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Abstract: Ergot alkaloids are indole-derived mycotoxins that are important in agriculture and medicine. Ergot alkaloids are produced 
by a few representatives of two distantly related fungal lineages, the Clavicipitaceae and the Trichocomaceae. Comparison of the 
ergot alkaloid gene clusters from these two lineages revealed differences in the relative positions and orientations of several genes. 
The question arose: is ergot alkaloid biosynthetic capability from a common origin? We used a molecular phylogenetic approach to 
gain insights into the evolution of ergot alkaloid biosynthesis. The 4-γ,γ-dimethylallyltryptophan synthase gene, dmaW, encodes the 
first step in the pathway. Amino acid sequences deduced from dmaW and homologs were submitted to phylogenetic analysis, and 
the results indicated that dmaW of Aspergillus fumigatus (mitosporic Trichocomaceae) has the same origin as corresponding genes 
from clavicipitaceous fungi. Relationships of authentic dmaW genes suggest that they originated from multiple gene duplications with 
subsequent losses of original or duplicate versions in some lineages.
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Introduction
Ergot alkaloids (EA) are a group of mycotoxins 
causing toxicoses in humans and animals.1–3 Producers 
of EA include plant pathogens in the genus Claviceps, 
and some grass endophytes in the genera Epichloë, 
Neotyphodium and Balansia.2 These genera belong 
to the family Clavicipitaceae (order Hypocreales, 
phylum Ascomycota). EA are also produced by the 
common airborne fungus Aspergillus fumigatus, 
a species distantly related with clavicipitaceous 
fungi, belonging to the family Trichocomaceae 
(order Eurotiales, phylum Ascomycota).4 In the 
same family, some Penicillium species also produce 
EA.5,6 Relatively few species within these families 
produce ergot alkaloids and only one representative 
of the lineages in between the two orders containing 
these families has been reported to produce ergot 
alkaloids.7,8 Because of their significant impacts on 
human health and agriculture, the biochemistry and 
biosynthesis pathway of ergot alkaloids have attracted 
much attention and effort.3 Certain genes involved in 
the biosynthesis pathway have been characterized.9–15 
Clustered arrangements of EA biosynthesis genes 
have been observed in A. fumigatus,10 Claviceps 
fusiformis,8 and Claviceps purpurea.14 A gene, 
dmaW, common to all these clusters, encodes 
4-γ,γ-dimethylallyltryptophan (DMATrp) synthase, 
which has been demonstrated to be the first pathway 
specific step and has the key regulatory function for 
EA biosyntheses in Claviceps spp.15–17 Following the 
cloning of dmaW from C. fusiformis SD58,18 a gene 
cluster likely encoding enzymes of EA biosynthesis 
was identified by sequence analysis in the ergot 
fungus, C. purpurea P1.14 This cluster was thereafter 
designated EAS (ergot alkaloid synthesis).2 Within the 
EAS cluster, four genes with known functions were 
named according to their functions, and the other 
seven genes with unknown functions were named 
easA and easC to easH. Homologs of nine EAS-cluster 
genes have been found in C. fusiformis SD58,18,19 
and eight homologs have been found clustered in the 
A. fumigatus genome10 (Supplementary Fig. 1).

Based on the sequence similarity of dmaW genes 
and general clustering of other hypothetical EAS 
genes, Coyle and Panaccione10 proposed that EA 
biosynthesis in A. fumigatus has a common origin with 
that in clavicipitaceous fungi. However, arrangement 
of the cluster genes in A. fumigatus is drastically 

different from the EAS clusters in C. purpurea and 
C. fusiformis.2,8 This difference in gene arrangements, 
and the absence of ergot alkaloids in the lineages 
between the two groups of EA-producing fungi, 
raise the question of whether the dmaW genes in 
clavicipitaceous and trichocomaceous fungi are true 
orthologs, homologs due to speciation. If the genes are 
truly orthologous, then multiple gene recombinations 
and inversions must have happened in either (or both) 
of the lineages after the divergence from their common 
origin, and the lineages between them have lost these 
genes. The alternative would be that the A. fumigatus 
EAS genes might have evolved independently from 
different gene duplication events.

Recently, multiple genes similar or related to 
dmaW have been characterized by cloning and 
over-expression approaches. Examples include genes 
for brevianamide F prenyl transferase (FtmPT1) that 
converts brevianamide to tryprostatin in A. fumigatus,20 
reverse prenyl transferase FGAPT1 catalyzing the 
final step in the biosynthesis of fumigaclavine C in the 
same fungus,21 TdiB with indole alkaloid biosynthetic 
ability in A. nidulans,22 as well as SirD, involved in 
the biosynthesis of an epipolythiodioxopiperazine 
(ETP) from Leptosphaeria maculans.23 The available 
sequences of these genes allow us to look into the 
evolutionary relationships of dmaW and related genes 
by a phylogenetic approach.

In this study, we conduct molecular phylogenetic 
analysis of inferred protein sequences to test whether 
the known DMATrp synthases in fungi have a single 
origin or multiple origins. A monophyletic pattern is 
expected for the single origin hypotheses; whereas 
a polyphyletic pattern is expected for multiple 
origins.

Materials and Methods
Protein sequences derived from dmaW genes of 
clavicipitaceous fungi and A. fumigatus were obtained 
from previous studies.10,15,18 Protein sequences 
of FtmPT1, FGAPT1, and the sirD product were 
downloaded from GenBank (Table 1). The protein 
sequences from dmaW homologs were obtained by 
BLAST of the nonredundant protein sequence database 
in GenBank with the protein product deduced from 
dmaW from Neotyphodium lolii and A. fumigatus; 
sequences with relatively high similarity scores and 
low E-value (3e-17) were selected (Table 1).
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Protein sequence matrix
Due to the high divergence of amino acid sequences, 
we used the program MAFFT ver.5.824 to align them. 
The alignment was conducted through the web server 
(http://align.genome.jp/mafft/). The FFT-NS-i and 
E-INS-i alignment strategies, iterative refinement 
method, were used to enhance the accuracy of the 
alignment. The scoring matrix (for amino acid 
sequences) was selected from six options by comparing 
fitnesses of the trees in the preliminary analysis. 
With the scoring matrix selected, we set gap opening 
penalty (OP = 1.0, 2.0, 3.0) and gap extension penalty 
(offset value as shown in the program, OF = 0.0, 
0.5, 1.0), and again compared the overall fitness of 
the resulting trees in more preliminary analyses. 
Parameters resulting in trees of high fitness were set 
in the final alignment. The alignments by MAFFT 
were submitted to the program Gblocks 0.91b,25 to 
eliminate the highly diverged regions and retain the 
conserved regions for phylogenetic analysis. Low 
stringency options were selected to obtain blocks.

Phylogenetic analysis
The protein matrices of ten operational taxonomic units 
(OTUs, six authentic dmaW and four related genes of 
known functions) resulting from MAFFT and Gblocks 
screening and comprised of the conserved regions of 
the protein alignment, were submitted separately to 
phylogenetic analysis in PAUP* 4.0b10.26 Parsimony 
analyses were conducted using exhaustive search. All 
characters had equal weight and gaps were treated as 
missing data.

In order to exclude the possible bias caused by 
insufficient OTUs, we included multiple potential 
homologs of dmaW products, which were obtained 
by BLAST search, in a more extensive phylogenetic 
analysis. Both conserved protein regions and the whole 
protein sequence were used in the separate analyses. 
Parsimony analysis was conducted with a heuristic 
search with TBR (tree bisection and reconnection) 
branch-swapping and 100 replicates of random 
sequence addition. Bootstrapping analysis was based 
on 1000 replicates of a full heuristic search, each with 
20 replicates of a random addition sequence, and tree 
bisection reconnection (TBR) swapping was selected 
and re-arrange limit was set to 5000 per replicate.

Bayesian inferences (BI) were performed using 
MrBayes 3.0B527 to analyze individual data sets. 

The prior for amino acid model was set as mixed 
to allow model jumping between fixed-rate amino-
acid models. Maximum likelihood analysis (ML) 
was performed using PHYML online server28 with 
the following settings: substitution model as JTT, 
transition/transversion ratio and gamma distribution 
as estimated by the program, bootstrap datasets 500.

Results
Protein sequence matrix
To choose the appropriate scoring matrix in the 
amino acid sequence alignment, we compared the 
overall fitness of the trees based on the alignments 
of six different scoring matrices in two strategies 
(Table 2). Setting scoring matrix as JTT200 resulted in 
the highest consistency index (CI), lowest homoplasy 
index (HI), relatively high retention index (RI), and 
shorter trees, thus we choose JTT200 for alignments. 
In the combination of various OP and OF in the 
alignment, OP/OF = 1.0/0.0 resulted in three shortest 
parsimonious trees with a relatively high CI, RI and 
low HI (Table 3).

For the protein sequences derived from six dmaW 
and four related genes of known functions, an analysis 
in which the scoring matrix was set as JTT200, 
OP as 1.0, and OF as 0.0 resulted in an alignment with 
653 characters. The resulting alignment was put into 
Gblocks 0.91b to screen for conserved regions. The 
number of characters (amino acid positions) retained 
was 308. For the matrix from the extended OTU set 
(34 protein sequences), 933 characters resulted from 
MAFFT alignment, and 155 characters were retained 
after GBlocks screening.

Phylogenetic relationships
For the data set comprised of ten OTUs, parsimony 
analyses for the whole regions resulted in two most 
parsimonious trees (Fig. 1A). The two tree topologies 
differed in the order of branches ranches to sirD L. 
maculans and fgaPT1 A. fumigatus. The analysis of the 
conserved regions resulted in one most parsimonious 
tree. The tree topology differed from those of whole 
gene regions in the order of divergence of dmaW of A. 
fumigatus and Malbranchea aurantiaca (Fig. 1B). The 
known, authentic sequences of DMATrp synthases 
formed a monophyletic clade with strong bootstrap 
support. Defining as an outgroup those prenyl 
transferases known or likely to catalyze production of 
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Table 1. genBank numbers and fungal isolates of protein sequences of dmaW genes and homologs.

GenBank number Fungal species Isolate Gene, Function Reference
1 AAX56314 Aspergillus fumigatus Af293 ftmPT1 = brevianamide  

F prenyl transferase
(grundmann, Li)21

2 EAL94098 Aspergillus fumigatus Af293 fgaPT1 = easL, reverse  
prenyl transferase

(Unsold, Li)22

3 AAX08549 Aspergillus fumigatus Af293 fgaPT2 = dmaW, dimethylallyltryptophan synthase (Unsold, Li)40

4 XP_754328 Aspergillus fumigatus Af293 function unknown (nierman et al)41

5 ABU51603 Aspergillus nidulans unspecified tdiB = putative prenyl transferase (Balibar)42

6 XP_681751 Aspergillus nidulans FgsC A4 function unknown (galagan et al)43

7 XP_682498 Aspergillus nidulans FgsC A4 function unknown (galagan et al)43

8 XP_659949 Aspergillus nidulans FgsC A4 function unknown (galagan et al)43

9 XP_664388 Aspergillus nidulans FgsC A4 function unknown (galagan et al)43

10 BAE56055 Aspergillus oryzae riB 40 function unknown (Machida et al)31

11 BAE59503 Aspergillus oryzae riB 40 function unknown (Machida et al)31

12 BAE62662 Aspergillus oryzae riB 40 function unknown (Machida et al)31

13 BAE65189 Aspergillus oryzae riB 4 function unknown (Machida et al)31

14 BAE63695 Aspergillus oryzae riB 4 function unknown (Machida et al)31

15 AAP92451 Balansia obtecta B249 dmaW = dimethylallyltryptophan synthase (Wang et al)15

16 AAC18893 Claviceps fusiformis ATCC26245 dmaW = dimethylallyltryptophan synthase (Tsai et al)19

17 CAB39314 Claviceps purpurea P1 dmaW = cpd1, dimethylallyltryptophan synthase allele 1 (Tudzynski et al)14

18 CAC37396 Claviceps purpurea T5 dmaW = cpd2, putative dimethylallyltryptophan synthase allele 2 (Arntz and Tudzynski, unpublished)
19 AAZ29613 Clavicipitaceae Us2005a dmaW = putative dimethylallyltryptophan synthase (steiner et al)32

20 AAZ29614 Clavicipitaceae Us2005b dmaW = putative dimethylallyltryptophan synthase (Markert et al)43

21 EAs31821 Coccidioides immitis rs function unknown (Birren et al, unpublished)
22 AAP81206 Epichloë typhina × Neotyphodium lolii Lp1 dmaW = dimethylallyltryptophan synthase (Wang et al)15

23 AAV66102 Fusarium heterosporum ATCC74349 function unknown (sims et al)44

24 AAs92554 Leptosphaeria maculans iCBn 18 sirD = putative tyrosine dimethylallyl transferase (gardiner et al)24

25 XP_361876 Magnaporthe grisea 70-15 function unknown (Dean et al)45

26 XP_370025 Magnaporthe grisea 70-15 function unknown (Dean et al)46

27 ABZ80612 Malbranchea aurantiaca rrC1813 MaPT = dmaW, dimethylallyltryptophan synthase (Ding et al)47

28 AAP81207 Neotyphodium coenophialum ATCC90664 dmaW = dimethylallyltryptophan synthase allele 1 (Wang et al)15

29 AAP81208 Neotyphodium coenophialum ATCC90664 dmaW = dimethylallyltryptophan synthase allele 2 (Wang et al)15

30 none Neotyphodium gansuense E818 dmaW = putative dimethylallyltryptophan synthase Unpublished data
31 XP_960156 Neurospora crassa Or74A function unknown (galagan et al)48

32 AAZ29615 Penicillium roqueforti iasaF09 dmaW = putative dimethylallyltryptophan synthase (steiner et al)49

33 AAK11526 Penicillium paxilli ATCC26601 paxD = function unknown (Young et al)30

34 AAT69743 Sirodesmium diversum ATCC36539 putative dimethylallyltyrosine synthase gardiner and howlett, unpublished

other products (4 OTUs), the most basal divergence 
separated the dmaW gene of M. aurantiaca and A. 
fumigatus from those of the Clavicipitaceae (Fig. 1C).

The analysis with conserved gene regions comprised 
of 34 OTUs resulted in six equally most parsimonious 

trees, while the whole gene region (933 characters) 
resulted in eight equally most parsimonious trees. 
The variations of branch orders among these trees 
were mainly from the uncertain positions of the two 
OTUs, the putative DMATrp synthase gene from 
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Neotyphodium gansuense and paxD Penicillium 
paxilli AAK11526, which were partial sequences. The 
strict consensus trees of the six trees from conserved 
regions and eight trees from the whole gene regions 
showed the same pattern that, in the dmaW clade, 

the two putative DMATrp synthase genes from 
clavicipitaceous endophyte of convolvulaceous plants 
(AAZ29613, AAZ29614), the clade comprised of 
C. purpurea and C. fusiformis dmaW, as well as the 
putative DMATrp synthase gene from N. gansuense 
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collapsed as a polytomy (Fig. 2A). Outside the dmaW 
clade, paxD P. paxilli AAK11526 along with the other 
six OTUs appeared as unresolved branches (Fig. 2A). 
All trees revealed the same monophyletic group of 
DMATrp synthase genes (functionally tested) and 
putative DMATrp synthase genes.

Excluding the two partial sequences (32 OTUs 
included in analysis) resulted in better resolutions. 
Both analyses of conserved regions and the whole 
gene region resulted in two most parsimonious trees. 
The two trees from whole gene regions differed in the 
positions of Magnaporthe oryzae XP 361876, clade I 

(tdiB Aspergillus nidulans ABU51603, Neurospora 
crassa XP 960156 and Magnaporthe oryzae XP 370025) 
and clade II ( fgaPT1 Aspergillus fumigatus EAL94098, 
Aspergillus oryzae BAE65189, and  Aspergillus  fumigatus 
XP 754328) (Fig. 2B). Comparing the phylogenies 
inferred from the conserved regions and from the 
entire sequences, within the dmaW clade, these trees 
differed in branching orders of B. obtecta, C. purpurea 
and C. fusiformis dmaW; and in branch orders of A. 
fumigatus AAX08549, P. roquefortii AAZ29615 and 
Malbranchea aurantiaca ABZ80612. All clades with 
strong statistic support (bootstrapping value 70) 

Table 2. Fitness of the trees resulting from maximum parsimony searches with different matrix scoring settings.

strategy scoring matrix number  
of trees

Length cI RI Rc HI G-fit

BLOsUM30 1 5252 0.653 0.491 0.32 0.347 -224.198
BLOsUM45 4 5214 0.64 0.486 0.311 0.36 -219.496

FFT-ns-i BLOsUM62 6 5230 0.637 0.491 0.313 0.363 -208.403
BLOsUM80 8 5170 0.638 0.487 0.31 0.362 -207.579

JTT100 5 5187 0.646 0.494 0.319 0.354 -212.253
JTT200 2 5193 0.662 0.491 0.325 0.338 -235.767

BLOsUM30 1 5200 0.636 0.486 0.309 0.364 -211.530
BLOsUM45 6 5185 0.636 0.491 0.312 0.364 -203.114

E-ins-i BLOsUM62 6 5190 0.637 0.489 0.312 0.363 -205.306
BLOsUM80 1 5203 0.635 0.488 0.310 0.365 -204.704

JTT100 2 5229 0.631 0.483 0.305 0.369 -206.307
JTT200 3 5174 0.632 0.486 0.307 0.368 -204.534

Table 3. Fitness of the trees resulting from maximum parsimony searches with different gap opening penalties (OP) and 
gap extension penalties (OF) (FFT-ns-i, JTT200).

Op OF number  
of trees

Length cI RI Rc HI G-fit

1.0 0 3 5098 0.675 0.498 0.336 0.325 -245.815
1.0 0.5 1 5219 0.628 0.483 0.303 0.372 -206.925
1.0 1 1 5217 0.625 0.479 0.3 0.375 -197.856
2.0 0 11 5227 0.649 0.489 0.317 0.351 -226.988
2.0 0.5 4 5281 0.632 0.485 0.306 0.368 -206.599
2.0 1 1 5272 0.637 0.489 0.312 0.363 -204.882
3.0 0 7 5354 0.658 0.491 0.323 0.342 -239.881
3.0 0.5 4 5280 0.64 0.49 0.314 0.36 -210.476
3.0 1 12 5317 0.639 0.483 0.308 0.361 -206.114
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were present in all trees (Figs. 2B, C), and all trees 
clearly indicated monophyly of genes for authentic 
DMATrp synthase.

Bayesian analyses generally resulted in higher 
statistical support (posterior probabilities) for the 

clades having high bootstrap support in parsimony 
analyses (Figs. 1 and 2) and internal branches. ML 
analyses resulted tree topologies generally congruent 
with MP tree, i.e. clades with strong support were 
congruent with MP (Figs. 1 and 2).
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Figure 1. The most parsimonious trees relating amino acid sequences of the deduced products of six dmaW genes and four related genes with known 
functions. A) Tree based on whole gene region. Of 653 aligned characters, 250 characters are informative. Length = 1521, Ci = 0.870, ri = 0.503. Arrows 
show the discrepancies of the two most parsimonious trees. B and c) Trees based on relatively conserved gene regions screened by gBlocks. Of 308 
total aligned characters, 166 characters are informative. Length = 934, Ci = 0.864, ri = 0.512. Products of dmaW genes formed a monophyletic group 
with 100% bootstrap support. B. Unrooted tree; C. Phylogram rooted by choosing the non-dmaW gene products as the outgroup. numbers on branches 
indicate bootstrap percentage of MP/posterior probabilities of Bi/bootstrap percentage of ML; *indicates that particular branch does not exist in the 
analysis. The thick branch separates of the outgroup from the ingroup.
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All analyses indicated that conserved gene regions 
selected by GBlocks did not significantly improve the 
phylogenetic inference for our data sets.

genes associated with dmaW-related 
sequences
Certain dmaW-related genes have been identified 
in gene clusters that are otherwise unrelated to 

the EAS clusters. These include the sirD gene 
of L. maculans23 and the paxD gene of Penicillium 
paxilli.29 Because of the close relationship of two A. 
oryzae homologs, and the availability of a complete 
genome sequence for that fungus,30 we checked 
the genomic contexts of these A. oryzae homologs. 
Neither of them has a comparable gene cluster. 
In both cases there are a few apparent secondary 
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Figure 2. A) strict consensus tree of the six most parsimonious trees for dmaW gene products and products of multiple related genes of 34 OTUs based 
on relatively conserved gene regions. Of the 155 characters, 133 were parsimony-informative; length = 1366, Ci = 0.594, ri = 0.499. B) One of the two 
most parsimonious trees of 32 OTUs based on the whole gene region. Of the 933 characters, 456 were parsimony-informative characters. Length = 4974, 
Ci = 0.682, ri = 0.499. c) The most parsimonious trees for dmaW gene products and products of multiple related genes of 32 OTUs based on relatively 
conserved gene regions, which were screened by gblocks. Total aligned characters = 155, informative characters = 135; length = 1427, Ci = 0.607, ri 
= 0.497. OTUs in bold indicate the gene products with functions that have been confirmed. Numbers on branches indicate bootstrap percentage of MP/
posterior probabilities of Bi/bootstrap percentage of ML; *indicates that particular branch does not exist in the analysis; numbers in circles indicate the 
possible gene duplication events (also see Fig. 3).
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metabolism genes nearby, but not homologs of the 
EAS cluster genes.

Discussion
Various profiles of ergot alkaloids (EA) are produced 
by EA-producing fungi. Evidence for diversification 
of EA profiles within an individual fungus, as well 
as among different producers was observed by 
Panaccione.7 The study reported herein is a molecular 
phylogenetic approach to gain additional insight into 
the evolution of EA synthesis among fungal producers. 
Due to its important role in encoding the first step in 
EA biosynthesis, dmaW was used as a marker to infer 
the evolutionary relationships of the pathways. Our 
results demonstrate that dmaW from A. fumigatus and 
clavicipitaceous fungi formed a monophyletic group 
indicating that they evolved from a common origin. 
Therefore we postulate that the EAS gene clusters of 
the two lineages were also from a common origin, 
which could be a common gene cluster encoding 
the shared early steps of the pathways of these two 
lineages. These shared steps might have been present 
in the most recent common ancestor of the two fungal 
lineages.

When 34 OTUs were included in the analysis, 
a hypothetic gene from P. roqueforti (GenBank 
accession number: AAZ29615.31 was grouped in the 
dmaW clade. Penicillium roqueforti produces the 
ergot alkaloid isofumigaclavine A,6 which would 
require dmaW for its biosynthesis. The product of the 
P. roqueforti gene was 63% identical with the product 
of dmaW of A. fumigatus, which was the top match 
retrieved in a BLAST search with this protein (1e-112). 
These data are consistent with the P. roqueforti gene 
encoding the DMATrp synthase that catalyzes the 
initial prenylation in ergot alkaloid biosynthesis.

GenBank entries often are annotated completely 
on the basis of BLAST hits. Since the gene from 
C. fusiformis was identified as encoding DMATrp 
synthase,18 many sequences from other species 
were annotated as putative dimethylallyltryptophan 
synthase genes according to the similarity of their 
sequences to the C. fusiformis sequence. However 
many sequences annotated as dimethylallyltryptophan 
synthase genes are likely to encode related but 
nonidentical enzymes catalyzing prenylation or 
reverse prenylation of different co-substrates or at 
different positions of the indole rings. Examples of 

related but functionally different prenyl transferases 
include the likely tyrosine prenyl transferase in 
sirodesmin biosynthesis from L. maculans,23 and the 
reverse prenyl transferase from A. fumigatus.21

The rooted tree relating prenyl transferases with 
known functions showed the most basal separation of 
DMATrp synthase of A. fumigatus with those of the 
clavicipitaceous fungi. The EA profile of A. fumigatus 
includes a series of clavines, simpler tricyclic or 
tetracyclic alkaloids. In contrast, clavicipitaceous 
fungi usually produce more complex EA, ergopeptines 
and other amides of lysergic acid, in addition to the 
clavines. It is reasonable that more complex functions 
were gained along the evolutionary path.

Differences in the arrangement of EAS clusters 
between A. fumigatus and clavicipitaceous fungi were 
likely caused by multiple gene rearrangements through 
recombinations, deletions and insertions. The EAS gene 
cluster of A. fumigatus is in a subtelomeric region.10 
Frequent recombinations associated with such regions 
provide a potential explanation for the differences 
between the EAS clusters of A. fumigatus and those 
of the clavicipitaceous fungi.7 The chromosomal 
locations of the clusters in clavicipitaceous species 
have not yet been determined. Similar rearrangements 
between more distant genomic locations would 
account for evolution of clusters, for which selection 
may favor their inheritance or horizontal transfer as a 
unit.32,33 Such rearrangements can be driven by repeats 
such as retroelements in the fungal genomes, such as 
observed throughout the ergot alkaloid and lolitrem 
biosynthesis gene clusters in Epichloë festucae and 
Neotyphodium lolii.34,35

In fungal systematics, the molecular phylogeny 
indicates that genus Claviceps is more closely related 
to genus Epichloë (asexual stage: Neotyphodium) than 
to Balansia;36,37 (also see Fig. 3A). In our 10 OTU 
gene trees, the clade of C. purpurea and C. fusiformis 
dmaW was closer to B. obtecta dmaW than to Epichloë 
spp. dmaW (Fig. 1). The discrepancy between gene 
tree and species tree can be explained by polymorphic 
lineage sorting or incomplete sampling.38 Once 
we included more OTUs (34 OTUs and 32 OTUs) 
in the analyses, the dmaW clade separated into two 
lineages. One lineage was comprised of C. purpurea 
and C. fusiformis dmaW, the two putative DMATrp 
synthase genes from clavicipitaceous endophytes of 
convolvulaceous plants (AAZ29613, AAZ29614),31 
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the putative DMATrp synthase gene from N. gansuense, 
and the DMATrp synthase gene from B. obtecta. The 
second lineage was comprised of putative DMATrp 
synthase genes from N. coenophialum and dmaW 
from the E. typhina × N. lolii hybrid. The divergence 
of these two lineages and the inconsistency of the 
divergence pattern with species relationships suggest 
that dmaW genes in clavicipitaceous fungi have 
experienced multiple gene duplications and loss of 
some copies. An alternative is that there may have 
been some instances of horizontal gene transfer, but 
the data are not conclusive in this respect. A scenario 
involving duplications and losses consistent with the 

evolutionary relationships of authentic dmaW genes 
is shown in Figure 3B.
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*













Parameters used Minimum Number Of Sequences For A Conserved Position: 18 Minimum Number Of Sequences For A Flanking Position: 18 Maximum Number Of Contiguous Nonconserved Positions: 8 Minimum Length Of A Block: 5 Allowed Gap Positions: With Half Use Similarity Matrices: Yes Flank positions of the 16 selected block(s) Flanks: [131 146] [149 173] [216 220] [236 245] [299 304] [337 341] [378 389] [392 398] [405 409] [461 465] [528 532] [537 543] [551 571] [578 586] [695 702] [724 732] New number of positions in C:\Users\Mindy\Documents\Research stuff\Data&Analyses\dmaW_analysis\dmaw_Post_review\new alignment\dmaw34tx933chfas.txt-gb: 155 (16% of the original 933 positions) 
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