [22,23]. The epigenetic mecha-
nism associated with the regulation of gene expression plays a crucial role in mediating the
connection between early-life adverse conditions and the risk of chronic diseases (including
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T2D) occurring in the later years of life [24]. Notably, these effects are not solely limited to
physical adversity, but also include mentally harmful environments during development.
Early-life adversity, such as childhood abuse, consistently exhibits a condition wherein in-
flammation develops, because of regulatory dysfunction in the inflammatory pathway over
a prolonged period of time [25,26]. Chronic mild inflammation is critically associated with
the incidence of T2D [27]. Early-life experiences might significantly affect aging-related
phenotypes through the epigenetic factors and potentially influence other aging-related
diseases [11].

1.2.2. Psychological Stress and Type 2 Diabetes
Psychological Factors Related to Type 2 Diabetes

Psychological stress (including depression, anxiety, and anger) is commonly associated
with several physical diseases and has been increasingly recognized as a risk factor for
disease onset and progression. Studies have suggested that stress plays a causative role
in T2D, serves as a predictor of T2D onset, and acts as a prognostic factor in patients with
conventional T2D [28]. This finding could be because glucose homeostasis is affected by
the cortisol produced by the hypothalamic–pituitary–adrenal (HPA) axis activation during
stress [29]. Moreover, psychological stress can reduce the motivation of individuals to
sustain a healthy lifestyle. In a study which followed 7000 healthy adults for 10 years, the
perceived stress was related to unhealthy behaviors such as physical inactivity, unsuccessful
smoking/alcohol cessation attempts, and T2D incidence [30].

Depression is the most studied psychological factor in the field of diabetes. A meta-
analysis of people with diabetes revealed that comorbid depression increased the non-
adherence to healthy behaviors related to diet, medication, and exercise [31]. Therefore,
the unhealthy effects of depression on these behaviors are likely to be detrimental to peo-
ple with diabetes. Notably, meta-analysis and prospective cohort studies suggest that
depression is associated with an increased risk of diabetes [32–34]. In addition, depressive
symptoms, including lack of joy, despair, and a diagnosis of clinical depression, are con-
sidered predictive factors in the development of diabetes [33,34]. Furthermore, negative
personality traits, such as anger, have been studied regarding T2D development [35,36].
A 6-year longitudinal study involving 11,615 non-diabetic adults revealed that anger was
associated with a high risk of future T2D development [35]. Furthermore, an 11.4-year
study involving 5598 adults (no T2D or cardiovascular disease) revealed that anger and
anger response significantly increased the T2D risk [36], indicating that anger is a risk
factor for developing diabetes.

Positive psychological factors also seem to affect the glycemic control. A study in-
volving 111 patients with diabetes (both type 1 and 2 diabetes) examined the longitudinal
relationship between resilience and glycemic control and noted that low stress resilience
further aggravated a 1-year follow-up Hemoglobin A1c (HbA1c, glycated hemoglobin) in
both types of diabetes [37]. In a longitudinal study involving 97 elderly women (without
diabetes), the relationship between positive well-being and glycemic control was investi-
gated [38]. Those with greater positive well-being at baseline exhibited a statistically lower
level of HbA1c at a 2-year follow-up. These results suggest that negative psychological
factors, such as depression, anger, and low stress resilience increase the risk of diabetes,
whereas positive psychological factors, such as positive well-being, have the opposite effect.
Psychological stress causes physiological changes through three major pathways, namely
the neuroendocrine (cortisol), autonomic, and inflammatory pathways. Therefore, it seems
that psychological stress functions through these pathways when it acts as a risk factor for
diabetes [28].

Cortisol and Type 2 Diabetes

Corticosterone is a primary glucocorticoid in the physiological stress-response system
of rodents [39]. Notably, in rodents, chronic administration of corticosterone induces hyper-
glycemia, insulin resistance, and dyslipidemia [40,41]. In humans, cortisol, a glucocorticoid
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hormone, is secreted from the adrenal cortex as an output of the HPA axis during stress.
Chronic activation of the HPA axis leads to dysregulated cortisol output [42]. Glucocor-
ticoid receptors are expressed in the pancreatic beta cells that secrete insulin, and thus,
cortisol stimulation directly affects insulin sensitivity and reduces insulin secretion [43].
Therefore, abnormal cortisol secretion can cause problems with blood glucose regulation,
which is why patients with Cushing’s syndrome, those with chronic excessive cortisol
secretion [44], and those taking glucocorticoids prescription [45] are often noted to have a
high vulnerability to hyperglycemia and have a higher risk of developing diabetes mellitus.
A longitudinal study involving 3270 healthy people observed that high levels of evening
cortisol were associated with the likely development of T2D within 9 years [46]. Besides the
incidence of T2D, upon considering the prediabetic condition (impaired fasting glucose)
into the analysis, elevated evening levels of cortisol and a flatter slope of cortisol across the
day were noted to be predictive factors of diabetes. However, morning levels of cortisol
and cortisol awakening response were not related to T2D onset [46].

Autonomic Nervous System and Type 2 Diabetes

Stress-induced sympathetic activation causes changes in blood pressure, heart rate,
and cardiac output, which are recognized risk factors for diabetes [47]. A study involv-
ing a cohort of 4.1 million adults who did not have diabetes or cardiovascular disease
investigated the link between diabetes risk and blood pressure, using the electronic health
record connected to the United Kingdom primary care system, and revealed that systolic
and diastolic blood pressures were both risk factors for developing diabetes mellitus [48].
Besides blood pressure, an increased resting heart rate and a decreased heart rate variability
were considered to be risk factors for T2D. A meta-analysis that investigated 10 cohort
studies (120,000 participants) showed a positive relationship between resting heart rate and
incident of T2D [49]. Changes in the autonomic nervous system (increased sympathetic
nervous system and decreased parasympathetic nervous system), which increased the risk
of T2D, were associated with metabolic syndrome [50], and decreased heart rate variability
(markers of autonomic nervous system control) was associated with increased levels of
fasting blood glucose (FBG), cortisol, and expression of pro-inflammatory cytokines [51].

Inflammation and Type 2 Diabetes

Chronic inflammation resulting from abnormal immune system activation is a risk
factor for diabetes mellitus. T2D is considered a chronic low-grade inflammatory state
associated with multiple inflammatory mechanisms and metabolic pathways [52]. Studies
have revealed that circulating concentrations of pro-inflammatory adipokines are increased
in patients with T2D. For example, a study involving 15,000 people in Germany reported a
dose–response relationship between the impaired glucose status and adipokine concentra-
tions [53]. In addition, a meta-analysis involving 10 prospective studies revealed that an
increased concentration of inflammatory cytokines, interleukin (IL)-6, and C-reactive pro-
tein (CRP) in the circulatory system was associated with increased risk of future T2D [54].
Indeed, in patients with T2D, the biomarkers indicating chronic inflammation are repeat-
edly detected in the pancreas, liver, fat tissue, and white blood cells [52].

Complications

Studies suggest that psychological factors, especially depression, increase the risk of
complications from T2D. Patients diagnosed with diabetes and depression have higher
risk of microvascular [55,56], macrovascular comorbidities [57–59], and mortality [60].
Notably, these vascular complications in patients with diabetes appear to be linked to
epigenetic changes [61–63]. For example, in the genome-wide DNA methylation profiles
of DNA isolated from whole blood of myocardial infarction patients or control subjects,
two DNA methylation sites were identified to be significantly correlated with myocardial
infarction [63].
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1.2.3. Aging and Type 2 Diabetes

T2D is considered a typical aging-related disease because it generally emerges after
the age of 40 years. Because conditions associated with aging processes (e.g., inflammatory
states) are characteristics of both T2D and aging [64], T2D is conceptualized as early
maturity or accelerated aging [65]. Notably, epigenetic changes are strongly associated
with aging. The genome either gains or loses methylation over time. Fraga et al. [66]
noted that the epigenome in the cells of young identical twin pairs is similar, whereas
the epigenome diverges in the older identical twin pairs, indicating the effect of age on
DNA methylation. Moreover, DNA methylation of 3470 sites was revealed to be changed
in common across various cell types (fat tissue, liver, and blood) during aging [67]. In
addition, in several genes (FHL2, ELOVL2, KLF14) associated with T2D, the methylation of
CpG sites were noted to be similarly affected in all investigated tissues.

1.2.4. Lifestyle and Type 2 Diabetes

Over the past few decades, the incidence of T2D has dramatically increased worldwide.
Rather than being explained by genetic changes, it is suggested that this was induced by
rapid changes in lifestyle globally [68]. According to the study which meta-analyzed nine
trials regarding the correlation between total daily sitting time and cardiovascular disease
or diabetes in 448,285 participants, it was found that daily sitting time was positively
correlated with an increased risk of cardiovascular disease and diabetes [69]. Therefore,
a sedentary lifestyle seems to increase the risk of cardiovascular problems and diabetes.
Therefore, unhealthy lifestyles, including unhealthy eating, lack of exercise, and smoking,
often exacerbate biological changes induced by chronic stress [70].

1.3. Types of Mind–Body Intervention and Their Effects

Mind–body intervention (MBI, also known as mind–body training, mind–body prac-
tices, and mind–body therapy) refers to meditation, yoga, and tai chi that deal with both
physical and mental well-being [71,72]. These interventions are performed with the goal of
gaining positive influence on overall health by fostering mental serenity, mental care, and
critical cognition, as well as by improving body function through breathing and physical
movement. MBI can be categorized into static methods (sitting meditation), dynamic
methods (moving meditation), and a combination of both. Static methods can include
mindfulness meditation, Vipassana, transcendental meditation (TM), Zen meditation, Bud-
dhist meditation, Sudarshan Kriya, Kirtan Kriya, Pranayama, and relaxation response.
Mindfulness meditation is a well-known way to cultivate a state of mindfulness in everyday
life [73]. TM is a form of silent mantra meditation with one’s eyes closed [74]. Relaxation
response is a simple, secular version of TM [75]. Zen meditation, one of the Buddhist prac-
tices, is the practice of sitting cross-legged, concentrating on the mind, and contemplating
quietly, and it suspends all judgmental thinking and letting words, ideas, images, and
thoughts pass by without getting involved in them [76]. In terms of content, the static
method can be divided into open monitoring meditation (e.g., mindfulness meditation)
and focused attention meditation (e.g., TM, brain wave vibration).

Dynamic MBIs include movement meditations, such as yoga, tai chi, and qigong,
which can be considered a combination of mindfulness intervention and physical activ-
ity [77]. Yoga is a group of physical, mental, and spiritual practices or disciplines, largely
consisting of different yogic postures [78]. Tai chi is a moving meditation involving a series
of slow, gentle motions that are patterned on the movements in nature. Qigong is often
referred to as the “internal” portion of tai chi and is characterized by stationary movements
that are repeated a certain number of times.

Combined protocols involve a mix of both static and movement meditations.
Mindfulness-based stress reduction (MBSR) is an 8-week integrated training consisting of
mindfulness meditation, concentrative meditation, breathing exercises, yoga, autogenic
training, and Buddhist philosophy [79]. It blends various techniques and is referred to in
the clinical setting as mindful awareness practices [80], mindfulness-based movement [81],
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mindfulness-based interventions [73], and so on. Buddhist walking meditation is a way
of walking with a sense of awakening to one’s body and awareness of the surrounding
environment [82]. Brain wave vibration meditation (also known as brain education medita-
tion (BEM)) is a combination of static and dynamic methods that manages health of body
and mind based on the following five steps: (1) Brain sensitizing (activating the connection
between the body and the brain through various body movements), (2) brain versatilizing
(making one’s body flexible through yoga, breathing exercises), (3) brain refreshing (brain
wave vibration, energy dance), (4) brain integrating (imagery meditation, body scan), and
(5) brain mastering (philosophy of enlightenment) [83,84].

MBI has been reported to relieve stress-dependent symptoms of various diseases,
including psychological disorders (mood and anxiety disorders), inflammatory diseases,
aging, and cancer [80,85,86]. The incidence and progression of diabetes can be affected by
stress [46]. Therefore, MBI can be beneficial especially in patients with diabetes. In this
work, we explored how MBI affects the incidence and progression of diabetes, as well as
exploring its mechanisms, with a special focus on the epigenetic mechanisms.

2. Epigenetic Changes Induced by Mind–Body Intervention and Their Effects
on Diabetes
2.1. Effects of Mind–Body Intervention on Diabetes

Studies that meta-analyzed the effectiveness of MBI on patients with diabetes revealed
a consistent efficacy in blood glucose control and lipid metabolism, albeit with some
differences in results (Table 1).
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Table 1. Recent meta-analyses about the effects of mind–body intervention and other protocols on regulation of blood glucose and lipid profiles.

Meta-Analysis Study Type Participants Intervention Duration, Frequency,
Intervention Length Control

Number of Trials
(Number of
Participants)

Outcomes (Compared
to the Control)

Ni et al., 2020 (Journal of
Nursing Scholarship) [87] RCT Patients with types 1

and type 2 diabetes

Mind–body
intervention

Mindfulness-based
intervention (MBSR, MBCT)

90–150 min/session,
1 session/week,

8–9 weeks

Usual care, waitlist, health
education without any

mindful component
6 studies (n = 578) ↓HbA1c

Ni et al., 2020 (J Diabetes
Investing) [88] RCT Patients with types 1

and type 2 diabetes

Mindfulness-based
intervention (MBSR,

mindful eating intervention,
MBCT, MBCT + MBSR)

30–150 min/session,
1–7 sessions/week,

8–12 weeks

Usual care, Smart choices
DSME-based intervention,

waitlist, CBT
7 studies (n = 665) ↓HbA1c

Meng et al., 2018 [89] RCT
Patients with

type 2 diabetes Qigong
NR, 20–90 min/session,

1–5 sessions/week,
2–12 months

No exercise 17 studies (n = 966) ↓FBG

Other aerobic exercises 5 studies (n = 389) = FBG (p = 0.07)

Antiresistance exercise 1 study (n = 22) ↓FBG

No exercise 16 studies (n = 834) ↓HbA1c

Other aerobic exercises 5 studies (n = 389) ↓HbA1c

Antiresistance exercise 1 study (n = 22) = HbA1c

No exercise 6 studies (n = 330) ↓PPBG

Other aerobic exercises 1 study (n = 122) ↓PPBG

Xia et al., 2019 [90] RCT
Patients with

type 2 diabetes Tai chi
30–120 min/session,
2–14 sessions/week,

2–6 months

Usual care, standard
treatment, any kind of

exercise

13 studies (n = 616) ↓FBG

9 studies (n = 517) ↓HbA1c

7 studies (n = 343) ↓TC

8 studies (n = 359) ↓TG

6 studies (n = 290) = HDL-C

6 studies (n = 290) = LDL-C

6 studies (n = 296) ↓BMI

Chao et al., 2018 [91] RCT
Patients with

type 2 diabetes Tai chi
15–60 min/session,
2–7 sessions/week,

1–6 months

Non-exercise 10 studies (n = 489) ↓FBG

Other aerobic exercise 7 studies (n = 342) = FBG

Non-exercise 7 studies (n = 293) ↓HbA1c

Other aerobic exercise 7 studies (n = 372) = HbA1c

Non-exercise 5 studies (n = 162) ↓PPBG

Other aerobic exercise 3 studies (n = 84) = PPBG
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Table 1. Cont.

Meta-Analysis Study Type Participants Intervention Duration, Frequency,
Intervention Length Control

Number of Trials
(Number of
Participants)

Outcomes (Compared
to the Control)

Xia et al., 2020 [87] RCT
Patients with

type 2 diabetes
Meditative movements (tai

chi or qigong or yoga)

NR, 10–120
min/session,

2–7 sessions/week,
6–36 weeks

Any type of control group

19 studies (n = 1505) ↓FBG

15 studies (n = 1116) ↓HbA1c

5 studies (n = 624) ↓PPBG

12 studies (n = 1110) ↓TC

8 studies (n = 844) ↓LDL-C

10 studies (n = 991) ↓TG

9 studies (n = 938) ↑HDL-C

11 studies (n = 915) =BMI

Pascoe et al., 2017 [92] RCT All population Yoga w/wo MBSR
45–120 min/sessions,
1–7 sessions/week,

2–14 months

Active controls (exercise,
physical activity, health

education, social support,
stretching, progressive

muscle relaxation, other
counselling/therapy)

7 studies (n = 534) ↓FBG

6 studies (n = 389) ↓TC

6 studies (n = 389) ↓LDL-C

7 studies (n = 560) = TG

7 studies (n = 560) = HDL-C

Thind et al., 2017 [93] * RCT, non-RCT Patients with
type 2 diabetes

Yoga (not specified, hatha,
Sudarshan kriya)

50–240 min/session,
total 12~182 h
(<1–26 weeks)

Usual care, waitlist, exercise
only, exercise plus
lifestyle education

18 studies (n = 2212) ↓HbA1c

21 studies (n = 2081) ↓FBG

14 studies (n = 1473) ↓PPBG

16 studies (n = 1880) ↑HDL-C

16 studies (n = 1838) ↓LDL-C

16 studies (n = 1895) ↓TC

14 studies (n = 1790) ↓TG

9 studies (n = 1260) ↓BMI

Cui et al., 2016 [94] RCT Patients with type 2
diabetes

Yoga (hatha, asana, pranaya,
Sudarshan kriya, shavasana)

30–120 min/session,
1–7 sessions/week,
15 days–9 months

Usual care, physical
exercises, life style

education, brisk
walking, waitlist

9 studies (n = 805) ↓FBG

7 studies (n = 718) ↓HbA1c

4 studies (n = 527) ↓PPBG

5 studies (n = 618) ↓TC

4 studies (n = 588) ↑HDL-C

5 studies (n = 618) ↓LDL-C

4 studies (n = 588) =TG
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Table 1. Cont.

Meta-Analysis Study Type Participants Intervention Duration, Frequency,
Intervention Length Control

Number of Trials
(Number of
Participants)

Outcomes (Compared
to the Control)

Kumar et al., 2016 [95] RCT
Patients with

type 2 diabetes

Yoga (asana, pranayama,
hatha, relaxation,

diaphragmatic breathing in
supine position)

30–120 min/session,
1–7 sessions/week,
40 days–6 months

Usual care, walking,
education

17 studies (n = 1358) ↓FBG

9 studies (n = 659) ↓PPBG

13 studies (n = 1097) ↓HbA1c

Li et al., 2017 [96] RCT

Diabetes patients
(type1 or 2) with

clinically
relevant depression

CBT

CBT or a therapy based
on CBT

NR, 45–90
min/sessions,

1–2 sessions/week,
2–12 months

Usual care, diabetes
education, usual

care, waitlist

7 studies (n = 759) = HbA1c

5 studies (n = 303)
short-term effect = HbA1c

6 studies (n = 705)
long-term effect = HbA1c

3 studies (n = 175) ↓FBG

Uchendu et al., 2017 [97] RCT Patients with Type 1 or
Type 2 diabetes CBT

30–120 min/sessions,
1–2 sessions/week,

6–16 weeks
Non-CBT 16 studies (n = 1375) ↓HbA1c

Liubaoerjijin et al., 2016 [98] RCT
Patients with

type 2 diabetes

Exercise

Higher intensity training
(walking/cycling/running/

treadmill/XC ski)

NR, 15–60 min/session,
3–6 sessions/week,

12–25 weeks

Lower intensity training
(Walking/Cycling/
Treadmill/XC ski)

8 studies (n = 233)

↓HbA1c

= FBG

Boule et al., 2001 [99] RCT, CCT Patients with
type 2 diabetes

Exercise
40–90 min/sessions,
2–6 sessions/week,

8–22 weeks
Non-exercise 11 studies (n = 310) ↓HbA1c

Exercise with diet
30–45 min/session,

3–3.5 sessions/week,
13–52 weeks

Non-exercise, Non-diet 3 studies (n = 142) ↓HbA1c

Lora–Pozo et al., 2019 [100] RCT
Patients with

type 2 diabetes

High-intensity interval
training (64–90% VO2max
or 77–95% heart rate max)

21–60 min/session,
3–5 sessions/week,

12–16 weeks
Non-exercise 2 studies (n = 43) ↓HbA1c

30–60 min/session,
2–5 sessions/week,

12–16 weeks
Moderate-intensity training 4 studies (n = 105) = HbA1c

60–83 min/session,
2–5 sessions/week,

16–48 weeks
Low-intensity training 2 studies (n = 312) ↓HbA1c

Abbreviations: MBSR, mindfulness-based stress reduction; MBCT, mindfulness-based cognitive therapy; DSME, diabetes self-management education; CBT, cognitive behavior therapy; HbA1c, hemoglobin A1c;
FBG, fasting blood glucose; PPBG, post-prandial blood glucose; TC, total cholesterol; LDL-C, low-density lipoprotein cholesterol; HDL-C, high-density lipoprotein cholesterol; TG, triglyceride; BMI, body mass
index; NR, not reported; RCT, randomized controlled trial; CCT, nonrandomized controlled trial; ↑, increased; ↓, reduced; =, no difference. * The numbers of participants used in meta-analysis were not separately
described in Thind et al., (2017). The above-indicated numbers are calculated according to the original references provided in Table 1 of Thind et al., (2017).
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2.1.1. Effects of Moving Meditation on Diabetes

Several studies have revealed that moving meditations, such as tai chi, yoga, and
qigong are effective in controlling blood glucose in patients with T2D [89,90,94,101]. Ac-
cording to a meta-analysis of 21 trials regarding moving meditation in patients with T2D,
moving meditation was noted to significantly improve FBG, HbA1c, postprandial blood
glucose (PPBG), total cholesterol (TC), low-density lipoprotein cholesterol (LDL-C), and
high-density lipoprotein cholesterol (HDL-C), but did not improve the BMI compared with
the control groups [102].

Effects of Tai Chi on Diabetes

According to one systematic review, which meta-analyzed 17 trials regarding the use
of tai chi in patients with T2D, tai chi was noted to significantly reduce the FBG, HbA1c,
TC, triglyceride (TG), and BMI, but not LDL-C and HDL-C, compared with the control
group [90]. According to another meta-analysis study that examined the effectiveness of
tai chi in patients with T2D (meta-analysis of 14 trials), tai chi was noted to significantly
reduce the FBG, HbA1c, and PPBG compared with the non-exercise control groups [91].
The common observation in both meta-analyses was that tai chi decrease FBG and HbA1c
in patients with T2D.

Effects of Qigong on Diabetes

According to a meta-analysis of 21 randomized controlled trials (RCTs) that exam-
ined the effects of qigong in adults with T2D, qigong significantly reduced FBG, HbA1c,
and PPBG [89]. According to another meta-analysis study (11 RCTs) regarding qigong’s
effectiveness in adults with T2D, qigong significantly reduced FBG, PPBG, HbA1c, TG,
and HDL-C, but no significant changes were noted related to TC and LDL-C [103]. Both
meta-analyses had a common observation of qigong decreasing the FBG, HbA1c, and PPBG
in patients with T2D.

Effects of Yoga on Diabetes

According to a meta-analysis of 12 RCTs that examined the effects of yoga in adults
with T2D, yoga significantly reduced the FBG, HbA1c, PPBG, TC, HDL-C, and LDL-C,
but did not significantly reduce the TG [94]. Another meta-analysis study that examined
the effectiveness of yoga in adults with T2D (meta-analysis of 23 studies) determined that
yoga improved HbA1c, FBG, and PPBG compared with the control groups. Moreover,
yoga significantly improved other risk factors, such as lipid profile, blood pressure, BMI,
waist–hip ratio, and cortisol level [93]. In a meta-analysis using 17 RCTs regarding the
effects of yoga in adults with T2D, yoga improved HbA1c, FBG, and PPBG compared
with control groups [95]. Therefore, all the three meta-analyses, which investigated the
effects of yoga in patients with T2D, reported that yoga reduces FBG, HbA1c, and PPBG
in patients with T2D. A meta-analysis comprising 42 RCTs examined the effectiveness of
yoga (w/wo MBSR) against active controls in all populations, and reported a significant
reduction in FBG, TC, and LDL-C, with unchanged TG and HDL-C [92]. Regardless of the
group studied, a decrease in blood glucose was consistently observed in the yoga group.

2.1.2. Effects of Combined Practices (Sitting Meditation and Moving Meditation)
on Diabetes
Mindfulness-Based Intervention

Meta-analysis of eight RCTs conducted on diabetics (including types 1 and 2) re-
vealed that MBI has a beneficial effect on HbA1c, diabetes-related distress, depression, and
stress [87]. The fact that MBI positively affects HbA1c is consistent with previous meta-
analyses [104,105]. Another study that conducted a meta-analysis of nine RCTs involving
diabetics (including types 1 and 2) observed that MBSR and mindful cognitive therapy
(MBCT) improved depression, the mental health composite score of quality of life (QOL),
and HbA1c [87]. Sensitivity analysis revealed that the positive effect on HbA1c disappeared
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when long-term tracking studies (more than 6 months) were excluded, suggesting that the
effects of MBSR or MBCT on HbA1c takes time to happen.

Buddhist Walking Meditation

According to an RCT study that compared the effects of Buddhist walking meditation
to traditional walking in adults with T2D, Buddhist walking meditation was noted to
significantly reduce the HbA1c, but did not significantly alter the FBG, TC, HDL-C, LDL-C,
and TG [106].

Brain Education Meditation

According to the RCT study that compared the effects of BEM (a mixed method which
combines static and moving meditations) in patients with T2D or high blood pressure with
that of the effects in the health education group, BEM significantly reduced LDL-C [107]. In
addition, a cross-sectional study that compared long-term women meditators and women
non-meditators revealed a significantly higher blood glucose levels in the postmenopausal
participants than the premenopausal participants in the control group, whereas no such
increase was observed in the BEM group [108].

2.1.3. The Effects of Other Practices on Diabetes-Related Factors

In an imaginal retraining RCT concerning the reduction of craving for high-calorie
food in 384 overweight and obese women, a 6-week imaginal retraining without diet or
lifestyle recommendation significantly reduced body weight compared with the waitlist
control [109]. In an RCT study that examined the effects of 12 weeks of pilates on glycemic
control of older women with T2D, pilates was noted to significantly reduce PPBG and
HbA1c [110].

2.2. Potential Mechanism for Diabetes-Related Effects of Mind–Body Intervention

In studies using rodents, parental stress, fetal stress, and post-birth adversities were
observed to affect the epigenetic modifications in the promoter of the glucocorticoid
receptor. When an individual exposed to stress becomes an adult, the resulting epigenetic
changes might affect the coping behavior in adverse conditions and this behavior pattern
might transmit transgenerationally. However, these transgenerational epigenetic marks can
be reversed through environmental abundance, including favorable experiences, thereby
suggesting that environmental abundance can be a powerful intervention in reversing
epigenetic programming [111,112]. The environmental abundance used in the above
study is cognitive and somatosensory stimulation, exercise, and a visual stimulation-rich
environment. In humans, MBI makes one aware of the current moment and one’s body
condition through breathing and improves the connection between the body and the brain
through soft and slow motion. Therefore, MBI provides a component corresponding to
the environmental abundance. Indeed, MBI changes epigenetic modifications, as well as
mental and physical functions as follows [113,114] (Table 2).
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Table 2. Changes in epigenetic marks related to mind–body intervention.

Ref Study Type
Intervention Control

Sample Changes in Epigenetic Marks
Differentially

Methylated Area Related Functions
Participants Protocol Duration Participants Protocol Duration

Kaliman
et al., 2014

[115]

L

Experienced
meditators (n = 19) (a

daily meditation
practice spanning a
minimum of 3 years,
≥30 min/day, ≥3
intensive retreats

lasting 5 or more days)

Intensive meditation
practice (a day-long
session of the MBSR,

which is routinely used
in North-American

hospitals)

8 h

People with no
meditation experience

(n = 31)

Leisure activity
(reading, watching
documentaries or
playing computer

games, and walking)

8 h PBMC

• ↑Global acetylation of histone H4 (H4ac)
• ↓Trimethylation of histone H3 lysine 4 (H3K4me3)

Chaix et al.,
2020 [114]

Experienced
meditators (n = 17)

(Same participant pools
of Kaliman et al., 2014)

People with no
meditation experience

(n = 17) (Same
participant pools of
Kaliman et al., 2014.)

• No significant baseline differences in methylation profiles be-
tween groups

• 61 DMRs after the intervention in the meditation group com-
pared to the control group

• • DMRs include genes related with immune response, inflamma-
tion, ageing

ACADM, CPT1A,
HSD17B4 Fatty acid metabolism

SAP18, EIF1B, NCBP2 RNA transport

APITD1, ERCC1 DNA repair

KLF15
Glucose homeostasis,

stress response,
inflammation

EGR1

DNA damage,
immunity,

inflammatory
responses

SP3

DNA damage,
immunity,

hematopoiesis,
expression regulation
of anti-inflammatory

molecules such as IL-10
and COX-2

SP4

Inflammatory and
neuropathic persistent
pain states, dendrite

patterning,
neurotransmission

EGR2

Involved in immunity
and inflammatory

processes, as well as
various neuropathies

Chaix et al.,
2017 [116] C

Experienced
meditators (n = 17)

(Same participant pools
of Kaliman et al., 2014)

- -

People with no
meditation experience

(n = 17) (Same
participant pools of
Kaliman et al., 2014)

- - PBMC
• Epigenetic age in controls: Older (age ≥ 52) > younger (age < 52)
• • Epigenetic age in meditators: Older (age ≥ 52) = younger (age

< 52)
- -

García–
Campayo
et al., 2018

[117]

C

Experienced
mindfulness

meditators (n = 17) (≥
10 years in total, ≥ 60

min/day)

- -

Healthy relatives and
friends of the

meditators who had a
similar lifestyle (n = 17)

- - PBMC

• 64 DMRs corresponding to 43 genes
• ↓Methylation in 70.3% of mindfulness-related DMRs
• Almost half of the DMRs involved genes linked to common hu-

man diseases, such as cardiovascular diseases
• 23.4% of DMRs located at subtelomeric regions
• Lipid metabolism and atherosclerosis signaling pathway: Signif-

icantly enriched in mindfulness-related DMRs
• • TNF, NF-kB signaling: Crucial regulators of the mindfulness-

related genes

Meis3, Mafk Glucose homeostasis

APOB, APOC2, HRH1,
PTCH1, CLEC11A,

NCOR
Lipid metabolism

TNFα, NF-kB, Nrf2 Inflammation
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Table 2. Cont.

Ref Study Type
Intervention Control

Sample Changes in Epigenetic Marks
Differentially

Methylated Area Related Functions
Participants Protocol Duration Participants Protocol Duration

Mendioroz
et al., 2020

[118]
C

Experienced
meditators (n = 17)

(Same participant pools
of García–Campayo

et al., 2017)

- -

Healthy relatives and
friends of the

meditators who had a
similar lifestyle (n = 17)
(Same participant pools

of García–Campayo
et al., 2017)

- - PBMC

• Positive correlation between methylation level of GPR31 and
telomere length in meditator

• Negative correlation between methylation level of SERPINB9
and telomere length in meditator

• Negative correlation between methylation level of the intergenic
CpG island within the subtelomeric region of chromosome 4
short arm and telomere length in meditator

• No correlation between age and telomere length in meditators

GPR31
Tumorigenesis,

extravasation, and
metastasis

SERPINB9

Inhibition of apoptosis,
inflammation, insulin
resistance in coronary

atherosclerosis

Intergenic CpG island
within the subtelomeric
region of chromosome

4 short arm

-

Bishop et al.,
2018 [119] L

PTSD patients of MBSR
responder (n = 11) MBSR 9 weeks

PTSD patients of MBSR
non-responder (n = 11) MBSR 9 weeks PBMC

↓Methylation in responders
FKBP5

Stress-related pathway
(glucocorticoid

receptor regulation)↑Methylation in non-responders

Harkess et al.,
2016 [120] L,C

Women reporting
psychological distress

(≥ 16 on Kessler
Psychological Distress

Scale) (n = 15)

Yoga 8 weeks

Women reporting
psychological distress

(≥ 26 on Kessler
Psychological Distress

Scale) (n = 11)

Control (waitlist) 8 weeks PBMC ↓Methylation (cross-sectional: Post-intervention) TNF Inflammation

Ren et al.,
2012 [121] C

Women tai chi
practitioners (n = 237)

(≥ 3 years)
- -

Women with no
practice of tai chi

(n = 263)
- - Saliva Significantly slow age-related methylation dynamics in tai chi group

compared to the control group in six age-related CpG marks

Age-related CpGs
(Rad50_2, 17P_7,

G6PD_6, G6PD_7,
Rad50_10, Xp13_1)

Aging

Abbreviations: L, longitudinal; C, cross-sectional; PBMC, peripheral blood mononuclear cells, DMR, differentially methylated regions; PTSD, posttraumatic stress disorder; MBSR, mindfulness-based stress
reduction; ↑, increased; ↓, reduced.
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2.2.1. Changes in Epigenetic Modifications Related to Glucose/Lipid Metabolism and
Inflammation through Mind–Body Intervention

MBI-induced epigenetic changes reported so far include DNA methylation [114–121]
and histone modification [115], but there are no reports regarding non-coding RNA at
present (Table 2). As mentioned earlier, accumulated research has revealed that MBI posi-
tively improves the blood glucose and lipids in people with diabetes. To investigate how
mindfulness affects the epigenetic pathways, García–Campayo et al. [117] compared the
methylation profiles obtained from the circulating lymphocytes of non-meditators and
experienced meditators with more than 10 years of experience. They identified 64 differen-
tially methylated regions and found that the 43 genes contained in them were related to
glucose homeostasis, lipid metabolism, protein folding, neurotransmission, and inflam-
matory pathway regulation [117]. Most of these genes were associated with neurologic
disorders, psychiatric illnesses, cardiovascular diseases, and cancer. Furthermore, in silico
analysis predicted that epigenetic reactions to the mindfulness practice regulate inflam-
matory pathways dependent on the tumor necrosis factor (TNF) alpha and nuclear factor
kappa light chain enhancer of activated B cells (NF-kB) signaling.

The authors performed GO enrichment analysis to characterize the functions of genes
that have more mindfulness-related differentially methylated regions (DMRs). In the
cellular component category, several GO terms were related to different lipoprotein parti-
cles, whereas the most strongly related GO term was phospholipase binding in molecular
function category. Among differentially methylated genes, several genes functioning
in lipid metabolism or related functions (e.g., APOB, APOC2, HRH1, PTCH1, CLEC11A,
NCOR) were included. In differential genes, the most frequently presented top canonical
pathways were LXR/RXR and FXR/RXR, which are essential pathways in regulating the
atherosclerosis signaling pathway, as well as cholesterol, fatty acid, and glucose homeosta-
sis. Moreover, DMRs enriched in transcription factor-binding motifs, and Meis 3 or Mak
that are transcription factors related to pancreatic beta cell survival or insulin metabolism
were also included. In response to oxidative stress, transcription factors of several motifs
act commonly into directing the upregulation of Nrf2 which exerts anti-inflammatory and
neuroprotective functions. When predicting and analyzing the upstream regulator of the
43 differentially methylated genes by meditation, the cytokine TNF was noted to have the
highest correlation. TNF is a cytokine involved in a wide range of human diseases, and
previous studies have also revealed associations between meditation and TNF [122,123].

In García’s study [117], which analyzed peripheral blood mononuclear cell DNA
methylation compared with meditation-naïve controls, meditators contained changed
epigenetic marks associated with glucose and lipid metabolism as well as inflammation,
suggesting related functional improvements through MBI, supporting the possibility of
using MBIs to improve glucose and lipid metabolism, as well as inflammatory function. In
a study which analyzed the same DNA samples, the SERPINB9 gene, which is differentially
methylated by meditation [118], has been known to be associated with inflammation and
insulin resistance in coronary atherosclerosis [124]. The methods used in this study are
cross-sectional studies, thus the causal relationship is unknown. Therefore, it is necessary to
examine epigenetic changes caused by meditation with the research design of RCTs in the
future to reveal the causal relationship. The meditation method used by García et al. [117]
is a mindfulness meditation. Hence, it would be noteworthy to examine if other meditation
techniques, such as moving meditation, can induce different epigenetic modifications.

2.2.2. Reduction of Psychological Stress, A Risk Factor of Type 2 Diabetes, through
Mind–Body Intervention

MBI has been shown to be effective in reducing negative psychological factors, in-
cluding depression. A meta-analysis of 38 RCTs that examined the effect of meditation
and MBI on healthcare professionals revealed that the intervention significantly reduced
anxiety, depression, psychological distress, stress, and improved overall well-being [125]. A
meta-analysis of 6 clinical studies involving 405 pregnant women revealed that yoga-based
interventions significantly decreased depression during pregnancy [126]. Furthermore, a
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meta-analysis that studied the effects of qigong and tai chi on cancer survivors revealed
that the intervention was significantly effective on fatigue symptoms (7 studies), sleep
quality (2 studies), and positive trends, but not statistically significantly effective on anxiety
(3 studies), stress (2 studies), depressive symptoms (4 studies), or QOL (5 studies) [127].

Therefore, we explored whether epigenetic changes occur when MBI exerts a positive
effect on psychological factors. Bishop et al. [119] performed a study that could provide an
answer to this. They conducted an MBSR on patients with post-traumatic stress disorder
(PTSD) to investigate the differences in DNA methylation in the peripheral blood samples
between responders and non-responders to the MBSR intervention. They observed that
methylation in CpG within the FKBP5 gene region containing the glucocorticoid response
element was decreased in responders and increased in non-responders, thereby suggest-
ing that effective meditation is associated with stress-related pathways at the molecular
level [119].

Accumulated brain imaging studies support the reduction of stress, depression, anxi-
ety, and PTSD through MBI. A meta-analysis of 21 neuroimaging studies (300 meditation
practitioners) revealed that 8 brain regions were consistently altered in meditators regard-
less of the meditation method. Among these regions, the orbitofrontal cortex and anterior
and mid cingulate were specifically associated with self and emotion regulation [128].
Therefore, MBI changes the brain structures and allows heightened self-monitoring and a
better emotional regulation. These structural changes of the brain caused by MBI explain
how MBI brings apparent beneficial effects on depression, anxiety, and stress.

Notably, psychological stress is a predictor for the onset of T2D and a prognostic
factor for existing T2D [28]. Because of the proven effects of MBI in reducing psychological
stress, it might also help in reducing the T2D risk induced through psychological stress.
Because stress changes the neuroendocrine (cortisol), inflammatory, and autonomic neural
pathways [28], it is of interest to ascertain how MBI, which effectively relieves stress and
controls blood glucose, alters each of these pathways.

Cortisol Secretion and Glycemic Control through Mind–Body Intervention

Cortisol affects glucose homeostasis [29]. Its circulation induces the release of glucose
and lipids [28]. Notably, evening cortisol was increased in patients with diabetes. MBI
might alter the HPA axis, thereby controlling the blood glucose through cortisol secretory
regulation, which is an output of the HPA axis. According to a meta-analysis of 42 RCTs,
which investigated the effects of yoga asanas with or without MBSR on stress-related
physiological measures in all populations, yoga practice seemed to reduce waking, as well
as afternoon and evening salivary cortisol [92]. Moreover, a meta-analysis of 23 trials that
studied the effects of yoga in patients with T2D revealed that yoga significantly reduced
the afternoon, evening, and waking cortisol levels, but did not reduce the 30 or 60 min
post-waking and mid-morning cortisol levels, or the cortisol slope [93]. According to
a meta-analysis related to qigong, the cortisol level was not significantly changed [129].
Therefore, the blood glucose level altered through MBI might be partially contributed to by
the cortisol-mediated pathway.

Autonomic Nervous System Changes and Glycemic Control through
Mind–Body Intervention

Increased blood pressure is a well-known risk factor for diabetes. A meta-analysis
of prospective studies revealed that an increase in blood pressure correlated with an
increase in the risk of diabetes [48]. Studies have revealed MBI to be effective in reducing
blood pressure. In a meta-analysis of 9 trials investigating the effects of TM on blood
pressure in adults with hypertension or cardiovascular disease, the intragroup analysis
revealed that systolic and diastolic blood pressures were significantly reduced through
the intervention [130]. In a meta-analysis that analyzed 49 studies on the effects of yoga in
middle-aged overweight adults with high blood pressure, yoga significantly reduced both
the systolic and diastolic blood pressures compared with the controls [131]. Another meta-
analysis of 13 studies on meditation and yoga revealed that these interventions reduced
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both systolic and diastolic blood pressures [132]. Therefore, decreasing blood pressure
through MBI seemed to partially contribute to reducing the risk of diabetes.

Inflammation Reduction and Glycemic Control through Mind–Body Intervention

Inflammation is a factor that increases the risk of T2D [52,54]. Several studies have
reported a reduction in inflammatory markers through MBI. According to a study that
systematically reviewed 20 RCTs on mindfulness meditation, NF-kB transcription activity
and CRP level were reduced in mindfulness meditation practitioners compared to the
general public, suggesting that inflammation was decreased [73]. A single intensive
mindfulness meditation of 8 h significantly reduced the expression of histone deacetylase
genes (HDAC2,3,9), altered the global modification of histones (H4ac; H3K4 me3), and
decreased the expression of pro-inflammatory genes (RIPK2, COX2) in peripheral blood
samples of meditation experts compared with those of the meditation-novices who joined
a leisure activity of 8 h [115], thereby indicating that an MBI-induced reduction of pro-
inflammatory gene expression occurs along with epigenetic alterations within a day in MBI
experts. In a meta-analysis of 34 RCT studies (2219 participants), which investigated the
immune outcome measures changed through MBI (tai chi, qigong, meditation, yoga), the
CRP level was significantly reduced through MBI, whereas IL-6 and TNF-alpha levels were
not significantly altered [133]. In addition, it has been reported that yoga and mindfulness
practice reduce the expression of pro-inflammatory genes in the blood cells [134,135]. In a
study comparing a yoga-performing group with a control group among women reporting
psychological distress, the yoga group showed a lower level of methylation in the TNF gene
associated with inflammation than in the control group in peripheral blood samples [120].
Notably, the decrease in methylation of the TNF-alpha gene promoter in blood mononuclear
cell DNA is associated with weight loss in obese men, as well as with the reduction
of circulating levels of baseline TNF-alpha [136]. Because inflammation is a factor that
increases the risk of T2D, a decrease in the expression of pro-inflammatory factors through
MBI could decrease inflammation, thereby decreasing the risk of T2D.

2.2.3. Delayed Epigenetic Age through Mind–Body Intervention and Its Relation to
Type 2 Diabetes

Recent studies have revealed that biological aging measurements are possible by
analyzing the methylation of CpG sites in the genome [137,138]. Deterioration of important
genome maintenance mechanisms might occur due to aging, resulting in changes in DNA
methylation over time. The results of research in this field thus far suggest that MBI
might potentially delay or reverse aging-related changes in the epigenome. Chaixs and
colleagues [116] used Horvath’s calculator [137], which calculates the biological aging
rate by measuring DNA methylation, to compare the aging rate between experienced
meditators (18 participants) and meditation-naïve individuals (20 participants) using a
cross-sectional design in peripheral blood mononuclear cell samples. It was observed that
the aging rate was significantly higher in people above 52 years of age than those below
52 years of age in the control group. However, in experienced meditators, this epigenetic
aging difference was not observed between two different chronological age groups. In
addition, the epigenetic aging rate in meditators was significantly reduced proportionally
to the number of years of meditation. This finding suggested that incorporating meditation
into daily routines might slow the epigenetic clock, giving potential health benefits in the
long run [116]. After this study, it was revealed that short meditation interventions (8 h)
performed by experienced meditators could quickly affect the methylome of genes related
to immune metabolism, inflammation, and aging [114].

A recently reported study by Mendioroz et al. [118] investigated 14 differentially
methylated regions in peripheral blood samples, present in the subtelomeric region, which
were identified in long-term meditators compared with the controls in their previous
work [117]. The telomere length of long-term meditators positively correlated with the
methylation level of the GPR31 gene but correlated inversely to the methylation level of
the SERPINB9 gene. In addition, the correlation between telomere length and age that was
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observed in the general population was no longer found in long-term meditators. Hence,
these results suggest that long-term meditation might be associated with epigenetic mecha-
nisms related to certain gene-specific DNA methylation changes in distinct subtelomeric
regions. Moreover, delays in epigenetic aging rates were demonstrated in the analysis of
epigenetic effects of tai chi, a moving meditation [121]. Approximately 66 methylation
sites of experienced tai chi performers and the general population were compared using
their saliva sample, and a significant difference was found in 6 CpG sites of 3 different
chromosomes. Methylation changes in this area relative to age were significantly slower in
the tai chi cohort compared to that of the control cohort [121].

Because this research field is relatively new, several studies have been performed
using a cross-sectional design or with a small number of people; therefore, more research
should be performed to prove the causal relationships between MBI and DNA methylation.
It is generally well-known that fasting glucose levels increase as age increases [139–141].
Therefore, the delay of aging rates by epigenetic marks of aging-related genes through
MBI [114,116,121] might partly contribute to the effect of MBI on reduction of blood glucose
(Table 1).

2.2.4. Glycemic Control through Lifestyle Changes with Mind–Body Intervention

People with high stress have unhealthier behaviors in smoking, exercising, alcohol
drinking, and weight management compared with those with low stress [142]. If the patient
with diabetes had depression, the non-adherence to a healthy behavior increased [31].
Therefore, stress and depression reduction through MBI [143–145] might affect behavior,
which may help to lower T2D risks induced through unhealthy behaviors. Notably, it has
been confirmed that adhering to an optimal behavior is effective in reaching the targeted
HbA1c [146,147].

2.3. Epigenetic Changes Induced by Non-Pharmacological Interventions in Addition to
Mind–Body Interventions and Their Effects on Diabetes

In addition to MBI, interventions with the aim of improving living environments
and behavior (e.g., education, exercise, diet, sleep) were associated with changes in DNA
methylation profiles [148,149]. Furthermore, elements of MBI have been combined with
existing cognitive and psychological interventions [150,151]. Changes were observed
in the DNA methylation profiles in response to cognitive behavioral therapy and social
support [152,153]. A meta-analysis that used 8 RCT trials comparing cognitive behavior
therapy (CBT) to non-CBT in patients with diabetes (including types 1 and 2) revealed that
CBT significantly reduced HbA1c compared with the control (non-CBT) [97]. In another
meta-analysis of 10 RCTs comparing CBT or CBT-based therapy with non-CBT in patients
with diabetes with depression (including types 1 and 2), the interventions significantly
reduced FBG in the CBT group (or CBT-based therapy) compared with non-CBT. However,
no significant differences were noted related to HbA1c between the groups [96]. In a
meta-analysis regarding the effects of psychoeducational intervention on glycemic control
and diabetes-specific emotional distress (DSD), both HbA1c (23 RCTs) and DSD (32 RCTs)
were significantly reduced through the intervention [154]. Psychotherapies also slightly
improved the HbA1c of diabetics [104,105].

Research on exercise has examined whether short-term or long-term exercise affects
DNA methylation in skeletal muscle and fat tissues [3,155,156]. Studies of exercise in
patients with diabetes have reported differences in the effectiveness depending on the
intensity of exercise. A meta-analysis of 10 RCTs using high-intensity interval training
(HIIT) for T2D revealed that HIIT significantly reduced HbA1c compared with non-exercise
or low-intensity training and was not different from moderate-intensity training [100]. In a
meta-analysis using 8 randomized trials that compared higher and lower intensity training
in patients with T2D, higher intensity training exhibited a significant reduction in HbA1c,
but no differences were noted regarding FBG compared with lower intensity training [98].
A meta-analysis of 9 trials that compared the effects of exercise and non-exercise in patients
with T2D revealed that the exercise group had a significant decrease in HbA1c than the non-
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exercise group [99]. The high intensity of exercise effectively reduced the blood glucose,
and MBI might be considered a relatively mild intensity exercise. However, MBI is likely
to help improve cardiovascular function [157,158], potentially due to its large focus on
breathing control, and might help with blood glucose management in a different way than
exercise by modulating the stress axis and properly activating the parasympathetic system
in daily life.

MBI improves health potentially through managing both mind and body to induce
relaxation and cultivate a sense of acceptance, thereby altering the stress response (Figure 1).
Exercise improves health through energy consumption, and CBT or lifestyle education
through changing perception. These different approaches have been reported to have
significant effects on diabetes management and prevention, respectively. Therefore, a
possible method can be selected according to the individual’s situation for the long-term
blood glucose management in patients with diabetes.
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Figure 1. Potential causes contributing to type 2 diabetes (red) and mind–body intervention-induced
beneficial changes including altered epigenetic modification (blue). Abbreviations: SNS, sympathetic
nervous system; T2D, type 2 diabetes; PSN, parasympathetic nervous system; ↑, increased; ↓, reduced.

3. Conclusions

T2D is a chronic condition necessitating the use of lifetime medications, with potential
side effects if the medication is less specific. Therefore, because several MBIs can signifi-
cantly contribute to blood glucose control, long-term diabetic care can incorporate MBI as
a complementary method. Notably, an effective individualized MBI protocol organized
based on glycemic control evidence might be highly beneficial in individuals with diabetes
or prediabetes. Regarding the effects of MBI on glycemic control, this current review mainly
focused on individuals with diabetes but not the prediabetic population. Long-term follow-
up investigations that explores whether MBI prevents T2D in individuals with disease risks
will provide a better understanding of diabetes prevention through MBI. Furthermore,
because the epigenetic modifications are reversible, studies and clinical guidelines should
explore how long the glucose metabolism-related positive changes induced by MBIs are
maintained and determine how often these interventions need to be performed to obtain
lifetime effects. These findings will guide the actual glycemic management in patients with
T2D as well as the general population.
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Exercise can reprogram the sperm methylome in humans [159]. Exercise and MBI
share some benefits in common. However, MBI is milder in intensity and stronger in
mental training than regular exercise. Therefore, questions like whether MBI can change
the epigenetic marks in human reproductive cells and whether these changes are inherited
remain to be answered. Even if the same exercise is performed, differences in skill of
execution in exercise seem to induce different epigenetic and transcriptional responses [155].
Thus, the MBI studies should also be designed with care as the proficiency of the subjects
may affect the results. In addition, cross-sectional studies have the disadvantage of not
being able to distinguish whether epigenetic changes have caused participants to perform
MBI or whether these epigenetic changes were induced by MBI. Research on epigenetic
changes in the field of MBI is still relatively new, and therefore more longitudinal studies
and sample numbers are required in the future to further explore all aspects accurately.

Although there are only few epigenetic studies on MBI and without enough lon-
gitudinal studies on this topic, based on the research so far, the rate and level of DNA
methylation modification seem to be affected by MBI, potentially leading to less modifica-
tion [117,119,120]. Notably, in this less methylated state, the machinery for gene expression
may be able to access the gene more easily. It is intriguing to hypothesize that this may
increase the plasticity of gene expression, providing a molecular environment for a more
flexible response to changing environments.
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