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Abstract: The tenacious thirst for fuel-saving and desirable physical and mechanical properties
of the materials have compelled researchers to focus on a new generation of aluminum hybrid
composites for automotive and aircraft applications. This work investigates the microhardness
behavior and microstructural characterization of aluminum alloy (Al 7075)-titanium carbide (TiC)-
graphite (Gr) hybrid composites. The hybrid composites were prepared via the powder metallurgy
technique with the amounts of TiC (0, 3, 5, and 7 wt.%), reinforced to Al 7075 + 1 wt.% Gr. The
microstructural characteristics were investigated by optical microscopy, scanning electron microscopy
(SEM), X-ray diffraction (XRD) and energy dispersive X-ray spectroscopy (EDS) elemental mapping.
A Box Behnken design (BBD) response surface methodology (RSM) approach was utilized for
modeling and optimization of density and microhardness independent parameters and to develop an
empirical model of density and microhardness in terms of process variables. Effects of independent
parameters on the responses have been evaluated by analysis of variance (ANOVA). The density and
microhardness of the Al 7075-TiC-Gr hybrid composites are found to be increased by increasing the
weight percentage of TiC particles. The optimal conditions for obtaining the highest density and
microhardness are estimated to be 6.79 wt.% TiC at temperature 626.13 ◦C and compaction pressure
of 300 Mpa.

Keywords: Al 7075 hybrid composites; modeling and optimization; powder metallurgy; response
surface methodology; microhardness; ANOVA

1. Introduction

Today’s globe is tormented by environmental pollution and fossil fuel scarcity. The
automotive industry is one of the most significant contributors to these issues. Around
1.2 billion motor vehicles are anticipated to be on the road, accounting for 75% of pollution,
27% of greenhouse gas emissions, and 756 L/year of gasoline consumption [1–4]. The level
of pollution and fuel consumption can be lowered considerably by increasing the vehicle’s
fuel economy. One approach to enhance fuel efficiency is to make the vehicle lighter by
utilizing lightweight materials like aluminum and aluminum-based hybrid composites [4].
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Hence, the demand for performance aluminum composites capable of withstanding harsh
engineering conditions is already rising exponentially. Vital automobile components such
as drive shafts, brake discs, pistons and cylinder heads, cylinder liners experience massive
structural loads and harsh conditions throughout their service operation [5]. Thus, the
various interior and exterior components of automotive are susceptible to scratches or
indentations and wear loss while in operation. Hence, an adequate analysis of the surface
hardness behavior of aluminum matrix composites (AMCs) is therefore of pivotal impor-
tance. Significant investigations have therefore been focused on the production of AMCs
due to their low density, improved strength to weight ratio, and satisfactory hardness and
wear resistance [6–12]. These key features of Al/Al alloy composites have led to a great
acceptance of AMCs in automobiles, aircraft, offshore structures, and many other appli-
cations. The governing factors for the enhanced properties of AMCs are their processing
techniques, particle distribution, the alignment nature of reinforcements within the matrix,
and the interaction of filler particles at interfaces [11]. In addition to these unique proper-
ties, the hardness behavior improvement of AMCs has drawn considerable interest in the
automotive and aircraft industries. Recent studies have adopted various existing manu-
facturing techniques, such as friction stir processing [13–16], mechanical alloying [17–19],
friction stir processing [4], stir casting [20–22], and powder metallurgy [23–26] to fabricate
improved hardness and scratch-resistant AMCs. Interestingly, powder metallurgy (PM)
has attracted increasing interest in producing AMCs due to its significant benefits, such as
the uniform dispersion of reinforcement particles in the matrix and limited likelihood of
forming interfacial phases owing to reduced processing temperature [27]. Furthermore,
the PM method is economical in large-scale manufacturing because it minimizes expensive
machining processes owing to the development of near-net-shaped components.

Optimization of the process variables is the major factor in the experimental work to
save labor, materials, and money as well as to get an improved response [28]. In recent years
numerous modeling and optimization tools like artificial neural networks and response
surface methodology has been used by various researchers in a vast variety of experimental
and simulation-based works [29]. Therefore, the latest and advanced statistical tools
must be implemented within the investigation boundary conditions. Response surface
method (RSM) is a highly advanced DOE technique, which uses a statistical formulation
for developing a model and analyzing a process that aims to optimize the desired response
controlled by multiple input factors [30–33] Using a relatively small number of experiments,
a response surface model can be used to map a design space [34]. Surface and contour
graphs are frequently used to explain both linear and nonlinear mixing complications of
mixed components.

There are numerous studies on the effective manufacture of AMCs strengthened with
a few common reinforcements such as SiC [27,34–36], TiC [6,18,20], B4C [37], TiO2 [38], etc.
Among these, TiC is the most frequently utilized ceramic particle reinforcement to produce
AMCS. TiC has a high melting point as well as increased tribological characteristics. Hence,
TiC provides many exceptional features, namely high hardness, higher resistance against
wear, and reasonable thermal stability. Due to these unique features, TiC is chosen as one
of the fillers in the present study.

Integrating soft carbon-based particulates like graphite [39,40], graphene [41,42],
and carbon nanotubes (CNTs) into hard materials produces decent self-lubricating hybrid
composites that afterward can provide improved hardness and wear resistance by lowering
the moving surface temperature. Recent research of this creative method has shown that
the development of a consistent layer of lubricant upon this tribo-surface will minimize
shear forces and permanent deformation within the subsurface area [19,43]. Therefore,
it would be advantageous to use TiC as a reinforcement in the aluminum alloy matrix
together with microparticles of graphite to improve the hardness behavior. In today’s of
Industry 4.0 revolution era hybrid composites are widely utilized in the automotive sector.
The hybrid metal matrix composite is a type of material displaying the advantages with
two or more fillers inside the metal/alloy.
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Various investigations were reported for the enhancement of the mechanical and
tribological properties of Al-TiC and Al-graphite composites. The inclusion of hard rein-
forcement particles into the Al matrix through an ex-situ or an situ method can improve
the hardness and strength, while strongly influencing the wear characteristics of AMCs.
As indicated by previous research [28], the main downside of the incorporation of an
elevated amount of reinforcements in a matrix is acute wear in counter-face elements
due to the elevated hardness. As a result, the benefits of reinforcement addition must be
preserved so that the strength and wear resistance of AMCs are never compromised. Thus,
in present investigation 1 wt.% graphite was reinforced with Al 7075/TiC composites to
improve the hardness by maintaining good wear characteristics. Also, the research related
to synthesis, characterization, and in-depth study on the microhardness behavior of Al
7075-TiC-graphite hybrid composites produced by Turbula mixing followed by the powder
metallurgy steps are seldom found in the literature.

In the present study, Al 7075-Gr 1 wt.%-TiC x wt.%, TiC (x = 3, 5, and 7%) sintered
hybrid composites were produced via a powder metallurgy technique. A Box Behnken
design (BBD) response surface methodology (RSM) approach was utilized for modeling
and optimization of density and microhardness independent parameters. The developed
quadratic model correlates the density and microhardness with specific process variables.
Furthermore, the effect of process variables (i.e., TiC concentration, sintering temperature,
compaction pressure) on the sintered density and microhardness characteristics of the
produced hybrid composite has been investigated. Finally, the developed model was
experimentally corroborated to confirm its accuracy for the prediction of the responses. The
microstructural characteristics were investigated by Optical microscopy, scanning electron
microscopy (SEM), X-ray diffraction (XRD) and energy dispersive X-ray spectroscopy
(EDS) elemental mapping. This study presents considerable insights into the density and
microhardness analyses of aluminum alloy matrix hybrid composites.

2. Materials and Methods
2.1. Starting Materials and Characterizations

The matrix material Al 7075 was used for the fabrication of hybrid composites. The
elemental chemical composition of the Al 7075 matrix is expressed in Table 1. Spherical-
shaped Al 7075 powder with an average particle size of 8–15 µm was purchased from
the CNPC Powder Co. Ltd., (Shanghai, China). The reinforcements chosen for hybrid
composite fabrication were titanium carbide (99.9% purity, 200–800 nm, supplied by Nova
Scientific Selangor, Malaysia) and graphite (average particle size approximately 38µm,
supplied by Ugent Ltd., Ipoh, Malaysia) respectively.

Table 1. Al 7075 alloy compositions.

Elements Si Cr Mn Fe Cu Mg Ai Zn Al

wt.% 0.087 0.185 0.08 0.092 1.56 2.31 0.05 5.72 Bal.

2.2. Composites Fabrication Processing

In the present study, a green fabrication process, i.e., the powder metallurgy (PM)
technique, was adopted for the synthesis of composites. Five different combinations of
composites were synthesized by the PM process, as depicted in Table 2. The matrix and
reinforcement powders were mixed using Turbula mixing. The schematic diagram for
the synthesis of composites in various stages is illustrated in Figure 1. The main steps
of producing composites were mixing elemental powders in a Turbula mixer (Shanghai,
China), drying of the mixed powder in vacuum oven, compaction of powder, and sintering
of compact pallets.
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Table 2. Compositions of synthesizing Al/Gr/TiC composites.

S. No Samples ID
The Weight Percentage of Al Matrix and

Reinforcements Element

Al TiC Gr

1. C0 100 0 0
2. C1 99 0 1
3. C2 96 3 1
4. C3 94 5 1
5. C4 92 7 1
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Figure 1. Schematic illustration of the fabrication of sintered composites through powder metallurgy.

2.2.1. Mixing of Powders and Compaction

The various compositions of composite powders were blended in Turbula mixer as
shown in Figure 2a for 4 h to get well homogeneous powder combinations. To formulate
the hybrid composites, different wt.% (3, 5, and 7%) of TiC were added to premixed Al
7075/1 wt.% graphite composites powder. The synthesized composite powders were put in a
controlled drying oven to remove moisture/impurities from the mixed composite powders.

Cold compaction (uniaxial) was carried out on all the formulations of composite pow-
ders at a compaction pressure of 250–350 MPa in a uniaxial hydraulic pa let press (ELE
International, Bedfordshire, UK) as shown in Figure 2b. A mixed composite powder sample
of 15 g weight was put in a die steel mold. Pressure is applied gradually to compact the
powder, and the size of the pellets produced was 30 mm diameter and 8 mm thickness.
Paraffin wax was applied around the die walls to avoid die friction. The green pallet after
compaction is depicted in Figure 2c. The green density of all the pallets was measured before
the sintering process.
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(c) Composite pellet after compaction.

2.2.2. Controlled Environment Sintering

The fabricated green pellets of Al 7075 and Al 7075/Gr/TiC hybrid composites were
pressurelessly sintered in a nitrogen environment for 2.25 h in the tube furnace (Protherm,
PTF12/75/800, Ankara, Turkey) as shown in Figure 3a. The heating rate was maintained a
8 ◦C/min, and the sintering temperature and dwell time were kept 500–600 ◦C and 1 h,
respectively, for all samples. The cooling of samples to ambient temperature was done in
the furnace as depicted in the sintering cycle illustration (Figure 3b).
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2.3. Microstructural Characterizations (OM, XRD, EDS, and Elemental Maps)

The microstructural observations of sintered composites were examined by optical
microscopy (Leica DM LM, Wetzlar, Germany), and field emission scanning electron
microscopy (FESEM, Phenom-Pro X, Waltham, MA, USA and Zeiss Supra 55VP, Jena,
Germany), equipped with an energy dispersive spectroscopy (EDS) attachment. Optimal
microscopy observations were performed on the surface of the polished and etched (using
Keller’s reagent) composite.

The X-ray diffraction (XRD) analyses of synthesized sintered composites were con-
ducted by using an X-ray diffractometer (PANalytical X’pert, Almelo, Netherlands). The
XRD observations were performed by applying Cu-Ka radiation (wavelength, λ = 0.154 nm),
with operating parameters 40 kV and 40 mA. The XRD scanning speed was maintained as
1◦/min with a scanning range (2θ) of 20–80◦. The Highscore Plus software was used to
assess the samples’ XRD patterns.
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2.4. Density and Porosity Measurement of Composites

The green density of each produced sample was measured before the sintering process.
The diameter, thickness, and mass measurements of the green compact samples were used
to measure green densities for all the samples. The sintered densities of Al and composite
samples were measured by utilizing an electronic densitometer (Mettler Toledo) according
to Archimedes’ principle by a standard test method (ASTM B962-17). The effectiveness of
the sintering process is normally represented by the sintered density. For each formulation,
the average of five sample’s sintered density was reported. The sintering operation was
assessed using sintered porosity and densification factor of synthesized composites as
mentioned in Equations (1) and (2):

Porosity (%) =
Theoretical density − Sintered density

Theoretical density
× 100 (1)

Densification factor =
Sintered density − Green density

Theoretical density − Green density
(2)

The theoretical density of the composites is the highest density that can be achieved
without void spaces as determined by the rule of mixture, based on sample formulations
and pure component densities. Green density refers to the density of the green compact,
which reflects the powder-to-powder contact area and aids the bonding process during
sintering. It was calculated by the density formula by measuring the mass and volume of
the green compacts.

2.5. Microhardness Measurement

The microhardness measurement for all the polished sintered composites was ac-
complished by utilizing a Vickers hardness tester (Leco LM 247 AT, Saint Joseph, MO,
USA). The standard test method (ASTM E92-82) was followed for the measurement of
microhardness. The test was conducted at ambient temperature, the indentation load was
kept at 300 gf with a dwell time of 15 s. At least five microhardness values were recorded
at different locations of each test sample and average values were taken into consideration.

2.6. Box-Behnken Experimental Design

Design of experiment (DOE) is a systematic approach for determining the worth of
variables, their interactions, and controlling them to achieve the best possible outcome. The
Box-Behnken design (BBD) approach was utilized under response surface methodology
(RSM) to develop the mathematical models using the Design-Expert version 12 software
(Stat-Ease. Inc., Minneapolis, MN, USA).

The Box-Behnken design is a factorial arrangement of at least three variables with
incomplete block designs. In each block, one factor is kept constant at the center point,
while the others vary based on four distinct combination values with upper and lower
limits [44]. The three input parameters (sintering temperature, compaction pressure, and
the content of TiC wt.%) were analyzed using 17 runs of experiments with their low and
high values. The experiments were performed corresponding to a three-level scale, i.e.,
the lower value (−1), central value (0), and higher value (+1). The ranges and levels of
independent variables are listed in Table 3. The designed experiments were carried out,
and the response surface values were fed into the software. The significance of input
parameters and their interaction effects on the output response variables was established
using analysis of variance (ANOVA). Table 4 depicts the actual experimental design matrix
as per the BBD interface along with their response.
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Table 3. Independent variables DOE ranges and levels.

Factor Name Units
Ranges and Levels

−1 0 +1

A TiC Concentration wt.% 3 5 7
B Compaction Pressure MPa 250 300 350
C Sintering Temperature ◦C 550 600 650

Table 4. Matrix of design (Box-Behnken method) with experimental values.

Experimental
Run

TiC Concentration
(wt.%)

Compaction Pressure
(MPa)

Sintering Temperature
(◦C)

Microhardness
(VHN)

Density
(kg/m3)

1 −1 −1 0 64.2 2.71
2 +1 −1 0 69.3 2.76
8 −1 +1 0 63.1 2.73
3 +1 +1 0 77.5 2.78
7 −1 0 −1 57.9 2.75
9 +1 0 −1 60.3 2.77

13 −1 0 +1 71.9 2.81
17 +1 0 +1 82.2 2.95
12 0 −1 −1 68.2 2.79
4 0 +1 −1 73.5 2.80
6 0 −1 +1 74.4 2.85

10 0 +1 +1 78.3 2.89
11 0 0 0 76.2 2.83
5 0 0 0 69.4 2.85

14 0 0 0 61.4 2.89
16 0 0 0 64.2 2.82
15 0 0 0 65.1 2.84

3. Results and Discussion
3.1. Characterization of Starting Powders

The powder morphology and X-ray diffraction peaks of the as-received pure Al 7075,
particles of graphite and TiC powders are illustrated in Figure 4a–e. The Al 7075 powder
particles are spherical, with few particles of irregular shape (Figure 4a). The graphite
particles morphology is illustrated in Figure 4c, the particles are irregular in shape with
an average particle size of approximately 38 µm. The TiC powders (<800 nm) have an
irregular shape and were agglomerated (Figure 4e).

The X-ray diffraction patterns of the starting powders (Al 7075, graphite, and TiC) are
illustrated in Figure 4b,d,f respectively. As observed from Figure 4b, all the major peaks of
Al 7075 belonged to Al with an FCC crystal structure and identified peaks include (111),
(200), (220), and (311) at a diffraction angle (2θ) = ~38◦, 45◦, 65◦ and 78◦, respectively.

The phase analysis is verified by comparison with existing literature [45]. The peaks
of graphite powder were identified as (002) and (004) at (2θ) = ~26◦ and 54◦, respectively
(Figure 4d). The phase analysis of graphite powder is in agreement with existing litera-
ture [46]. All five diffraction peaks of TiC (111), (200), (220), (311), and (222) were detected
as belonging to TiC with cubic structure and having lattice parameter a = 4.3254 Å, also in
agreement with the literature [17,47]. These phase analyses can be utilized in the phase
validation with the produced composite samples.
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3.2. Characterization of Al 7075-Graphite-TiC Hybrid Composites

The mechanical characteristics of the Al alloy-based composites are influenced not
only by the weight fraction and the nature of reinforcements but also by the distribution
of the reinforcement and the matrix morphology. Hence, the following characterizations
are done to minutely observe the morphology, phase identification, and distribution of the
reinforcements in the matrix.



Materials 2021, 14, 4703 9 of 26

3.2.1. Optical Microscopy Observations

Figure 5 shows optical microscopy images of the matrix Al 7075 and all the synthesized
composite samples. As observed from the image of Al 7075, no pores are present in
the microstructure (Figure 5a). The grain boundaries are visible along with the particle
distributions of the reinforcements within the matrix Al 7075 (Figure 5b). An optical
micrograph of a hybrid composite with 3 wt.% TiC is shown in Figure 6c, where a slight
agglomeration is observed for the graphite particles. Refinement of grains is also observed.
A higher level of agglomeration is exhibited in the 7 wt.% TiC hybrid composite sample.
The distributed nature of the reinforcement plays a decisive role in the enhancement of the
physical and mechanical behavior of the produced composites [34].

Figure 6 illustrates the optical microscopy results of the sintered samples before
and after the microhardness test. The grains and grain boundary of Al 7075 before the
microhardness test are seen in Figure 6a, while Figure 6b depicts the indentation impact on
the surface of the Al 7075. In Figure 6b, the d1 and d2 indicate the length of the diagonal
of the indentation of the indenter. The indentation image for Al/graphite is observed in
Figure 6c, the graphite particles are highlighted in the image. For the hybrid composites,
Al/Gr/TiC is shown in Figure 6d, where the agglomeration of TiC particles is observed.
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3.2.2. XRD of Al/Gr/TiC Hybrid Composites

The X-ray diffractometry technique was used to determine the phase identification
and confirm of the existence of reinforcing particles (Gr and TiC) in the sintered composites.
Figure 7 shows the X-ray diffraction (XRD) patterns of produced Al 7075/Gr composites
and Al 7075/Gr/TiC hybrid composites with varying percentages of graphite.

Materials 2021, 14, x FOR PEER REVIEW 11 of 27 
 

 

 
Figure 7. XRD peak patterns for Al/graphite composites and Al/Gr/TiC hybrid composites with 0, 3 ,5 and 7 wt.% of 
titanium carbide and 1% graphite. 

The presence of Al 7075, Gr, and TiC in the produced hybrid composite samples is 
confirmed by their respective peaks in the XRD plot indicated by blue, green, and red 
colored lines. The highest peak is observed in Al 7075, accompanied by TiC and graphite. 
The findings are consistent with previously published research [48–50]. 

3.2.3. EDS Analysis of Matrix Al 7075 and Hybrid Composites 
The energy dispersive spectroscopy (EDS) analysis of the matrix powder Al 7075 

(Figure 8) confirmed the presence of all the major alloying elements (Zn, Mg, and Cu) in 
the Al 7075 alloy powder, however, alloying elements of less than 0.1 wt.% are not de-
tected in the image due to their low content. It is also observed that a small peak of oxygen 
is present in the Al 7075 EDS spectrum. The EDS analysis of hybrid composites (Al 7075 + 
3 wt.% TiC + 1 wt.% Gr) was done to validate the presence of the Al 7075matrix and TiC 
and graphite reinforcements within the developed hybrid composites (Figure 9). It is ob-
served that the spectrum of Al, Ti, and C peaks confirms the presence of Al, TiC, and 
graphite in the sintered hybrid composite samples. 

Figure 7. XRD peak patterns for Al/graphite composites and Al/Gr/TiC hybrid composites with 0,
3, 5 and 7 wt.% of titanium carbide and 1% graphite.



Materials 2021, 14, 4703 11 of 26

The presence of Al 7075, Gr, and TiC in the produced hybrid composite samples is
confirmed by their respective peaks in the XRD plot indicated by blue, green, and red
colored lines. The highest peak is observed in Al 7075, accompanied by TiC and graphite.
The findings are consistent with previously published research [48–50].

3.2.3. EDS Analysis of Matrix Al 7075 and Hybrid Composites

The energy dispersive spectroscopy (EDS) analysis of the matrix powder Al 7075
(Figure 8) confirmed the presence of all the major alloying elements (Zn, Mg, and Cu) in the
Al 7075 alloy powder, however, alloying elements of less than 0.1 wt.% are not detected in
the image due to their low content. It is also observed that a small peak of oxygen is present
in the Al 7075 EDS spectrum. The EDS analysis of hybrid composites (Al 7075 + 3 wt.%
TiC + 1 wt.% Gr) was done to validate the presence of the Al 7075 matrix and TiC and
graphite reinforcements within the developed hybrid composites (Figure 9). It is observed
that the spectrum of Al, Ti, and C peaks confirms the presence of Al, TiC, and graphite in
the sintered hybrid composite samples.

It is observed that the spectrum of Al, Ti, and C peaks confirms the presence of Al, TiC,
and graphite in the sintered hybrid composite samples. The peaks of alloying elements Cu,
Zn, and Mg were distinctly detected in the hybrid composite sample. However, oxygen
peaks were also observed and are attributed to the formation of oxides during the sintering
process. The respective composition of alloying elements are presented in Table 5.
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Table 5. Elements present in (Al 7075 + 3 wt.% TiC + 1 wt.% Gr) hybrid composites.

Elements Weight% Atomic%

C 13.65 22.60
O 9.50 13.84

Mg 1.65 1.58
Al 66.35 57.32
Ti 3.90 2.87
Cu 1.26 0.46
Zn 3.69 1.33

Total 100 100

3.2.4. Sintered Density, Porosity, and Densification Factor

The variation of theoretical and sintered density of Al 7075/TiC/Gr composites is
depicted in Figure 10a. The theoretical density (TD) signifies the density of composites with
no cavities, i.e., the highest densification in the theoretical state, it is substantially higher
than the experimental density. It is observed that the theoretical density of Al 7075/graphite
composites (sample C1) slightly decreases as compared to neat aluminum (sample C0).
The calculation of TD of composites has been done by the rule of mixtures, and the decline
in the theoretical density of composite is attributed to the lower density of graphite as
compared to aluminum. It is clear from the theoretical density curve (Figure 10a) that
the addition of TiC particles to the aluminum matrix improves the density of the hybrid
composites (samples C2, C3, and C4) because the TiC particles possess higher density
than the aluminum matrix. An approximate linear drop in the experimental densities is
observed (Figure 10a), the decrease in the experimental density is attributed to the presence
of pores. Similar findings were observed in the literature [51].

Porosity progression with the addition of TiC is portrayed in Figure 10b. As expected,
the porosity increases with the rise of TiC wt.%. High thermal expansion divergence
amongst the Al 7075 matrix and the TiC, and the development of agglomerated particles
are possibly responsible for the progress of porosity. The densification factor indicates the
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densification process during the sintering of the composite samples. It is evident from
Figure 10b that the densification of the compacts changes as the content of TiC varies. It
can be observed that the addition of TiC increases the densification factor of the composites
because of the compressibility.
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Figure 10. Plot for (a) variation of theoretical and sintered density with addition of reinforcements; (b) variation of porosity
and densification factor as a function of wt.% of reinforcements.

The balanced distribution of TiC and graphite (carbon) in the matrix Al 7075 can be
seen from the elemental mapping analysis (Figure 11). As a result, the EDS and elemental
mapping analyses confirm that the composite was successfully synthesized with an even
and random distribution of TiC and graphite in the Al 7075 matrix. The presence of oxygen
is attributed to the formation of Al-oxides during blending and sintering.
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3.3. Response Surface Model Development

To investigate the effect of process parameters (i.e., TiC wt.%, compaction pressure,
and sintering temperature) on the density and microhardness, a response surface method-
ology was adopted. The Box-Behnken design (BBD) interface of RSM has been used for
the experimental design. Table 4 presents a design of the experiment for three variables
with coded values and experimentally obtained responses value from conducting a total of
17 statistically designed experiments. The next stage is to use the most extensively used
second-order polynomial response surface function to take the datasets of independent
variables (x) and the corresponding output (R) to evaluate the coefficients of the model,
identify interactions amongst those independent variables, ascertain the curvature, op-
timize the process, and find a suitable model to predict the density and microhardness.
The model utilized in this investigation is the quadratic polynomial expressed by the
following equation:

R = βo +
3

∑
i=1

βixi +
2

∑
i=1

3

∑
i=j+1

βijxixj +
3

∑
i=1

βiix
2
i (3)

where R is the response value, βo denotes the fixed response value, βi, βij, and βii repre-
sents the coefficients of linear, interactive, and quadratic parameters, respectively. ANOVA
is a statistical analysis method for analyzing experimental data that evaluates the propor-
tion of the impact of one or more factors on overall variation [52], applying ANOVA is the
most consistent approach to assess the quality of a fitted model.

3.4. Effect of Process Parameters on Characteristics of Synthesized Composites
3.4.1. Effect of Process Variables on Microhardness

The relationship between the response (microhardness) and independent variables
was evaluated by Equation (2). The equation is produced in terms of coded factors,
and it predicts the response for presented levels of all the factors. The developed RSM
model for microhardness was evaluated at a 95% confidence interval for its algorithmic
significance [53]. The coded equation analyzes the coefficients of the variables to establish
the comparative effect of parameters. The reciprocal and direct relationships of respective
parameters with the response surface are represented by the negative and positive signs in
the equation, respectively:

Microhardness = +73.1 + 4.775 × A + 1.0875 × B + 3.4125 × C + 2.325 × AB + 1.98 × AC − 0.45 × BC −
4.25 × A2 − 0.325 × B2 + 2.73 × C2 (4)

Table 6 summarizes the findings of ANOVA and the F-Test utilized for evaluating the
statistical significance of the aforesaid quadratic model. The modest Fisher’s F-Test value
(F = 24.46) with a lower possibility value (p-value) > F (0.0002) demonstrates the superior
statistical significance of the regression model to signify the real relationship between the
achieved experimental data of microhardness and three variables with a fewer chance. If
the probability values (p-values) of the process variables (i.e., individual, interaction, and
quadratic terms) in the design model of a specific response of interest are found to be less
than 0.05, then they are considered statistically considerable.

The statistically significant terms are observed to be A (TiC content), C (sintering
temperature), AB (interaction of TiC content and compaction pressure), AC (interaction
of TiC content and sintering temperature), A2 (quadratic term of TiC content), and B2

(quadratic term of compaction pressure). The relatively high influence of reinforcement
content on the microhardness of the analyzed specimens is consistent with a few previous
investigations [54]. The lack of fit F-value of 1.19 implies the lack of fit is not significant
relative to the pure error. There is a 41.93% chance that a lack of fit F-value this large could
occur due to noise. Non-significant lack of fit implies that the contribution of the chosen
variable is adequately high for producing the full model, and thus it is recommended. Thus,
the achieved outcomes are in good agreement with previously reported literature [34,45].
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The correlation coefficient (R2) of 0.9692 indicates that the model developed is accurate
and closely fits the experimental data. The adjusted R2 of 0.9296 is reasonably close to
the predicted R2 of 0.8420. The difference between adjusted R2 and predicted R2 was
obtained to be 0.08, which is inside the acceptable range (<0.2) for a developed model.
The predicted R2 indicates how well the developed model responds to new observations
and whether the model is simple or complicated. As a result, in statistics, adjusted R2 and
predicted R2 are more desirable attributes for the goodness of fit. In the present study, all
the R2 characteristics were near to 1, implying that the data and models generated were
incredibly significant.

Table 6. ANOVA table for microhardness acquired from (BBD) RSM.

Response Source Sum of Squares DOF Mean Square F-Value p-Value

Micro
hardness Model 426.24 9 47.36 24.46 0.0002 significant

A-TiC Content 182.41 1 182.41 94.21 <0.0001
B-Compaction

Pressure 9.46 1 9.46 4.89 0.0627

C-Sintering
Temperature 93.16 1 93.16 48.12 0.0002

AB 21.62 1 21.62 11.17 0.0124
AC 15.60 1 15.60 8.06 0.0251
BC 0.8100 1 0.8100 0.4184 0.5384
A2 76.05 1 76.05 39.28 0.0004
B2 0.4447 1 0.4447 0.2297 0.6463
C2 31.27 1 31.27 16.15 0.0051

Residual 13.55 7 1.94

Lack of Fit 6.39 3 2.13 1.19 0.4193 not
significant

Pure Error 7.16 4 1.79
Cor Total 439.80 16

R2 = 0.9692, Adj. R2 = 0.9296 and Pred. R2 = 0.8420.

3.4.2. Effect of Process Variables on Density

Analysis of variance (ANOVA) and a lack of fit test (LOF) was performed to justify
the model’s adequacy. According to results of the ANOVA analysis (Table 7), the model
regression coefficient of determination (R2) of 0.9295 for sintered density was in good
agreement with the experimental outcomes, indicating that the model can explain 92.95%
of the variability, leaving 7.05% residual variability for output (density). The design model’s
final quadratic equation (Equation (3)) with the three independent variables and dependent
response (density) can be represented as:

Density = 2.846 + 0.0325 × A + 0.01125 × B + 0.04875 × C − 7.13 × 10−16 × AB + 0.03 × AC
+ 0.0075 × BC − 0.05675 × A2 − 0.04425 × B2 + 0.03075 × C2 (5)

From Table 7 it is observed that p-value for the model is less than 0.05, indicating the
model is significant. Also, A, C, AC, A2, B2, and C2 are the significant model terms. The lack
of fit F-value equal to 0.6735 implies that the LOF is low as compared to the absolute error,
hence non-significant. A non-significant LOF value indicates that the specified variable’s
involvement is sufficient for generating the full model. The ANOVA results revealed that
the model is vastly significant (p-value < 0.002). In previously reported research, a high
coefficient of determination closer to 1 is desirable.
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Table 7. ANOVA table for density obtained from (BBD) RSM.

Response Source Sum of Squares DOF Mean Square F-Value p-Value

Density Model 0.0580 9 0.0064 10.26 0.0028 significant
A-TiC Content 0.0085 1 0.0085 13.46 0.0080
B-Compaction

pressure 0.0010 1 0.0010 1.61 0.2447

C-Sintering
Temperature 0.0190 1 0.0190 30.28 0.0009

AB 0.0000 1 0.0000 0.0000 1.0000
AC 0.0036 1 0.0036 5.73 0.0478
BC 0.0002 1 0.0002 0.3584 0.5683
A2 0.0136 1 0.0136 21.60 0.0023
B2 0.0082 1 0.0082 13.13 0.0085
C2 0.0040 1 0.0040 6.34 0.0399

Residual 0.0044 7 0.0006

Lack of Fit 0.0015 3 0.0005 0.6735 0.6118 not
significant

Pure Error 0.0029 4 0.0007
Cor Total 0.0624 16

R2 = 0.9295, Adj. R2 = 0.8389 and Pred. R2 = 0.7410.

3.4.3. Assessment of Actual and Predicted Responses (Density and Microhardness)

To verify the adequacy of the developed model, the predicted versus actual responses
were plotted. The RSM model’s effectiveness for the responses was tested by putting
the data in the developed model. As illustrated in Figure 12, the experimental results
are compared with the predicted data derived from the analysis. The predicted value
points have been observed to be evenly dispersed, close to the parity line, and showed a
straight-line fit. This adds credence to the model’s robustness. The proposed quadratic
models for the responses performed effectively with an insignificant lack of fit and had
no issues in predicting the response values, as evidenced by the minimum spread of the
predicted data points in both cases [55].
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3.5. Response Surfaces Interaction of RSM Model
3.5.1. Effect of the Parameters and Their Interaction on Density

The regression findings for the density response are shown graphically in Figure 13a–c,
as a three-dimensional (3D) response surface plot. The effects of compaction pressure
and reinforcement content (TiC wt.%) on the density, as well as the interaction between
these parameters, are portrayed in Figure 13a. The findings indicate that TiC wt.% had
a significant effect on the density of the synthesized composites. This effect is attributed
to the addition and Well distribution of high-density reinforcement (TiC particles) within
the lighter matrix Al 7075. Several studies have also revealed that the content of the TiC is
directly proportional to the density of the metal matrix composites [51,56,57]. Remarkably,
no significant interaction was witnessed between the compaction pressure and TiC content
(p = 1, Figure 13a).

A 3D surface plot encapsulating the effects of the sintering temperature and TiC wt. %
on the sintered density is exhibited in Figure 13b. The density of the synthesized composites
also increased with increasing sintering temperature from 500 to 650 ◦C (Figure 13b). The
increase in sintered density with sintering temperature is attributed to the reduction in
porosities between the matrix and the reinforcements. The maximum density increment
in composites as compared to the Al 7075 matrix was achieved (4.2%) at 650 ◦C sintering
temperature and 7 wt.% TiC contents. Previous investigations have observed similar
findings [58,59]. Sintering temperature also improves the other mechanical properties
(tensile strength, fracture toughness, microhardness) of various composites. Furthermore,
the 3D graph (Figure 13b) depicts that the sintered density was considerably influenced by
both factors. However, the sintering temperature had a greater effect than the TiC content.
A significant interaction was observed between the sintering temperature and titanium
carbide (p = 0.0478, Figure 13b)

The effects of compaction pressure and sintering temperature on the sintered density
are shown in Figure 13c. The sintering temperature affects more as compared to the
compaction pressure at higher reinforcement content. This is attributed to the removal
of porosities from composites, at higher sintering temperatures. The combined effect of
the compaction pressure and sintering temperature were insignificant as (p > 0.05). The
response surface interactions acquired are in agreement with the ANOVA results and were
observed to be coherent with the literature [54,60].

3.5.2. Effect of the Parameters and Their Interaction on Microhardness

The response surface plots for the variation of microhardness with sintering tem-
perature, compaction pressure, and TiC wt.% content are presented in Figure 14. The
TiC content, sintering temperature, and compaction pressure have a positive effect on
the microhardness as shown in Figure 14, the reinforcement (TiC) content is the more
effective parameter. The surfaces of the output better signify the capability of an individual
parameter to affect the microhardness. It is observed from the 3D response surface plots
of Figure 14a,b, TiC concentration is revealed to have the most significant effect on the
microhardness of the developed composites, followed by the sintering temperature and
compaction pressure. Experimental investigations performed by many researchers have
concluded that the TiC concentration is directly proportional to the microhardness of Al
alloy-based composites [45,47]. Hence, the results achieved in the present study are anal-
ogous to previous investigations. Figure 14a represents the interaction between the TiC
content and compaction pressure, and it is found to be significant (p < 0.05) as observed
from ANOVA (Table 6).
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Sintering temperature has a significant effect on the microhardness of synthesized
composites. The effect of sintering temperature on the response is presented in Figure 14b,c
as a 3D surface plot. It is observed that with the increase in temperature the microhardness
increases. This is attributed to the more effective activation of the sintering mechanism
and hence the density of the composites is improved and consequently the microhardness
increases. Thus, the sintering temperature is the most significant parameter as the p-
value is less than 0.05 (Table 6). The interaction between sintering temperature and TiC
concentration, presented in Figure 14b, is also significant (p < 0.05).

The effect of the compaction pressure and sintering temperature on the microhardness
is shown in Figure 14c. The compaction pressure is the least significant parameter among all
three process variables. Thus, the interaction between compaction pressure and sintering
temperature is not significant (p > 0.05).

3.6. Desirability Based Response Optimization

An optimization process was done after an effective analysis of the response model.
The optimization of process parameters for the development of hybrid composites with
improved mechanical properties has been carried out through the RSM technique of the
Design-Expert 12 software (Stat-Ease, Inc. Minneapolis, MN, USA, v12). To achieve
optimum input parameters to maximize the responses, the ranges, and goals of input
variables viz. TiC concentration, compaction pressure, sintering temperature, and the
output parameters density and microhardness are illustrated in Table 8.

Table 8. Pre-set goals of input parameters and responses for desirability.

Parameters Pre-Set Goal Lower Limit Upper Limit Level of Importance

TiC Content is in range 3 7 3
Compaction pressure Target = 300 250 350 3
Sintering temperature Target = 580 550 650 3

Microhardness Maximize 63.1 82.2 5
Density Maximize 2.71 2.95 5

A set of five optimal solutions is derived for the given input constraints for density
and microhardness using the Design-Expert software as given in Table 9. The optimal
solution for the desired response is chosen from a range of conditions with the highest
desirability value. Table 9 depicts the ideal set of conditions with the highest desirability
function. As it is observed from the ramp function graph (Figure 15), the TiC concentration
of 6.79 wt.%, compaction pressure of 300 MPa, the sintering temperature of 626 ◦C are the
optimum process variables used to get the enhanced density 2.87 g/cm3 and microhardness
77.42 VHN of the synthesized composites. The desirability, in general, varies from 0 to 1
depending upon the closeness of the output to the set target.

Table 9. Numerical optimization solutions with desirability.

No of Solutions TiC (wt.%) Compaction
Pressure (MPa)

Sintering
Temperature (◦C)

Density
(g/cm3)

Micro-Hardness
(VHN) Desirability

1 6.793 300.000 626.130 2.877 77.418 0.727
2 6.761 300.001 625.606 2.877 77.362 0.727
3 6.846 300.001 626.562 2.877 77.437 0.726
4 6.740 300.001 625.536 2.878 77.369 0.726
5 6.739 300.001 624.397 2.875 77.191 0.726
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The ramp function and bar graphs are shown in Figures 15 and 16, illustrating the
desirability of the output responses. For each response characteristic, the dot on each ramp
depicts the variable setting or response predictions. The size of the dot indicates how
desirable it is. Because the weight for each variable has been set to one, a linear ramp
function was produced between the minimal value and the goal or the maximum value
and the goal.
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The overall desirability function of each response is illustrated by a bar graph (Figure 16)
which displays how well each variable meets the requirement; values close to one are con-
sidered satisfactory. The desirability of individual responses was obtained by employing the
desirability estimation profiler. By using a separate model for each response, this desirability
prediction function can perform simultaneous optimization of many solutions. The desirabil-
ity function (0.727) reflects the good suitability of process variables to achieve a better response
within the given preset target, hence it is confirmed that the response surface methodology is
a useful technique for determining the optimized solutions for a specific problem.

Figure 17 demonstrates the influence of input process factors on the desirability, as
well as overall 3-D and contour plots with TiC content as the actual factor. The near-optimal
zone was displayed on the top region of the contour plot.
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It is evident from the plot that the optimum conditions are desired at the compaction
pressure range of 290–310 MPa and sintering temperature range of 610–630 ◦C at the
constant TiC 6.79 wt.% with desirability varying between 0.625–0.727. This shows that the
optimum parameters (i.e., maximum density and microhardness) might be attained within
the parameters mentioned above

3.7. Experimental Verification on Optimized Conditions of Process Variables

For additional validation of the developed models, a confirmation test was carried
out by adding the optimized input parameters. Table 10 presents the comparisons between
the experimental and predicted values. It is observed that the experimental values are rea-
sonably close to the predicted values, with just a minimum error of below 3%. This shows
that the model can effectively predict the microhardness and density values. Therefore, it
can be established that the newly developed model is a satisfactorily accurate model for
predicting the response and can be applied to simulate the density and microhardness for
any newly synthesized formulation under similar experimental conditions.
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Table 10. Experimental verification results comparison.

Run Microhardness Density

Experimental Predicted % Error Experimental Predicted % Error

1 76.38 77.42 1.36 2.79 2.87 2.86
2 75.82 77.42 2.19 2.85 2.87 1.75
3 74.23 77.42 4.2 2.83 2.87 1.41
4 75.47 77.42 2.58 2.81 2.87 2.13

Mean 2.58 2.03

4. Conclusions

The current study explores the synthesis, microstructural characterization, modeling,
and optimization of Al 7075-Gr 1 wt.%-TiC x wt.%, TiC (x = 3, 5, and 7%) sintered hybrid
composites, produced via a powder metallurgy technique. The microstructural characteris-
tics of base materials and synthesized composites were investigated by optical microscopy,
scanning electron microscopy (SEM), X-ray diffraction (XRD) and energy dispersive X-ray
spectroscopy (EDS) elemental mapping. The effect of input process variables (i.e., TiC
concentration, sintering temperature, compaction pressure) on sintered density and mi-
crohardness characteristics has been examined. For the experimental design, modeling,
and optimization of processing parameters, the RSM modeling approach was utilized. The
produced hybrid composites have superior density and microhardness as compared to the
matrix Al 7075.

The presence of TiC is the most significant parameter for enhancement in density and
microhardness. The EDS analysis and elemental mapping verified the several alloying
elements in the base matrix Al 7075 and synthesized Al 7075/TiC/Gr hybrid composite.
The optical microscopy and FESEM analysis of the synthesized samples confirmed the
proper dispersion of reinforcements within the matrix. The grain refinement improves with
increasing content of TiC particles. An effective model has been successfully developed by
RSM, that correlates several environmental factors with density and microhardness. The
developed models have excellent agreement among experimental and predicted values.
The quadratic model proposed by the BBD tool of RSM is utilized to optimize the process
variables. The AVONA table generated and found the model to be significant for both the
responses. A set of 17 experiments were performed for optimization study at different
combinations of process variables. The developed model accurately predicted the optimal
conditions for high density and microhardness. A maximum sintered density of 2.87 g/cm3,
and microhardness of 77.41 VHN were achieved using the optimized conditions of a TiC
content of 6.79 wt. %, a sintering temperature of 626.13 ◦C, and compaction pressure of
300 MPa. All the selected process variables were shown to have a significant effect on both
the responses, although the TiC concentration and sintering temperature had the most
noticeable effects. In a nutshell, the Al 7075–6.7 wt.% TiC–1 wt.% Gr hybrid composite has
shown to be a highly effective material for potential aerospace applications. The research
outcomes along with RSM models and multi-response optimization will provide a useful
guidance in selecting process parameters and the result will be a good technical database for
the aerospace, and military applications in fabrication and performance evaluation aspects.
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