organic compounds

Acta Crystallographica Section E Structure Reports Online

ISSN 1600-5368

1,3,5-Tri-p-tolylpentane-1,5-diol

A. Thiruvalluvar,^a* R. Chithiravel,^b S. Muthusubramanian^c and R. J. Butcher^d

^aPostgraduate Research Department of Physics, Rajah Serfoji Government College (Autonomous), Thanjavur 613 005, Tamilnadu, India, ^bPostgraduate Research Department of Chemistry, Rajah Serfoji Government College (Autonomous), Thanjavur 613 005, Tamilnadu, India, ^cDepartment of Organic Chemistry, School of Chemistry, Madurai Kamaraj University, Madurai 625 021, Tamilnadu, India, and ^dDepartment of Chemistry, Howard University, 525 College Street NW, Washington, DC 20059, USA

Correspondence e-mail: thiruvalluvar.a@gmail.com

Received 3 January 2014; accepted 4 January 2014

Key indicators: single-crystal X-ray study; T = 123 K; mean σ (C–C) = 0.004 Å; R factor = 0.068; wR factor = 0.193; data-to-parameter ratio = 27.9.

In the title compound, $C_{26}H_{30}O_2$, the central benzene ring forms dihedral angles of 14.85 (15) and 28.17 (14)° with the terminal benzene rings. The dihedral angle between the terminal benzene rings is 32.14 (13)°. The crystal packing exhibits two strong intermolecular $O-H\cdots O$ hydrogen bonds, forming directed four-membered co-operative rings. A region of disordered electron density, most probably disordered ethyl acetate solvent molecules, occupying voids of *ca* 519 Å³ for an electron count of 59, was treated using the SQUEEZE routine in *PLATON* [Spek (2009). *Acta Cryst*. **D65**, 148–155]. Their formula mass and unit-cell characteristics were not taken into account during refinement. The structure was refined as an inversion twin [absolute structure parameter = -0.3 (4)].

Related literature

0122

For the procedure adopted to reduce 1,3,5-tris(*p*-tolyl)pentane-1,5-dione, see: Paul *et al.* (2012). For a less green reported synthesis of the starting diketone, 1,3,5-tris(*p*-tolyl)pentane-1,5-dione, see: Yang *et al.* (2005). For applications of related compounds, see: Sundberg & Faergemann (2008). For the crystal structures of related compounds, see: Ha & Young (2009); Barrett *et al.* (2000). For details of the use of the SQUEEZE and CAVITY routines in PLATON, see: Spek (2009). For bond-length data, see: Allen *et al.* (1987).

Z = 6

Mo $K\alpha$ radiation

 $0.98 \times 0.66 \times 0.17 \text{ mm}$

model (Clark & Reid, 1995)]

 $T_{\rm min}=0.957,\;T_{\rm max}=0.990$

35176 measured reflections

7200 independent reflections

5765 reflections with $I > 2\sigma(I)$

 $\mu = 0.06 \text{ mm}^{-1}$

T = 123 K

 $R_{\rm int} = 0.034$

CrossMark

Experimental

Crystal data $C_{26}H_{30}O_2$ $M_r = 374.50$ Trigonal, $P3_121$ a = 14.6205 (5) Å c = 20.2672 (6) Å V = 3751.9 (3) Å³

Data collection

Agilent Xcalibur Ruby Gemini diffractometer Absorption correction: analytical [CrysAlis PRO (Agilent, 2012), using a multifaceted crystal

Refinement

$R[F^2 > 2\sigma(F^2)] = 0.068$	$\Delta \rho_{\rm min} = -0.24 \ {\rm e} \ {\rm \AA}^{-3}$
$wR(F^2) = 0.193$	Absolute structure: Flack para-
S = 1.08	meter determined using 2073
7200 reflections	quotients $[(I^+)-(I^-)]/[(I^+)+(I^-)]$
258 parameters	(Parsons et al., 2013)
H-atom parameters constrained	Absolute structure parameter:
$\Delta \rho_{\rm max} = 0.32 \text{ e} \text{ \AA}^{-3}$	-0.3 (4)

Table 1Hydrogen-bond geometry (Å, °).

$D - H \cdots A$	D-H	$H \cdot \cdot \cdot A$	$D \cdots A$	$D - \mathbf{H} \cdots A$
$O1-H1A\cdots O5^{i}$	0.84	1.95	2.786 (3)	174
$O5-H5A\cdots O1^{ii}$	0.84	1.89	2.716 (3)	170
2	. 1 .	1. (!!)	4 4	1

Symmetry codes: (i) -x + 1, -x + y, $-z + \frac{1}{3}$; (ii) -x + y + 1, -x + 1, $z - \frac{1}{3}$.

Data collection: *CrysAlis PRO* (Agilent, 2012); cell refinement: *CrysAlis PRO*; data reduction: *CrysAlis PRO*; program(s) used to solve structure: *SIR2011* (Burla *et al.*, 2012); program(s) used to refine structure: *SHELXL2013* (Sheldrick, 2008); molecular graphics: *ORTEP-3 for Windows* (Farrugia, 2012) and *PLATON* (Spek, 2009); software used to prepare material for publication: *SHELXL2013* and *PLATON*.

RJB acknowledges the NSF–MRI program (grant No. CHE0619278) for funds to purchase the X-ray diffractometer.

Supporting information for this paper is available from the IUCr electronic archives (Reference: SU2686).

References

- Agilent (2012). CrysAlis PRO. Agilent Technologies, Yarnton, England.
- Allen, F. H., Kennard, O., Watson, D. G., Brammer, L., Orpen, A. G. & Taylor, R. (1987). J. Chem. Soc. Perkin Trans. 2, pp. S1–19.
- Barrett, A. G. M., Braddock, D. C., de Koning, P. D., White, A. J. P. & Williams, D. J. (2000). J. Org. Chem. 65, 375–380.
- Burla, M. C., Caliandro, R., Camalli, M., Carrozzini, B., Cascarano, G. L., Giacovazzo, C., Mallamo, M., Mazzone, A., Polidori, G. & Spagna, R. (2012). J. Appl. Cryst. 45, 357–361.

- Clark, R. C. & Reid, J. S. (1995). Acta Cryst. A51, 887-897.
- Farrugia, L. J. (2012). J. Appl. Cryst. 45, 849-854.
- Ha, J.-M. & Young, V. (2009). Acta Cryst. C65, o388-o395.
- Parsons, S., Flack, H. D. & Wagner, T. (2013). Acta Cryst. B69, 249-259.
- Paul, N., Kaladevi, S., Beneto, A. J., Muthusubramanian, S. & Bhuvanesh, N. (2012). *Tetrahedron*, 68, 6892–6901.
- Sheldrick, G. M. (2008). Acta Cryst. A64, 112-122.
- Spek, A. L. (2009). Acta Cryst. D65, 148-155.
- Sundberg, J. J. & Faergemann, J. (2008). Expert Opin. Investig. Drugs, 17, 601-610.
- Yang, J.-X., Tao, X.-T., Yuan, C. X., Yan, Y. X., Wang, L., Liu, Z., Ren, Y. & Jiang, M. H. (2005). J. Am. Chem. Soc. 127, 3278–3279.

supplementary materials

Acta Cryst. (2014). E70, o122-o123 [doi:10.1107/S160053681400018X]

1,3,5-Tri-p-tolylpentane-1,5-diol

A. Thiruvalluvar, R. Chithiravel, S. Muthusubramanian and R. J. Butcher

1. Comment

The synthesis of the title compound has been achieved by the sodium borohydride reduction of the corresponding 1,5diketone by a method reported recently (Paul *et al.* 2012). The starting diketone, 1,3,5-tris-(*p*-tolyl)pentane-1,5-dione, was prepared by a greener route slightly deviating from the reported one (Yang *et al.* 2005). Though, the separation of the diastereomeric mixture posed problems, it was possible to get one diastereomer in pure form. This acyclic pentane-1,5diol can be employed for the generation of heterocyclic compounds like tetrahydropyran. Generally, pentane-1,5-diol derivatives are found to be more valuable than several other diols in connection with drug delivery-enhancing potency, pharmaceutical and cosmetic properties, antimicrobial spectrum and toxicity (Sundberg & Faergemann, 2008). The related compounds whose structures have been solved by X-ray diffraction analysis are 2,2,3,3,4,4-hexafluoropentane-1,5-diol (Ha *et al.* 2009) and 3-methylenepentane-1,5-diols (Barrett *et al.* 2000).

In the title molecule, Fig. 1, the pentane-1,5-diol unit (C1—C5/O1/O5) forms a regular zigzag pattern with torsion angles C1—C2—C3—C4 = 178.8 (2)° and C2—C3—C4—C5 = -177.4 (2)°, with the two diol groups pointing in opposite directions. The central benzene ring (C31-C36) forms dihedral angles of 14.85 (15) and 28.17 (14)° with the two terminal benzene rings (C11-C16 and C51-C56, respectively). The dihedral angle between the two terminal benzene rings is 32.14 (13)°. The C—C, C_{ar} — C_{ar} and C—O bond lengths are within their normal ranges (Allen *et al.*, 1987).

In the crystal, there are two strong O-H···O hydrogen bonds (Table 1), forming directed 4-membered cooperative O— H···O—H···O—H rings (Fig. 2). There are large void channels in the crystal structure (Fig. 3) containing residual electron density with high disorder.

2. Experimental

To a stirred solution of 1,3,5-tris(*p*-tolyl)pentane-1,5-dione (0.4 g, 1.0 mmol) in methanol, sodium borohydride (0.08 g, 2.2 mmol) was added in portions in ambient conditions. After the completion of the reaction, the mixture was poured onto crushed ice and filtered off. The organic layer was dried over anhydrous sodium sulfate. The diastereomeric mixtures were separated by column chromatography using a mixture of petroleum ether and ethyl acetate (80:20) as eluent. The isolated compound was recrystallized in ethyl acetate to obtain colourless plate-like crystal of the title compound in good yield [0.344 g; 86%].

3. Refinement

All H-atoms were positioned geometrically and allowed to ride on their parent atoms: O-H = 0.84 Å, C—H = 0.95, 0.99, 1.00 and 0.98 Å for CH(aromatic), CH₂, CH and CH₃ H atoms, respectively, with $U_{iso}(H) = 1.5U_{eq}(C)$ -methyl and O) and = $1.2U_{eq}(C)$ for other H atoms. The disordered solvent molecules occupy ca. 14.3% of the unit-cell volume. This region of disordered electron density, probably disordered ethyl acetate solvent molecules, was treated with the SQUEEZE routine in *PLATON* (Spek, 2009), and the solvent-free model was employed for the final refinement.

Computing details

Data collection: *CrysAlis PRO* (Agilent, 2012); cell refinement: *CrysAlis PRO* (Agilent, 2012); data reduction: *CrysAlis PRO* (Agilent, 2012); program(s) used to solve structure: *SIR2011* (Burla *et al.*, 2012); program(s) used to refine structure: *SHELXL2013* (Sheldrick, 2008); molecular graphics: *ORTEP-3 for Windows* (Farrugia, 2012) and *PLATON* (Spek, 2009); software used to prepare material for publication: *SHELXL2013* (Sheldrick, 2008) and *PLATON* (Spek, 2009).

Figure 1

The molecular structure of the title molecule, with atom labelling. Displacement ellipsoids are drawn at the 30% probability level.

Figure 2

The crystal packing of the title compound, viewed along the *a* axis. H atoms not involved in hydrogen bonding have been omitted for clarity.

Figure 3

A CavityPlot of the title compound, drawn using the *CAVITY* routine in *PLATON* (Spek, 2009), viewed along the *b* axis. VOIDS in the structure are located and represented by green spheres with radii equal to the contact radius to the nearest van der Waals surface.

1,3,5-Tri-p-tolylpentane-1,5-diol

Crystal data

 $C_{26}H_{30}O_2$ $M_r = 374.50$ Trigonal, $P3_121$ Hall symbol: P 31 2" a = 14.6205 (5) Å c = 20.2672 (6) Å $V = 3751.9 (3) \text{ Å}^3$ Z = 6F(000) = 1212

Data collection

Agilent Xcalibur Ruby Gemini diffractometer Radiation source: Enhance (Mo) X-ray Source Graphite monochromator Detector resolution: 10.5081 pixels mm⁻¹ ω scans Absorption correction: analytical [*CrysAlis PRO* (Agilent, 2012), using a multifaceted crystal model (Clark & Reid, 1995)] $D_x = 0.994 \text{ Mg m}^{-3}$ Melting point: 373(2) K Mo $K\alpha$ radiation, $\lambda = 0.71073 \text{ Å}$ Cell parameters from 10976 reflections $\theta = 3.2-30.9^{\circ}$ $\mu = 0.06 \text{ mm}^{-1}$ T = 123 KPlate, colourless $0.98 \times 0.66 \times 0.17 \text{ mm}$

 $T_{\min} = 0.957, T_{\max} = 0.990$ 35176 measured reflections 7200 independent reflections 5765 reflections with $I > 2\sigma(I)$ $R_{\text{int}} = 0.034$ $\theta_{\text{max}} = 30.9^{\circ}, \theta_{\text{min}} = 3.2^{\circ}$ $h = -20 \rightarrow 18$ $k = -13 \rightarrow 19$ $l = -28 \rightarrow 26$ Refinement

Refinement on F^2	Hydrogen site location: inferred from
Least-squares matrix: full	neighbouring sites
$R[F^2 > 2\sigma(F^2)] = 0.068$	H-atom parameters constrained
$wR(F^2) = 0.193$	$w = 1/[\sigma^2(F_o^2) + (0.1162P)^2 + 0.2294P]$
S = 1.08	where $P = (F_o^2 + 2F_c^2)/3$
7200 reflections	$(\Delta/\sigma)_{\rm max} < 0.001$
258 parameters	$\Delta ho_{ m max} = 0.32 \ { m e} \ { m \AA}^{-3}$
0 restraints	$\Delta ho_{ m min} = -0.24 \ m e \ m A^{-3}$
Primary atom site location: structure-invariant direct methods	Absolute structure: Flack parameter determined using 2073 quotients $[(I^+)-(I^-)]/[(I^+)+(I^-)]$
Secondary atom site location: difference Fourier	(Parsons <i>et al.</i> , 2013)
map	Absolute structure parameter: -0.3 (4)

Special details

Geometry. Bond distances, angles *etc*. have been calculated using the rounded fractional coordinates. All su's are estimated from the variances of the (full) variance-covariance matrix. The cell e.s.d.'s are taken into account in the estimation of distances, angles and torsion angles

Fractional atomic coordinates and isotropic or equivalent isotropic displacement parameters (\mathring{A}^2)

	x	У	Ζ	$U_{ m iso}$ */ $U_{ m eq}$
01	0.55511 (15)	0.01657 (13)	0.24921 (8)	0.0403 (5)
05	0.53998 (13)	0.37108 (12)	0.01023 (8)	0.0342 (4)
C1	0.5100 (2)	0.00501 (17)	0.18436 (10)	0.0318 (6)
C2	0.54021 (19)	0.11650 (16)	0.16162 (10)	0.0317 (6)
C3	0.49968 (18)	0.12147 (16)	0.09253 (11)	0.0300 (5)
C4	0.53487 (19)	0.23812 (17)	0.07835 (11)	0.0319 (6)
C5	0.49703 (18)	0.25811 (17)	0.01230 (10)	0.0302 (5)
C11	0.5478 (2)	-0.04987 (17)	0.13833 (11)	0.0339 (6)
C12	0.6544 (2)	-0.0129 (2)	0.12939 (15)	0.0483 (8)
C13	0.6873 (3)	-0.0652 (3)	0.08777 (17)	0.0600 (10)
C14	0.6155 (3)	-0.1550 (2)	0.05386 (15)	0.0557 (8)
C15	0.5101 (3)	-0.1911 (2)	0.06246 (14)	0.0498 (8)
C16	0.4758 (2)	-0.13936 (19)	0.10424 (12)	0.0404 (7)
C17	0.6518 (4)	-0.2152 (3)	0.0109 (2)	0.0859 (15)
C31	0.38070 (19)	0.04976 (17)	0.08632 (11)	0.0322 (6)
C32	0.3383 (2)	-0.02456 (19)	0.03540 (12)	0.0397 (7)
C33	0.2302 (3)	-0.0923 (2)	0.03095 (16)	0.0539 (9)
C34	0.1600 (2)	-0.0889 (3)	0.07530 (16)	0.0571 (9)
C35	0.2037 (3)	-0.0131 (3)	0.12548 (17)	0.0622 (10)
C36	0.3115 (2)	0.0543 (2)	0.13062 (14)	0.0481 (8)
C37	0.0412 (3)	-0.1620 (4)	0.0702 (2)	0.0889 (16)
C51	0.53006 (17)	0.22032 (16)	-0.04816 (10)	0.0292 (5)
C52	0.6275 (2)	0.2274 (2)	-0.05428 (13)	0.0433 (7)
C53	0.6561 (2)	0.1949 (2)	-0.11143 (15)	0.0492 (8)
C54	0.5862 (3)	0.1539 (2)	-0.16445 (13)	0.0468 (8)
C55	0.4884 (3)	0.1454 (2)	-0.15807 (12)	0.0451 (8)
C56	0.46012 (19)	0.17721 (18)	-0.10069 (12)	0.0354 (6)
C57	0.6178 (3)	0.1197 (3)	-0.22690 (16)	0.0670 (11)
H1	0.43133	-0.03813	0.18794	0.0382*

H1A0.52364-0.041490.269180.0605*H2A0.618150.160840.161950.0380*H2B0.512020.147170.193750.0380*H30.534680.097830.059740.0360*H4A0.508460.264750.114240.0382*H4B0.612990.279570.079380.0383*H50.418210.222840.013130.0363*H120.704970.048790.151980.0580*H130.76073-0.039200.082200.0720*H150.45977-0.252380.039490.0598*H160.40227-0.165460.109550.0485*H17A0.59274-0.26614-0.016240.1289*H17B0.67692-0.252820.038490.1289*H17C0.70936-0.16569-0.017750.1289*H330.20335-0.14266-0.003760.0647*H350.15810-0.028670.003640.0476*H330.20335-0.14266-0.003760.0647*H360.33830.104730.165310.557*H37A0.01162-0.132000.039370.1333*H37B0.00906-0.169740.113810.1333*H37C0.2635-0.231370.054240.1333*H550.439480.10734-0.193500.0542*H560.391730.16933-0.097320.0425*H57A0.660910.16933-0.22448 </th <th></th> <th></th> <th></th> <th></th> <th></th>					
H2A 0.61815 0.16084 0.16195 0.0380* H2B 0.51202 0.14717 0.19375 0.0380* H3 0.53468 0.09783 0.05974 0.0382* H4A 0.50846 0.26475 0.11424 0.0382* H4B 0.61299 0.27957 0.07938 0.0363* H5 0.41821 0.22284 0.01313 0.0363* H12 0.70497 0.04879 0.15198 0.0580* H13 0.76073 -0.03920 0.08220 0.0720* H16 0.40227 -0.16546 0.10955 0.485* H17A 0.59274 -0.26614 -0.01624 0.1289* H17C 0.70936 -0.16569 -0.01775 0.1289* H33 0.20335 -0.14266 -0.00376 0.0647* H33 0.20335 -0.14266 -0.00376 0.0647* H35 0.15810 -0.00787 0.15675 0.0745* H36 0.33833 0.10473	H1A	0.52364	-0.04149	0.26918	0.0605*
H2B 0.51202 0.14717 0.19375 0.0380* H3 0.53468 0.09783 0.05974 0.0360* H4A 0.50846 0.26475 0.11424 0.0382* H4B 0.61299 0.27957 0.07938 0.0363* H5 0.41821 0.22284 0.01313 0.0363* H5A 0.51238 0.38632 -0.02110 0.0513* H12 0.70497 0.04879 0.15198 0.0580* H13 0.76073 -0.03920 0.08220 0.0720* H15 0.45977 -0.25238 0.03849 0.1289* H16 0.40227 -0.16546 0.10955 0.0485* H17A 0.59274 -0.26614 -0.01624 0.1289* H17B 0.67692 -0.25282 0.03889 0.1289* H33 0.20335 -0.14266 -0.00376 0.0647* H33 0.20335 -0.14266 -0.00376 0.0647* H35 0.15810 -0.0787 0.15675 0.0745* H36 0.33833 0.10473	H2A	0.61815	0.16084	0.16195	0.0380*
H3 0.53468 0.09783 0.05974 0.0360* H4A 0.50846 0.26475 0.11424 0.0382* H4B 0.61299 0.27957 0.07938 0.0363* H5 0.41821 0.22284 0.01313 0.0363* H5A 0.51238 0.38632 -0.02110 0.0513* H12 0.70497 0.04879 0.15198 0.0580* H13 0.76073 -0.03920 0.08220 0.0720* H15 0.45977 -0.25238 0.03949 0.0588* H17A 0.59274 -0.26614 -0.01624 0.1289* H17B 0.67692 -0.25282 0.03889 0.1289* H17C 0.70936 -0.16569 -0.01775 0.1289* H33 0.20335 -0.14266 -0.00376 0.0647* H35 0.15810 -0.00787 0.15675 0.0745* H36 0.33833 0.10473 0.16531 0.0577* H37A 0.0162 -0.13200 0.03937 0.1333* H37B 0.00906 -0.16974<	H2B	0.51202	0.14717	0.19375	0.0380*
H4A0.508460.264750.114240.0382*H4B0.612990.279570.079380.0382*H50.418210.222840.013130.0363*H5A0.512380.38632-0.021100.0513*H120.704970.048790.151980.0580*H130.76073-0.039200.082200.0720*H150.45977-0.252380.039490.0598*H160.40227-0.165460.109550.0485*H17A0.59274-0.26614-0.016240.1289*H17B0.67692-0.252820.038890.1289*H17C0.70936-0.16569-0.017750.1289*H330.20335-0.14266-0.003760.0647*H350.15810-0.007870.156750.0745*H360.338330.104730.165310.0577*H37A0.01162-0.132000.039370.1333*H37B0.00906-0.169740.113810.1333*H37B0.0906-0.169740.113810.1333*H520.676160.25504-0.014680.0519*H530.723680.2062-0.114310.0590*H550.439480.11734-0.193500.0542*H560.391730.16933-0.027320.0425*H57A0.692710.14053-0.224480.1001*H57B0.66090.15363-0.231480.1001*	H3	0.53468	0.09783	0.05974	0.0360*
H4B0.612990.279570.079380.0382*H50.418210.222840.013130.0363*H5A0.512380.38632-0.021100.0513*H120.704970.048790.151980.0580*H130.76073-0.039200.082200.0720*H150.45977-0.252380.039490.0598*H160.40227-0.165460.109550.0485*H17A0.59274-0.26614-0.016240.1289*H17B0.67692-0.252820.038890.1289*H17C0.70936-0.16569-0.017750.1289*H320.38386-0.028670.003640.0476*H330.20335-0.14266-0.003760.0647*H350.15810-0.007870.156750.0745*H37A0.01162-0.13200.039370.1333*H37B0.0006-0.169740.113810.1333*H37C0.02635-0.231370.054240.1333*H520.676160.25504-0.018680.0519*H530.723680.20062-0.114310.0590*H540.391730.16933-0.097320.0425*H57A0.692710.14053-0.224480.1001*H57B0.606090.15363-0.265110.1001*H57C0.575110.04281-0.231480.1001*	H4A	0.50846	0.26475	0.11424	0.0382*
H50.418210.222840.013130.0363*H5A0.512380.38632-0.021100.0513*H120.704970.048790.151980.0580*H130.76073-0.039200.082200.0720*H150.45977-0.252380.039490.0598*H160.40227-0.165460.109550.0485*H17A0.59274-0.26614-0.016240.1289*H17B0.67692-0.252820.038890.1289*H17C0.70936-0.16569-0.017750.1289*H320.38386-0.028670.003640.0476*H330.20335-0.14266-0.003760.0647*H350.15810-0.007870.156750.0745*H37A0.01162-0.132000.039370.1333*H37B0.00906-0.169740.113810.1333*H37C0.2635-0.231370.054240.1333*H520.676160.25504-0.018680.0519*H530.723680.20062-0.114310.0590*H540.391730.16933-0.097320.0425*H57A0.692710.14053-0.224480.1001*H57B0.606090.15363-0.265110.1001*H57C0.575110.04281-0.231480.1001*	H4B	0.61299	0.27957	0.07938	0.0382*
H5A0.512380.38632-0.021100.0513*H120.704970.048790.151980.0580*H130.76073-0.039200.082200.0720*H150.45977-0.252380.039490.0598*H160.40227-0.165460.109550.0485*H17A0.59274-0.26614-0.016240.1289*H17B0.67692-0.252820.038890.1289*H17C0.70936-0.16569-0.017750.1289*H320.38386-0.028670.003640.0476*H330.20335-0.14266-0.003760.0647*H350.15810-0.007870.156750.0745*H360.338330.104730.165310.577*H37A0.01162-0.132000.039370.1333*H37B0.00906-0.169740.113810.1333*H37B0.00906-0.251370.054240.1333*H520.676160.25504-0.018680.0519*H530.723680.20062-0.114310.0590*H550.439480.11734-0.193500.0542*H560.391730.16933-0.027320.0425*H57A0.692710.14053-0.224480.1001*H57B0.606090.15363-0.265110.1001*H57C0.575110.04281-0.231480.1001*	Н5	0.41821	0.22284	0.01313	0.0363*
H120.704970.048790.151980.0580*H130.76073-0.039200.082200.0720*H150.45977-0.252380.039490.0598*H160.40227-0.165460.109550.0485*H17A0.59274-0.26614-0.016240.1289*H17B0.67692-0.252820.038890.1289*H17C0.70936-0.16569-0.017750.1289*H320.38386-0.028670.003640.0476*H330.20335-0.14266-0.003760.0647*H350.15810-0.007870.156750.0745*H360.338330.104730.165310.0577*H37A0.01162-0.132000.039370.1333*H37B0.00906-0.169740.113810.1333*H520.676160.25504-0.018680.0519*H530.723680.20062-0.114310.0590*H550.439480.11734-0.193500.0542*H560.391730.16933-0.097320.0425*H57A0.692710.14053-0.24480.1001*H57B0.606090.15363-0.265110.1001*H57C0.575110.04281-0.231480.1001*	H5A	0.51238	0.38632	-0.02110	0.0513*
H130.76073-0.039200.082200.0720*H150.45977-0.252380.039490.0598*H160.40227-0.165460.109550.0485*H17A0.59274-0.26614-0.016240.1289*H17B0.67692-0.252820.038890.1289*H17C0.70936-0.16569-0.017750.1289*H320.38386-0.028670.003640.0476*H330.20335-0.14266-0.003760.0647*H350.15810-0.007870.156750.0745*H360.338330.104730.165310.0577*H37A0.01162-0.132000.039370.1333*H37B0.00906-0.169740.113810.1333*H37C0.02635-0.231370.054240.1333*H520.676160.25504-0.018680.0519*H530.723680.20062-0.114310.0590*H550.439480.11734-0.193500.0542*H560.391730.16933-0.097320.0425*H57A0.692710.14053-0.224480.1001*H57B0.606090.15363-0.265110.1001*H57C0.575110.04281-0.231480.1001*	H12	0.70497	0.04879	0.15198	0.0580*
H150.45977-0.252380.039490.0598*H160.40227-0.165460.109550.0485*H17A0.59274-0.26614-0.016240.1289*H17B0.67692-0.252820.038890.1289*H17C0.70936-0.16569-0.017750.1289*H320.38386-0.028670.003640.0476*H330.20335-0.14266-0.003760.0647*H350.15810-0.007870.156750.0745*H360.338330.104730.165310.0577*H37A0.01162-0.132000.039370.1333*H37B0.00906-0.169740.113810.1333*H37C0.02635-0.231370.054240.1333*H520.676160.25504-0.018680.0519*H530.723680.20062-0.114310.0590*H550.439480.11734-0.193500.0542*H560.391730.16933-0.097320.0425*H57A0.692710.14053-0.224480.1001*H57B0.606090.15363-0.265110.1001*H57C0.575110.04281-0.231480.1001*	H13	0.76073	-0.03920	0.08220	0.0720*
H160.40227-0.165460.109550.0485*H17A0.59274-0.26614-0.016240.1289*H17B0.67692-0.252820.038890.1289*H17C0.70936-0.16569-0.017750.1289*H320.38386-0.028670.003640.0476*H330.20335-0.14266-0.003760.0647*H350.15810-0.007870.156750.0745*H360.338330.104730.165310.0577*H37A0.01162-0.132000.039370.1333*H37B0.00906-0.169740.113810.1333*H37C0.02635-0.231370.054240.1333*H520.676160.25504-0.018680.0519*H530.723680.20062-0.114310.0590*H560.391730.16933-0.097320.0425*H57A0.692710.14053-0.224480.1001*H57B0.606090.15363-0.231480.1001*	H15	0.45977	-0.25238	0.03949	0.0598*
H17A0.59274-0.26614-0.016240.1289*H17B0.67692-0.252820.038890.1289*H17C0.70936-0.16569-0.017750.1289*H320.38386-0.028670.003640.0476*H330.20335-0.14266-0.003760.0647*H350.15810-0.007870.156750.0745*H360.338330.104730.165310.0577*H37A0.01162-0.132000.039370.1333*H37B0.00906-0.169740.113810.1333*H37C0.02635-0.231370.054240.1333*H520.676160.25504-0.018680.0519*H530.723680.20062-0.114310.0590*H560.391730.16933-0.097320.0425*H57A0.692710.14053-0.224480.1001*H57B0.606090.15363-0.265110.1001*H57C0.575110.04281-0.231480.1001*	H16	0.40227	-0.16546	0.10955	0.0485*
H17B0.67692-0.252820.038890.1289*H17C0.70936-0.16569-0.017750.1289*H320.38386-0.028670.003640.0476*H330.20335-0.14266-0.003760.0647*H350.15810-0.007870.156750.0745*H360.338330.104730.165310.0577*H37A0.01162-0.132000.039370.1333*H37B0.00906-0.169740.113810.1333*H37C0.02635-0.231370.054240.1333*H520.676160.25504-0.018680.0519*H530.723680.20062-0.114310.0590*H550.439480.11734-0.193500.0542*H560.391730.16933-0.097320.0425*H57A0.692710.14053-0.224480.1001*H57B0.606090.15363-0.265110.1001*H57C0.575110.04281-0.231480.1001*	H17A	0.59274	-0.26614	-0.01624	0.1289*
H17C0.70936-0.16569-0.017750.1289*H320.38386-0.028670.003640.0476*H330.20335-0.14266-0.003760.0647*H350.15810-0.007870.156750.0745*H360.338330.104730.165310.0577*H37A0.01162-0.132000.039370.1333*H37B0.00906-0.169740.113810.1333*H37C0.02635-0.231370.054240.1333*H520.676160.25504-0.018680.0519*H530.723680.20062-0.114310.0590*H550.439480.11734-0.193500.0542*H560.391730.16933-0.224480.1001*H57B0.606090.15363-0.265110.1001*H57C0.575110.04281-0.231480.1001*	H17B	0.67692	-0.25282	0.03889	0.1289*
H320.38386-0.028670.003640.0476*H330.20335-0.14266-0.003760.0647*H350.15810-0.007870.156750.0745*H360.338330.104730.165310.0577*H37A0.01162-0.132000.039370.1333*H37B0.00906-0.169740.113810.1333*H37C0.02635-0.231370.054240.1333*H520.676160.25504-0.018680.0519*H530.723680.20062-0.114310.0590*H550.439480.11734-0.193500.0542*H560.391730.16933-0.097320.0425*H57A0.692710.14053-0.224480.1001*H57B0.606090.15363-0.265110.1001*H57C0.575110.04281-0.231480.1001*	H17C	0.70936	-0.16569	-0.01775	0.1289*
H330.20335-0.14266-0.003760.0647*H350.15810-0.007870.156750.0745*H360.338330.104730.165310.0577*H37A0.01162-0.132000.039370.1333*H37B0.00906-0.169740.113810.1333*H37C0.02635-0.231370.054240.1333*H520.676160.25504-0.018680.0519*H530.723680.20062-0.114310.0590*H560.391730.16933-0.097320.0425*H57A0.692710.14053-0.224480.1001*H57B0.606090.15363-0.265110.1001*H57C0.575110.04281-0.231480.1001*	H32	0.38386	-0.02867	0.00364	0.0476*
H350.15810-0.007870.156750.0745*H360.338330.104730.165310.0577*H37A0.01162-0.132000.039370.1333*H37B0.00906-0.169740.113810.1333*H37C0.02635-0.231370.054240.1333*H520.676160.25504-0.018680.0519*H530.723680.20062-0.114310.0590*H550.439480.11734-0.193500.0542*H560.391730.16933-0.097320.0425*H57A0.692710.14053-0.224480.1001*H57B0.606090.15363-0.265110.1001*H57C0.575110.04281-0.231480.1001*	H33	0.20335	-0.14266	-0.00376	0.0647*
H360.338330.104730.165310.0577*H37A0.01162-0.132000.039370.1333*H37B0.00906-0.169740.113810.1333*H37C0.02635-0.231370.054240.1333*H520.676160.25504-0.018680.0519*H530.723680.20062-0.114310.0590*H550.439480.11734-0.193500.0542*H560.391730.16933-0.097320.0425*H57A0.692710.14053-0.224480.1001*H57B0.606090.15363-0.265110.1001*H57C0.575110.04281-0.231480.1001*	H35	0.15810	-0.00787	0.15675	0.0745*
H37A0.01162-0.132000.039370.1333*H37B0.00906-0.169740.113810.1333*H37C0.02635-0.231370.054240.1333*H520.676160.25504-0.018680.0519*H530.723680.20062-0.114310.0590*H550.439480.11734-0.193500.0542*H560.391730.16933-0.097320.0425*H57A0.692710.14053-0.224480.1001*H57B0.606090.15363-0.265110.1001*H57C0.575110.04281-0.231480.1001*	H36	0.33833	0.10473	0.16531	0.0577*
H37B0.00906-0.169740.113810.1333*H37C0.02635-0.231370.054240.1333*H520.676160.25504-0.018680.0519*H530.723680.20062-0.114310.0590*H550.439480.11734-0.193500.0542*H560.391730.16933-0.097320.0425*H57A0.692710.14053-0.224480.1001*H57B0.606090.15363-0.265110.1001*H57C0.575110.04281-0.231480.1001*	H37A	0.01162	-0.13200	0.03937	0.1333*
H37C0.02635-0.231370.054240.1333*H520.676160.25504-0.018680.0519*H530.723680.20062-0.114310.0590*H550.439480.11734-0.193500.0542*H560.391730.16933-0.097320.0425*H57A0.692710.14053-0.224480.1001*H57B0.606090.15363-0.265110.1001*H57C0.575110.04281-0.231480.1001*	H37B	0.00906	-0.16974	0.11381	0.1333*
H520.676160.25504-0.018680.0519*H530.723680.20062-0.114310.0590*H550.439480.11734-0.193500.0542*H560.391730.16933-0.097320.0425*H57A0.692710.14053-0.224480.1001*H57B0.606090.15363-0.265110.1001*H57C0.575110.04281-0.231480.1001*	H37C	0.02635	-0.23137	0.05424	0.1333*
H530.723680.20062-0.114310.0590*H550.439480.11734-0.193500.0542*H560.391730.16933-0.097320.0425*H57A0.692710.14053-0.224480.1001*H57B0.606090.15363-0.265110.1001*H57C0.575110.04281-0.231480.1001*	H52	0.67616	0.25504	-0.01868	0.0519*
H550.439480.11734-0.193500.0542*H560.391730.16933-0.097320.0425*H57A0.692710.14053-0.224480.1001*H57B0.606090.15363-0.265110.1001*H57C0.575110.04281-0.231480.1001*	H53	0.72368	0.20062	-0.11431	0.0590*
H560.391730.16933-0.097320.0425*H57A0.692710.14053-0.224480.1001*H57B0.606090.15363-0.265110.1001*H57C0.575110.04281-0.231480.1001*	H55	0.43948	0.11734	-0.19350	0.0542*
H57A0.692710.14053-0.224480.1001*H57B0.606090.15363-0.265110.1001*H57C0.575110.04281-0.231480.1001*	H56	0.39173	0.16933	-0.09732	0.0425*
H57B0.606090.15363-0.265110.1001*H57C0.575110.04281-0.231480.1001*	H57A	0.69271	0.14053	-0.22448	0.1001*
H57C 0.57511 0.04281 -0.23148 0.1001*	H57B	0.60609	0.15363	-0.26511	0.1001*
	H57C	0.57511	0.04281	-0.23148	0.1001*

Atomic displacement parameters $(Å^2)$

	U^{11}	U^{22}	U^{33}	U^{12}	U^{13}	U^{23}
01	0.0659 (10)	0.0270 (7)	0.0187 (7)	0.0162 (7)	-0.0097 (7)	0.0014 (6)
05	0.0541 (8)	0.0381 (7)	0.0228 (7)	0.0324 (5)	0.0016 (6)	0.0036 (6)
C1	0.0456 (11)	0.0261 (9)	0.0183 (9)	0.0138 (8)	-0.0049 (8)	0.0008 (8)
C2	0.0488 (11)	0.0275 (9)	0.0201 (9)	0.0200 (7)	-0.0071 (8)	-0.0015 (8)
C3	0.0446 (10)	0.0301 (9)	0.0172 (9)	0.0201 (7)	-0.0031 (8)	-0.0016 (7)
C4	0.0493 (11)	0.0324 (9)	0.0173 (9)	0.0229 (8)	-0.0018 (8)	0.0010 (8)
C5	0.0408 (10)	0.0349 (9)	0.0200 (9)	0.0227 (7)	0.0022 (8)	0.0040 (8)
C11	0.0524 (12)	0.0316 (9)	0.0208 (10)	0.0233 (8)	-0.0057 (9)	0.0030 (8)
C12	0.0599 (14)	0.0438 (12)	0.0459 (15)	0.0294 (10)	-0.0116 (12)	0.0005 (11)
C13	0.0758 (17)	0.0673 (15)	0.0563 (19)	0.0503 (12)	0.0013 (15)	0.0070 (14)
C14	0.1000 (17)	0.0589 (12)	0.0368 (14)	0.0612 (10)	0.0034 (13)	0.0063 (11)
C15	0.0887 (17)	0.0421 (11)	0.0316 (12)	0.0424 (10)	-0.0113 (12)	-0.0054 (10)
C16	0.0628 (13)	0.0343 (10)	0.0281 (11)	0.0272 (9)	-0.0091 (10)	-0.0010 (9)
C17	0.135 (3)	0.0825 (18)	0.079 (3)	0.0834 (15)	0.012 (2)	-0.0041 (19)
C31	0.0447 (10)	0.0322 (9)	0.0206 (10)	0.0198 (8)	-0.0021 (8)	0.0023 (8)
C32	0.0535 (13)	0.0381 (10)	0.0250 (11)	0.0210 (9)	-0.0023 (10)	-0.0008 (9)
C33	0.0650 (17)	0.0467 (14)	0.0375 (15)	0.0186 (12)	-0.0141 (13)	-0.0031 (11)

supplementary materials

C34	0.0486 (15)	0.0633 (18)	0.0431 (15)	0.0157 (13)	-0.0014 (12)	0.0070 (14)
C35	0.0505 (15)	0.081 (2)	0.0465 (17)	0.0265 (14)	0.0079 (13)	0.0019 (16)
C36	0.0528 (14)	0.0574 (14)	0.0322 (13)	0.0262 (11)	-0.0015 (11)	-0.0078 (12)
C37	0.057 (2)	0.095 (3)	0.076 (3)	0.009 (2)	-0.0101 (19)	0.001 (2)
C51	0.0420 (10)	0.0292 (8)	0.0196 (9)	0.0201 (7)	0.0035 (8)	0.0036 (7)
C52	0.0462 (12)	0.0551 (13)	0.0317 (12)	0.0277 (10)	-0.0022 (10)	-0.0068 (11)
C53	0.0489 (12)	0.0564 (14)	0.0455 (15)	0.0287 (10)	0.0068 (11)	-0.0089 (12)
C54	0.0685 (15)	0.0443 (12)	0.0270 (12)	0.0278 (11)	0.0097 (11)	-0.0023 (10)
C55	0.0658 (16)	0.0429 (12)	0.0218 (11)	0.0235 (11)	-0.0053 (11)	-0.0040 (9)
C56	0.0425 (11)	0.0367 (10)	0.0281 (11)	0.0206 (8)	-0.0003 (9)	0.0012 (9)
C57	0.090 (2)	0.0742 (19)	0.0391 (16)	0.0428 (15)	0.0168 (15)	-0.0107 (14)

Geometric parameters (Å, °)

01—C1	1.442 (3)	C54—C57	1.515 (5)
O5—C5	1.445 (3)	C55—C56	1.390 (4)
O1—H1A	0.8400	C1—H1	1.0000
O5—H5A	0.8400	C2—H2A	0.9900
C1-C11	1.504 (4)	C2—H2B	0.9900
C1—C2	1.531 (3)	С3—Н3	1.0000
C2—C3	1.536 (3)	C4—H4A	0.9900
C3—C4	1.542 (3)	C4—H4B	0.9900
C3—C31	1.522 (4)	С5—Н5	1.0000
C4—C5	1.531 (3)	C12—H12	0.9500
C5—C51	1.519 (3)	C13—H13	0.9500
C11—C16	1.386 (3)	C15—H15	0.9500
C11—C12	1.383 (4)	C16—H16	0.9500
C12—C13	1.377 (5)	C17—H17A	0.9800
C13—C14	1.386 (5)	C17—H17B	0.9800
C14—C17	1.511 (6)	C17—H17C	0.9800
C14—C15	1.368 (6)	С32—Н32	0.9500
C15—C16	1.386 (5)	С33—Н33	0.9500
C31—C32	1.399 (3)	С35—Н35	0.9500
C31—C36	1.379 (4)	С36—Н36	0.9500
С32—С33	1.386 (5)	С37—Н37А	0.9800
С33—С34	1.384 (5)	С37—Н37В	0.9800
C34—C35	1.401 (5)	С37—Н37С	0.9800
C34—C37	1.521 (6)	С52—Н52	0.9500
C35—C36	1.383 (5)	С53—Н53	0.9500
C51—C56	1.390 (3)	С55—Н55	0.9500
C51—C52	1.381 (4)	С56—Н56	0.9500
С52—С53	1.393 (4)	С57—Н57А	0.9800
С53—С54	1.395 (4)	С57—Н57В	0.9800
C54—C55	1.378 (7)	С57—Н57С	0.9800
C1—O1—H1A	109.00	С4—С3—Н3	108.00
С5—О5—Н5А	109.00	С31—С3—Н3	108.00
C2-C1-C11	113.19 (19)	C3—C4—H4A	109.00
O1—C1—C2	106.14 (17)	C3—C4—H4B	109.00
01—C1—C11	111.1 (2)	C5—C4—H4A	109.00

C1—C2—C3	114.33 (17)	C5—C4—H4B	109.00
C2—C3—C31	112.19 (19)	H4A—C4—H4B	108.00
C4—C3—C31	112.4 (2)	O5—C5—H5	109.00
C2—C3—C4	107.39 (17)	C4—C5—H5	109.00
C3—C4—C5	114.92 (18)	С51—С5—Н5	109.00
O5—C5—C51	110.92 (17)	C11—C12—H12	120.00
O5—C5—C4	104.57 (17)	C13—C12—H12	120.00
C4—C5—C51	115.1 (2)	C12—C13—H13	119.00
C12—C11—C16	118.7 (3)	C14—C13—H13	119.00
C1—C11—C12	121.0 (2)	C14—C15—H15	120.00
C1—C11—C16	120.3 (3)	C16—C15—H15	120.00
C11—C12—C13	120.1 (3)	C11—C16—H16	120.00
C12—C13—C14	121.4 (4)	C15—C16—H16	120.00
C15—C14—C17	120.3 (3)	C14—C17—H17A	109.00
C13—C14—C15	118.4 (3)	C14—C17—H17B	109.00
C13—C14—C17	121.2 (4)	C14—C17—H17C	109.00
C14—C15—C16	120.9 (3)	H17A—C17—H17B	109.00
C11—C16—C15	120.6 (3)	H17A—C17—H17C	110.00
C3—C31—C36	121.8 (2)	H17B—C17—H17C	109.00
C3—C31—C32	120.4 (2)	С31—С32—Н32	120.00
C32—C31—C36	117.8 (3)	С33—С32—Н32	120.00
C31—C32—C33	120.5 (3)	С32—С33—Н33	119.00
C32—C33—C34	122.2 (3)	С34—С33—Н33	119.00
C35—C34—C37	120.9 (3)	С34—С35—Н35	119.00
C33—C34—C37	122.5 (3)	С36—С35—Н35	119.00
C33—C34—C35	116.5 (3)	С31—С36—Н36	119.00
C34—C35—C36	121.7 (4)	С35—С36—Н36	119.00
C31—C36—C35	121.3 (3)	С34—С37—Н37А	109.00
C52—C51—C56	117.6 (2)	С34—С37—Н37В	109.00
C5—C51—C52	123.3 (2)	С34—С37—Н37С	110.00
C5—C51—C56	119.2 (2)	Н37А—С37—Н37В	109.00
C51—C52—C53	121.6 (3)	Н37А—С37—Н37С	110.00
C52—C53—C54	120.4 (3)	Н37В—С37—Н37С	109.00
C53—C54—C57	120.4 (4)	С51—С52—Н52	119.00
C53—C54—C55	118.1 (3)	С53—С52—Н52	119.00
C55—C54—C57	121.5 (3)	С52—С53—Н53	120.00
C54—C55—C56	121.1 (3)	С54—С53—Н53	120.00
C51—C56—C55	121.2 (3)	С54—С55—Н55	119.00
O1—C1—H1	109.00	С56—С55—Н55	119.00
C2—C1—H1	109.00	С51—С56—Н56	119.00
C11—C1—H1	109.00	С55—С56—Н56	119.00
C1—C2—H2A	109.00	С54—С57—Н57А	109.00
C1—C2—H2B	109.00	С54—С57—Н57В	109.00
C3—C2—H2A	109.00	С54—С57—Н57С	109.00
C3—C2—H2B	109.00	H57A—C57—H57B	109.00
H2A—C2—H2B	108.00	Н57А—С57—Н57С	109.00
С2—С3—Н3	108.00	Н57В—С57—Н57С	109.00
O1—C1—C2—C3	179.7 (2)	C12—C13—C14—C15	0.1 (5)

C11—C1—C2—C3	57.6 (3)	C12—C13—C14—C17	-176.9 (3)
O1-C1-C11-C12	-53.8 (3)	C13—C14—C15—C16	-0.2 (5)
01—C1—C11—C16	125.8 (2)	C17—C14—C15—C16	176.9 (3)
C2-C1-C11-C12	65.4 (3)	C14—C15—C16—C11	-0.1 (4)
C2-C1-C11-C16	-115.0 (3)	C3—C31—C32—C33	177.9 (2)
C1—C2—C3—C4	178.8 (2)	C36—C31—C32—C33	-1.2 (4)
C1—C2—C3—C31	54.8 (3)	C3—C31—C36—C35	-178.3 (3)
C2—C3—C4—C5	-177.4 (2)	C32—C31—C36—C35	0.7 (4)
C31—C3—C4—C5	-53.5 (3)	C31—C32—C33—C34	0.9 (5)
C2—C3—C31—C32	-126.6 (2)	C32—C33—C34—C35	-0.1 (5)
C2—C3—C31—C36	52.4 (3)	C32—C33—C34—C37	179.2 (3)
C4—C3—C31—C32	112.3 (3)	C33—C34—C35—C36	-0.4 (5)
C4—C3—C31—C36	-68.7 (3)	C37—C34—C35—C36	-179.7 (4)
C3—C4—C5—O5	-179.6 (2)	C34—C35—C36—C31	0.1 (5)
C3—C4—C5—C51	-57.6 (3)	C5—C51—C52—C53	-177.9 (2)
O5—C5—C51—C52	80.7 (3)	C56—C51—C52—C53	1.4 (4)
O5—C5—C51—C56	-98.7 (2)	C5-C51-C56-C55	177.4 (2)
C4—C5—C51—C52	-37.8 (3)	C52—C51—C56—C55	-1.9 (3)
C4—C5—C51—C56	142.9 (2)	C51—C52—C53—C54	0.0 (4)
C1-C11-C12-C13	179.0 (3)	C52—C53—C54—C55	-0.9 (4)
C16—C11—C12—C13	-0.6 (4)	C52—C53—C54—C57	179.3 (3)
C1-C11-C16-C15	-179.1 (2)	C53—C54—C55—C56	0.4 (4)
C12—C11—C16—C15	0.5 (4)	C57—C54—C55—C56	-179.8 (3)
C11—C12—C13—C14	0.3 (5)	C54—C55—C56—C51	1.1 (4)

Hydrogen-bond geometry (Å, °)

D—H	$H \cdots A$	$D \cdots A$	D—H···A
0.84	1.95	2.786 (3)	174
0.84	1.89	2.716 (3)	170
	<i>D</i> —Н 0.84 0.84	D—H H…A 0.84 1.95 0.84 1.89	D—H H···A D···A 0.84 1.95 2.786 (3) 0.84 1.89 2.716 (3)

Symmetry codes: (i) -x+1, -x+y, -z+1/3; (ii) -x+y+1, -x+1, z-1/3.