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Colorectal cancer stem cells (CRCSCs) can actively self-renew, as well as having
multidirectional differentiation and tumor regeneration abilities. Because the high
functional activities of CRCSCs are associated with low cure rates in patients with
colorectal cancer, efforts have sought to determine the function and regulatory
mechanisms of CRCSCs. To date, however, the potential regulatory mechanisms of
CRCSCs remain incompletely understood. Many non-coding genes are involved in tumor
invasion and spread through their regulation of CRCSCs, with long non-coding RNAs
(lncRNAs) being important non-coding RNAs. LncRNAs may be involved in the colorectal
cancer development and drug resistance through their regulation of CRCSCs. This review
systematically evaluates the latest research on the ability of lncRNAs to regulate CRCSC
signaling pathways and the involvement of these lncRNAs in colorectal cancer promotion
and suppression. The regulatory network of lncRNAs in the CRCSC signaling pathway
has been determined. Further analysis of the potential clinical applications of lncRNAs as
novel clinical diagnostic and prognostic biomarkers and therapeutic targets for colorectal
cancer may provide new ideas and protocols for the prevention and treatment of
colorectal cancer.
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INTRODUCTION

Colorectal cancer (CRC) is the third leading cause of cancer-related deaths worldwide, with its high
recurrence and metastasis rates being the main reasons for poor prognosis (1, 2). Colorectal cancer
originates from the colorectal mucosal epithelium and glands, and the development and progression
of CRC is a multi-step, multi-stage and multi-gene process, involving the progression from
hyperplasia to adenoma to carcinoma. This process includes the transformation of colonic
epithelial cells into adenocarcinoma cells resulting from genetic and epigenetic instability; and
the remodeling of the surrounding stromal tumor microenvironment (3).

Tumors are diseases that involve cell proliferation and differentiation. The biological
characteristics of tumors include continuous cell proliferation and poor differentiation, as well as
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the ability to invade and metastasize to other sites (4). Cancer
stem cells (CSCs), an important component of the tumor
microenvironment, constitute a small subpopulation of cancer
cells (5). CSCs are a class of tumor cells that initiate and maintain
tumor growth with stem cell-like property, or “stemness”,
involving self-renewal and multidirectional differentiation, and
participate in tumorigenesis, progression, recurrence, metastasis
and resistance to chemotherapy (6). Stemness is not only
considered an inherent cellular property is also as a property
of cell populations that are highly dependent on environmental
conditions (7).

Long non-coding RNAs (lncRNAs), a class of related genomic
regulators that are involved in a wide range of biological
processes, play an important role in the origin and malignant
progression of tumors. LncRNAs can function in cis, near their
own transcription sites, or in trans, at distant genomic or cellular
locations (8). Various lncRNAs have been shown to regulate gene
expression at multiple levels , including epigenetic,
transcriptional, and post-transcriptional regulation (9).
Multiple lncRNAs bring other regulatory molecules (e.g.,
mRNAs, miRNAs, and DNA) into close proximity with one
another and with proteins (e.g., chromatin modifying complexes,
transcription factors, E3 ligases, and RNA-binding proteins
(RBPs)), essentially creating a flexible molecular scaffold that
fosters the chemical interactions required to maintain cellular
activity (10).

Many studies have been performed to determine the
biological relevance of lncRNAs to CSCs. To date, lncRNAs
have been found to be involved in the regulation of multiple
functions of CSCs, possibly by regulating key factors of multiple
pathways, such as transcription factors, miRNAs, exosomes, and
cell modifying enzymes (11). This review provides a
comprehensive analysis of lncRNAs that regulate CRCSCs and
their mechanisms of action. Analysis of these regulatory activities
of lncRNAs may provide basic principles for the study of the
molecular mechanisms of CRCs and new clinical treatment
strategies targeting CRCSCs with lncRNAs.
COLORECTAL CANCER AND CANCER
STEM CELLS

Pathogenesis and Influencing Factors of
Colorectal Cancer
Two hypotheses have been advanced regarding tumor origin and
the mechanism of tumorigenesis, the “clonal evolution”
hypothesis theory and the “cancer stem cell” hypothesis.
Traditionally, tumorigenesis is regarded as a process of clonal
evolution, involving the accumulation and evolution of multi-
stage mutations in somatic cells over about 10-15 years (12).
CRC is a representative tumor characterized by the accumulation
of mutations, including the activation of oncogenes, such as
KRAS, MYC, and EGFR; the inactivation of anti-cancer genes,
such as APC, DCC, and TP53; mutations in mismatch repair
genes, such as MLH1, MSH2, PMS1, and PMS2; and the
overexpression genes such as PTGS2 and CD44 (13). However,
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the “clonal evolution” hypothesis cannot satisfactorily explain
the mechanism of tumorigenesis.

The “cancer stem cell” hypothesis has therefore been
advanced to explain tumorigenesis. This hypothesis suggests
that CSCs are the only populations in tumor tissue of tumor
origin and propagation, and that these cells maintain the
malignant phenotype of tumor cells (14). The first CSCs in
gastrointestinal tumors were identified in 2007 in CRC.
Moreover, CSCs were found to play a variety of roles in the
development and progression of CRC (15, 16).

The “cancer stem cell” and “clonal evolution” hypotheses,
however, are not mutually exclusive. CSCs are the cells of origin
during the initial stage of tumorigenesis. During tumor
progression, CSCs accumulate mutations and are subjected to
clonal evolutionary effects. This results in the continuous
differentiation of CSCs into tumor cells with stronger invasive
and metastatic properties and a greater selective growth
advantage, with these cells becoming the dominant cell
population, eventually resulting in tumor formation (17). Both
mechanisms therefore operate during tumor development and
progression, with their main dominant roles shifting over time
and space, ultimately determining the characteristic changes at
different stages of tumor development.
Functions and Characteristics of Cancer
Stem Cells
CSCs can originate from three main sources: 1) normal intestinal
stem cells (ISCs) that undergo oncogenic transformation to
produce CSCs; 2) progenitor cell dedifferentiation into cells
with more stem cell-like characteristics; 3) and self-renewal of
CSCs (4).

Human CRCSCs, located in colonic crypts, were originally
isolated based on their expression of CD133. These cells have
been shown to induce tumors similar to primary malignancies in
mice (15, 16). CSCs are dynamic, rather than static, populations
that are subject to constant change due to multiple external and
intrinsic factors, and may vary in number and phenotype during
tumor progression. Therefore, tumor expression of CSC markers
should not be considered a general property of the tumor, but
rather a property that can change over time. CRCSC markers
identified to date include EphB2high (18), EpCAMhigh/CD44+/
CD166+ (19), CD133+ (15, 16), CD26+ (20), ALDH+ (21), LGR5+

(22) and CD44v6+ (23, 24). The ideal markers for CSCs are those
required to maintain their stemness. However, the surface
markers of CRCSCs identified to date are also expressed by
normal ISCs, indicating that these surface markers cannot easily
distinguish CSCs from tumor cells, thus limiting the clinical
application of surface markers as potential therapeutic targets.

CSCs have multiple biological properties, including
heterogeneity and plasticity. Tumor heterogeneity is key to the
high recurrence rate and refractoriness to treatment of common
tumors. Tumor heterogeneity may be intra- or inter-tumor, in
that different patients with the same pathological type of tumor
may have different genotypes, or multiple primary tumors of the
same type in an individual may have different genotypes (25).
Inter-tumor heterogeneity mainly depends on the regulation of
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gene expression and methylation, whereas intra-tumor
heterogeneity is mainly due to multiple gene mutations (26).
The phenotypic and functional heterogeneity of CSCs are
thought to be associated with the high recurrence rate and
heterogeneity of cancers (27). Tumor heterogeneity can be
evaluated by single-cell sequencing.

The plasticity of CSCs refers to their ability to switch between
different functional states, including quiescent/proliferative,
drug-sensitive/resistant, symmetric/asymmetric division,
epithelial-mesenchymal transition/mesenchymal-epithelial
transition, and stem/non-stem states. CSC plasticity plays an
important role in tumor progression, metastasis and
chemoresistance, facilitating the adaptation of these cells to
their changing microenvironment (28). Both tumor
heterogeneity and plasticity are driven by a combination of
genetic, epigenetic, and microenvironmental factors that
together lead to functional diversity at the intertumor,
intratumor, and subclonal levels. The plasticity of CSCs can
complicate clinical treatment, with the number of CSCs in CRC
and other tumors significantly increasing after chemotherapy or
radiation treatment. Treatment with cytotoxic antitumor agents,
which initially target proliferating CSCs, may result in the partial
selective survival of quiescent CSCs, with multiple cycles of
treatment enhancing CSC proliferation and self-renewal (29,
30). Targeted CSC treatment may also enhance CSC
regeneration, as non-stem cells have the ability to reconstitute
CSCs. Targeted therapies may also induce a reactive response,
leading to the resurgence of more aggressive tumors. During or
after treatment, stresses on microenvironmental signaling and/or
mutations in drug-resistant genes may give rise to CSCs with
new functional properties. The interconversion of CSCs and
transitionally expanded progenitor cells suggests that more
aggressive clones may be randomly selected at both levels (7).
Regeneration of CSCs after treatment may be inhibited by
combining CSC-targeted therapy with drugs that inhibit
microenvironmental or epigenetic mechanisms. Thus,
interfering with tumor cell plasticity may provide new
strategies for maintaining the activity of conventional and
targeted anticancer drugs.

Regulation of Colorectal Cancer by
Cancer Stem Cells
CSCs have been found to regulate pathophysiological processes
during various stages of CRC, including the regulation of
metastasis (31). Metastasis is a major cause of CRC-related
deaths and determines overall disease survival and prognosis.
The epithelial mesenchymal transition (EMT) is an important
pathological process associated with tumor metastasis and is
closely related to the acquisition and maintenance of CSC
properties and drug resistance. EMT is thought to transform
epithelial cells into mesenchymal cells with stem cell-like
properties and convert non-CSCs into CSCs. Thus, tumor cells
that undergo EMT can acquire the properties of CSCs (32–34).
CSCs spread and metastasize after EMT, and become circulating
tumor cells (CTC) with stem cell-like properties, while
maintaining their self-renewal capacity, heterogeneity acquired
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from asymmetric division, and plasticity to adapt to new
environments. This connection suggests that heterotypic
signals that trigger EMT, such as those released by activated
inflammatory substrates, may also be important for the creation
and maintenance of CSCs.

CSCs are also involved in the mechanism of CRC resistance to
drugs. Cancer cells with EMT characteristics were found to be
resistant to chemotherapy, and cancer cells resistant to drugs
were found to have EMT characteristics. Drug resistance
mechanisms associated with CSCs mainly include: 1) enhanced
ability to repair damaged DNA, 2) high expression of ABC
transports and ALDH enzymes that promote drug efflux, 3)
increased expression of anti-apoptosis proteins, and 4) a resting
and slow proliferation due to being in G0 phase (35).
Conventional anti-cancer therapies cannot eradicate CSCs, and
drug pressure induces more rapid gene mutations in CSCs, often
increasing their number and enabling them to eventually adapt
to the selection pressures imposed by treatment, leading to
cancer recurrence and further drug resistance. However, it is
worth noting that not all drug-resistant cells are CSCs, as tumors
have specific resistance mechanisms against each drug, not
necessarily through stemness pathways.

Factors Influencing the Function of Cancer
Stem Cells
The functional properties of CRCSCs are influenced and
regulated by multiple pathways. Exogenous signaling molecular
systems from the stem cell microenvironment and endogenous
stem cell factors (e.g., transcription and epigenetic factors)
integrate with each other to coordinate stem cell proliferation,
suppress the expression of key differentiation genes, maintain the
undifferentiated state of stem cells, and regulate the
differentiation potential and progression of stem cells through
multiple signaling networks and interactions. Transcription
factors involved in regulating the undifferentiated state of stem
cells include Oct4, Sox2, Nanog, KLF4, and STAT3 (36–40), and
signaling pathways involved in regulating the homeostasis of
CSCs include the Wnt, Notch, Hedgehog and TGF-b/BMP
pathways (41–44). Ongoing research on the crosstalk among
oncogenic developmental signaling pathways mentioned above
and between these pathways and other oncogenic pathways (e.g.
the TNF-NF-kB, KRAS-RAF-MAPK, PI3K-AKT-mTOR and
BCR-ABL1 cascades) has hinted at their profoundly complex
roles in cancer. Further determination of molecular crosstalk is
important for the development of therapeutic strategies targeting
CSCs and may uncover opportunities to inhibit multiple
cascades by directly targeting one. Notably, cancer cells and
CSCs share certain signaling pathways. For example, Wnt
pathway members play a prominent role in the regulation of
CRC cells and malignant stem cells. These cells differ in their
levels of Wnt pathway activation, with CRC cells showing
widespread overactivation of the Wnt pathway in colorectal
cancer cells, whereas most CSCs are in a quiescent state, with
the Wnt pathway being enhanced (41). These findings suggest
that a single signaling pathway can activate different downstream
target genes in various cell types. In addition, pathway activation
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can be positively or negatively influenced by other pathways,
providing further evidence for the complexity of intra- and
extracellular signaling networks.

Mounting evidence has indicated crosstalk between the tumor
and numerous components of its microenvironment, including
stromal cells, the tumor microvasculature, extracellular matrix
(ECM), and the hypoxic microenvironment. A dynamic
microenvironment is critical to maintain the balance of stem
cell self-renewal and differentiation, as well as the stability of the
stem cell population. Stemness arises from the continuous
adaptation of cancer cell populations to microenvironmental
signals. Abnormal activation of signals or structural alterations
in the CSC microenvironment are important stimuli that induce
a malignant phenotype in CSCs.

Non-coding RNAs have been reported to have multiple
regulatory effects on the activity of CSCs, and likely constitute
targets for clinical applications, such as diagnosis and treatment.
Cancer cells with high metastatic potential or resistance to
treatment have been reported to communicate with
neighboring cells through cell-to-cell mediators, called
exosomes, enabling the primary microenvironment to facilitate
the initiation of metastasis or inducing resistance in cells
previously sensitive to drugs (45, 46). LncRNAs can also
participate in intracellular and intercellular communications
and signal ing , a role a lso known as extrace l lu lar
microenvironmental remodeling processes. These lncRNAs
may be packaged into exosomes and transferred to recipient
cells, resulting in the dissemination of stemnesss, which leads to
homogenization and uniformity among tumor cells. Future
studies will likely assess the mechanism by which the
microenvironment influences CSC dynamics and functions,
possibly exposing weak points in CSC survival strategy that
could be exploited therapeutically.
BIOLOGICAL ROLE OF LncRNAs

LncRNAs are a class of RNAs longer than 200 nt that are not
involved in encoding proteins and are located in the nucleus or
cytoplasm of cells. LncRNAs, which have many different origins,
are classified as sense, antisense, bidirectional, intronic, and
intergenic lncRNAs, based on their position on the genome
relative to protein-encoding genes. LncRNAs were initially
thought to be by-products of genomic transcription without
biological function. They were not recognized as an important
new transcript category until large-scale sequencing of the mouse
full-length cDNA library (47). Recent studies have shown that
lncRNAs are able to regulate gene expression at the epigenetic,
transcriptional, post-transcriptional, and translational levels, and
that their functions and mechanisms are related to their genomic
and intracellular localization (9, 10).

LncRNAs in the Cytoplasm
Cytoplasmic lncRNAs exert their biological roles mainly through
two pathways. 1) utilizing complementary base pairing,
cytoplasmic lncRNAs act as molecular sponges to adsorb
Frontiers in Oncology | www.frontiersin.org 4
miRNAs through a competitive endogenous RNA mechanism
(ceRNA), thereby regulating the expression of downstream target
genes at the post-transcriptional level. 2) antisense lncRNAs are
involved in the post-transcriptional or translational regulation of
genes by pair-binding to mRNAs and affecting their translation,
splicing and stability. For example, in prostate cancer, the
lncRNA ARLNC1 interacts with AR mRNA to regulate its
cytoplasmic level, and LincRNA-p21 directly binds to JUNB
and CTNNB1 transcripts to repress the translation of both
(48, 49).

LncRNAs in the Nucleus
LncRNAs in the nucleus can regulate target gene expression at
the transcriptional level by binding transcription factors to the
promoter regions of target genes. Depending on the relative
locations of the lncRNAs and target genes in the genome,
lncRNAs located on the same chromosome as their target gene
are called cis-regulating, whereas lncRNAs located on a different
chromosome as their targets are called trans-regulating (8). In
addition, lncRNAs in the nucleus can recruit chromatin
remodeling complexes that alter chromatin modifications and
structure (e.g. DNA methylation, histone methylation or
acetylation modification) and epigenetically regulate the
expression of target genes (50). LncRNAs have also been found
to interact directly with DNA to form RNA-DNA triplex
structures (51).

LncRNAs in the Cytoplasm and Nucleus
LncRNAs in the cytoplasm and nucleus can act as molecular
scaffolds for complexes, bind to regulatory proteins, such as RNA
binding protein (RBP), influence the formation of protein
polymers, and regulate the activity and localization of proteins.

Many lncRNAs not only have sequence features but also have
higher structural domains (motifs) that provide a basis for
predicting their biological functions. Genetic modification
models such as systemic knockout or overexpression,
conditional knockout or overexpression of lncRNAs in model
animals are critical evidence for studying the function
of lncRNAs.
RESEARCH PROGRESS ON
LncRNAs THAT PARTICIPATE IN
THE REGULATION OF CRCSCs

LncRNAs are expressed in high abundance in CRCSCs, making
their abundance a prerequisite for their wide range of regulatory
roles. This section describes the ability of lncRNAs to regulate
CRCSCs, as well as their mechanisms of action.

LncRNAs Regulate CRCSCs Through
ceRNA Mechanism
LncRNAs have been shown to act as ceRNAs for specific
microRNAs, thus regulating the expression of their
downstream target genes in the cytoplasm (9, 10). For
example, LINC00511 was found to be significantly upregulated
January 2022 | Volume 12 | Article 811374

https://www.frontiersin.org/journals/oncology
http://www.frontiersin.org/
https://www.frontiersin.org/journals/oncology#articles


Fan et al. LncRNAs Regulate Colorectal Cancer Stem Cells
in CRC tissues and cells, acting as an oncogene and upregulating
NFIA through sponge adsorption of miR-29c-3p. NFIA has
oncogenic effects in many human tumors, promoting cell
proliferation, metastasis and stemness, thereby accelerating the
development of CRC (52, 53). The regulatory roles of the
stemness-related proteins Sox-2, Oct-4, CD44 and Nanog on
CSCs were evaluated by observing their change processes (54).
Lin28 is a highly conserved RNA-binding oncoprotein that
promotes CRC progression and metastasis by upregulating
stem cell-related genes and/or by activating the Wnt signaling
pathway (55, 56). The lncRNA PVT1-214 was shown to mediate
the up-regulation of Lin28 mRNA through miR-128, increasing
the expression and stabilization of Lin28 protein and enhancing
the proliferation, invasion and stemness of CRC cells.
Upregulated Lin28 mRNA was also found to suppress the
expression of let-7, a classical oncogenic miRNA targeting RAS
expression, further promoting CRC development (57–59). The
DIS3 like 3’-5’ exoribonuclease 2 (DIS3L2), which is closely
associated with the Lin28/let-7 pathway in several cancers, was
shown to be downregulated by knockdown of lncRNA
AC105461.1, which is located upstream of the DIS3L2
promoter, thereby enhancing the stemness of CRC (60, 61).
The enhancer regions of DIS3L2 and its antisense transcript
AC105461.1 share several transcription factors, suggesting that
the binding of AC105461.1 to DIS3L2 mRNA affects the stability
or promoter activity of the latter, thereby regulating
its expression.

CSCs also play important roles in racial differences in CRC.
Tumorigenesis and progression are two important processes in
tumor biology, and many epithelial tissue tumors, including
CRCs, are generated from a small fraction of CSCs through
oncogenic transformation. LncRNAs not only regulate tumor
progression through CSCs, but also promote tumorigenesis.
CSCs are mainly enriched in colonic mucosal epithelial cells,
and overexpression of miR-1207-5p in normal colonic epithelial
cells promotes the production of CSCs. As a host gene for miR-
1207-5p, PVT1, a lncRNA upregulated in the colon mucosae of
African Americans, increases the proportion of CSCs by
enhancing miR-1207-5p expression and may contribute to the
higher incidence of CRC in African Americans than in whites
(62). Sox2 was found to bind to the PVT1 promoter and enhance
its transcription in breast cancer, suggesting that a similar
positive feedback loop in CRC may promote its stemness
profile (63).

Utilizing the same ceRNA mechanism, additional lncRNAs
were identified in CSCs, including the lncRNA HOXD-AS1,
which mediates the upregulation of astrocyte elevated gene-1
(AEG-1) and enhancer of zeste homolog 2 (EZH2) through miR-
217. The lncRNA HOXD-AS1, which was shown to promote
tumor progression and to be related to poor prognosis in patients
with CRC, may be clinically applied as an indicator of prognosis
in these patients (64). CASC21 was shown to enhance the
expression of human growth hormone 1 (HGH1) by recruiting
the transcription factor POU class 5 homeobox 1B (POU5F1B)
in the nucleus and sponging miR-485-5p in the cytoplasm,
thereby promoting CRC stemness (65). Branched chain amino
Frontiers in Oncology | www.frontiersin.org 5
acid transaminase 1 (BCAT1), which is overexpressed in a
variety of tumors and promotes tumor progression, is
upregulated by TMPO-AS1 through the targeting miR-98-5p,
which in turn promotes CRC cell stemness (66). DPP10-AS1 was
shown to inhibit the proliferation of CRCSCs by regulating miR-
127-3p and adenylate cyclase 1 (ADCY1), and to exert a tumor
suppressor function in CRC (67). DNA-damage-inducible
transcript 4 (DDIT4) and sulfatase 1 (SULF1) have now been
shown to be associated with several types of cancer (68, 69).
TPTEP1 was observed to be high expression in CRCSC-enriched
spheroids. The expression levels of DDIT4 and SULF1 were
significantly positively correlated with TPTEP1, and significantly
negatively correlated with miR-148b-3p. According to the
predicted binding site, these correlations may be explained by
mRNA-miRNA network (70).

The expression of key proteins that regulate CSCs, including
STAT3, Oct4, Sox2, Nanog, Sox9, and MSI1, is, in turn, regulated
by lncRNAs, thereby participating in process by which CSCs
regulate CRC development and progression. STAT3 is an
important transcription factor involved in regulating the
undifferentiated state of stem cells. The lncRNA BCAR4 was
shown to promote CRC stemness by targeting the miR-665/
STAT3 signaling pathway (71). Similarly, MALAT1 was found to
mediate stem cell-like properties and cellular glucose metabolism
in human CRC cells through regulation of the miR-20b-5p/Oct4
axis (72). The oncogenic lncRNA FARSA-AS1 (transcript
antisense RNA) activated by the stemness transcription factor
Sox9 was found to upregulate Sox9 expression through its uptake
of miR-18b-5p, forming a positive feedback loop. By binding
miR-28-5p, Sox9 increases FARSAmRNA levels, thus promoting
CRC growth, stemness and metastasis (73). The RNA-binding
protein MSI1 is a stemness factor important for regulating the
proliferation and differentiation of stem cells and precursor cells
(74). For example, LINC01567 (LOCCS) was found to enhance
the proliferation of CRCSCs and CRC tumorigenesis by targeting
microRNA-93 to upregulate MSI1 (75).

ZEB1 has been shown to enhance BMI-1, Sox-2, and KLF-4
expression by targeting the miR-200 family, which in turn
promotes stemness and tumorigenicity of CSCs (76, 77). The
lncRNA XIST was found to promote EMT, stemness, and
metastasis of CRC by competing for miR-200b-3p, thereby
upregulating ZEB1 expression (78). The lncRNA UICLM
promotes CRC stemness, growth and liver metastasis by
targeting miR-215 to upregulate ZEB2 expression (79).
LINC00657 promotes invasion of CRCSCs by mediating the
upregulation of ZEB1, ZEB2 and Snail2 expression through miR-
203a (80).

Hypoxia in the stem cell niche is important in maintaining
the undifferentiated phenotype of normal stem cells and CSCs
(81). HIF-2a is a key hypoxia-inducible factor in this process and
can interact with various CSC-related pathways, including c-Myc
and Oct4, to regulate stem cell proliferation, differentiation and
pluripotency (82, 83). The lncRNA-HIF2PUT, a transcript
upstream of the HIF-2a promoter, has been found to enhance
these properties of CRCSCs by upregulating the expression of
HIF-2a (84). The lncRNA AK000053 is a novel hypoxia-
January 2022 | Volume 12 | Article 811374
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inducible that affects the expression of calmodulin CDH1,
transcription factor ZEB1, SALL4 and BMI1 through
downregulation of miR-508, thereby defining the stem-like/
mesenchymal subtype and promoting stemness and metastasis
in CRC (85).

Aberrant activation of the Hedgehog pathway is critical for
maintaining the tumorigenic potential and stemness of CSCs.
Members of the Gli family are key downstream factors in the
Hedgehog pathway (86). Upregulation of LINC01106, which
regulates Gli family members through a positive feedback loop,
was found to promote the growth and stemness of CRC.
Moreover, LINC01106 in the cytoplasm acts as a miR-449b-5p
sponge to positively regulate the expression of the protein GLI
family zinc finger 4 (Gli4). Fusion protein (FUS) is a
transcription factor and an RBP associated with a variety of
malignancies (87–89). LINC01106 in the nucleus recruits FUS to
the Gli1 and Gli2 promoters, further activating their
transcription. Because Gli2 is a transcriptional activator in the
upstream promoter region of LINC01106 that promotes
LINC01106 expression, Gli2 mediates the up-regulation of
Gli1, Gli2 and Gli4 through LINC01106 to promote the
growth and stemness of CRC (90).

The miRNAs miR-145 and miR-21 have been shown to
synergistically regulate the proliferation and differentiation of
CRCSCs (91, 92). The lncRNA CCAT2 was found to reduce the
expression of miR-145 by inhibiting its maturation in colon
cancer cells, accompanied by elevated miR-21, which in turn
promotes the activities of CRCSCs. CCAT2 enriched in the
nucleus inhibits the export of pre-miR-145 to the cytoplasm by
blocking Dicer’s cleavage of pre-miR-145 and selectively blocks
the maturation of miR-145 (93). These findings indicate that
lncRNAs do not necessarily regulate miRNA expression through
the ceRNA mechanism.

The main effects of cytoplasmic lncRNAs in CRCSCs, acting
through ceRNA and signaling pathways are summarized in
Table 1 and Figure 1. Because a single mRNA can be targeted
by multiple miRNAs and a single miRNA can target multiple
mRNAs, lncRNAs in CRC cells may be targeted by miRNAs
other than those identified to date.

LncRNAs Regulate CRCSCs Through
Epigenetic Modifications
Epigenetic modifications are stable genetic changes that affect
gene expression and cellular phenotype without altering the
coding gene sequence. These modifications mainly include
changes in chromatin accessibility (chromatin remodeling),
such as histone covalent modifications (e.g., acetylation,
phosphorylat ion, methylat ion, ubiqui t inat ion, and
SUMOization), DNA methylation and non-coding RNA
regulation. The epigenetic pathogenesis of tumors is
characterized primarily by abnormalities in DNA methylation
and histone modifications in tumor cells (27). Epigenetic
modifications regulate the differentiation and development of
CSCs by altering gene transcription and expression. The status of
DNA methylation and histone modifications of functionally
important genes differ in undifferentiated CSCs and CSCs that
Frontiers in Oncology | www.frontiersin.org 6
have entered the differentiation process. This section of the
review will summarize the functional involvement of lncRNAs
in epigenetic modifications in CRCSCs (Table 1, Figure 2).

The highly expressed lncRNA NEAT1 has been found to
promote CRC stemness and 5-fluorouracil (5-FU) resistance
through a chromatin remodeling mechanism. ATAC-
sequencing and other techniques showed that NEAT1
increased the acetylation of histones at ALDH1 and c-Myc
promoters and enhanced the expression of these genes. These
results not only identified a novel role for NEAT1, but may
provide a new strategy for the treatment of 5-FU resistant CRC
(94). The HOX transcript antisense RNA (HOTAIR) was shown
to promote CRC stemness by targeting miR-211-5p to
upregulate fms-like tyrosine kinase-1 (FLT-1) expression (95).
Knockdown of HOTAIR significantly inhibited the proliferation,
migration and invasion of CD133+ CRCSCs isolated by a
magnetically activated cell sorting system (96). A sedentary
lifestyle was observed to promote the release of Hotair in the
form of exosomes from gluteal femoral fat, enhancing the
proliferation of intestinal stem and/or progenitor cells and
the development of CRC. NF-kB has been shown to promote
Hotair transcription in adipose tissue, resulting in the increased
secretion of exosomal Hotair, followed by its circulation in the
blood and partial endocytosis by the intestines, ultimately
promoting the proliferation and stemness of intestinal stem/
progenitor cells by activating the Wnt pathway (97). Several
isoforms of Hotair are also involved in tumor suppressor. For
example, HotairM1, an antisense transcript of the HOXA1 gene
in the homeobox genes (HOX) gene cluster, has been reported to
be aberrantly expressed in a variety of tumors and is a key factor
in tumorigenesis and progression. LncRNA HotairM1 depletion
promotes the self-renewal of human CRC and uveal melanoma
CSCs through the HOXA1-Nanog regulatory loop.
Transcriptome sequencing of CRCSCs enriched in sphere-
forming properties found that lncRNA HotairM1 was the most
significantly downregulated lncRNA involved in the regulation
of CSCs. HotairM1 recognizes and binds to the HOXA1
promoter and competitively inhibits the recruitment of SUZ12
and EZH2, components of the polycomb repressive complex2
(PRC2) in this region. Knockdown of HotairM1 resulted in the
recruitment of SUZ12 and EZH2 to the HOXA1 promoter,
enhancing H3K27 trimethylation. This, in turn, led to the
epigenetic silencing of HOXA1, which promoted the
acetylation of H3K27 at the Nanog enhancer site, resulting in
increased Nanog expression. Increased Nanog expression can
inhibit the acetylation of the HOXA1 enhancer site H3K27,
further suppressing HOXA1 expression and forming a reciprocal
regulatory loop that enhances CRC stemness (98).

Asymmetric cell division is a mode of proliferation unique to
stem cells, generating self-renewing daughter stem cells and
differentiated daughter cells to create cellular diversity (117).
Interfering with asymmetric division can alter the balance of self-
renewal and differentiation of cancer stem cells and affect tumor
growth (118, 119). The Notch pathway is a key regulator of
asymmetric division in many types of normal stem cells (120).
Bu P et al. found that Notch pathway has been shown to regulate
January 2022 | Volume 12 | Article 811374
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TABLE 1 | LncRNAs functioning in CRCSCs.

mechanism Reference

is Post-transcriptional regulation (54)
is Post-transcriptional regulation (57)

NA (60)
PVT1 is the host gene of miR-
1207-5p, transcriptional
regulation

(62)

is Post-transcriptional regulation (64)

is Post-transcriptional regulation (65)

Transcriptional regulation

Post-transcriptional regulation (66)

,
of

Post-transcriptional regulation (67)

Post-transcriptional regulation (70)

Post-transcriptional regulation (71)

Post-transcriptional regulation (72)

is Post-transcriptional regulation (73)

Post-transcriptional regulation (75)

Post-transcriptional regulation (78)

Post-transcriptional regulation (79)

Post-transcriptional regulation (80)

NA (84)
Post-transcriptional regulation (85)

Post-transcriptional regulation (90)

Transcriptional regulation

NA (93)
Histone modification regulation (94)

(Continued)

Fan
et

al.
LncR

N
A
s
R
egulate

C
olorectalC

ancer
S
tem

C
ells

Frontiers
in

O
ncology

|
w
w
w
.frontiersin.org

January
2022

|
Volum

e
12

|
A
rticle

811374
7

LncRNAs Function CRCSCs subtype Targets Signaling pathway effects

LINC00511 Oncogene Sox-2, Oct-4, CD44, Nanog NFIA LINC00511/miR-29c-3p/NFIA Stemness, proliferation, metastas
PVT1-214 Oncogene Sphere formation Lin28 PVT1-214/miR-128/Lin28/let-7 Stemness, proliferation, metastas
AC105461.1 Suppressor CD133, CD44 DIS3L2 AC105461.1/DIS3L2 Inhibition of stemness
PVT1 Oncogene CD44+CD166−, CD44, CD166,

CD133
miR-1207-5p Sox2/PVT1/miR-1207-5p Stemness, incidence of ethnic

differences

HOXD-AS1 Oncogene CD44, CD133, CD24, CD166, Oct4,
LGR5, Sox2, Nanog

AEG-1, EZH2 HOXD-AS1/miR−217/AEG-1,
EZH2

Stemness, proliferation, metastas

CASC21 Oncogene Sphere formation HGH1 Cytoplasm: CASC21/miR-485-
5p/HGH1

Stemness, proliferation, metastas

Nucleus: CASC21+POU5F1B/
HGH1

TMPO-AS1 Oncogene Oct4, Nanog, Sox2 BCAT1 TMPO-AS1/miR-98-5p/BCAT1 Stemness, proliferation, apoptosis
inhibition

DPP10-AS1 Suppressor CD133+ cell sorting, CD44, LGR5,
ALDH1

ADCY1 DPP10-AS1/miR-127-3p/ADCY1 Inhibition of proliferation, migratio
invasion; promotion of apoptosis
CRCSCs

TPTEP1 Oncogene spheroid cells, Oct4, Sox2, c-Myc,
KLF4, Nanog

DDIT4, SULF1 TPTEP1/miR-148b-3p/DDIT4,
SULF1

Stemness

BCAR4 Oncogene ALDH+ cell sorting, Nanog, Oct4,
Sox2, CD44, CD133, LGR5

STAT3 BCAR4/miR-665/STAT3 Stemness

MALAT1 Oncogene CD133, CD44, Oct4, Nanog, Sox2,
Notch1

Oct4 MALAT1/miR-20b-5p/Oct4 Stemness, cellular metabolism

FARSA-AS1 Oncogene ALDH, CD133 Sox9, FARSA Sox9/FARSA-AS1/miR-18b-5p/
Sox9

Stemness, proliferation, metastas

FARSA-AS1/
miR-28-5p/
FARSA

LINC01567 Oncogene CD133+/CD166+/CD44+ cell sorting,
MSI1, Oct-4, Sox2, ABCG2

MSI1 LINC01567/miR-93/MSI1 CRCSCs proliferation, metastasis

XIST Oncogene Nanog, Oct-4, Sox2, CD24, CD44,
CD133, CD155, CD166

ZEB1 XIST/miR-200b-3p/ZEB1 Stemness, metastasis

UICLM Oncogene Nanog, Oct-4, Sox2, Notch1,
ABCG2, CD24, CD44, CD133,
CD155, CD166

ZEB2 UICLM/miR-215/ZEB2 Stemness, proliferation, liver
metastasis

LINC00657 Oncogene CD133+CD44+ cell sorting ZEB1, ZEB2,
Snail2

LINC00657/miR-203a/ZEB1,
ZEB2, Snail2

CRCSCs invasion

HIF2PUT Oncogene Oct4, Sox2, CD44 HIF-2a HIF2PUT/HIF-2a Stemness
AK000053 Oncogene Nanog, c-Myc, SALL4, BMI1 CDH1, ZEB1,

SALL4, BMI1
Hypoxia-inducible AK000053/
miR-508/CDH1, ZEB1, SALL4,
BMI1

Stemness, metastasis

LINC01106 Oncogene Nanog, Oct4 Gli1, Gli2, Gli4 Cytoplasm: LINC01106/miR-
449b-5p/Gli4

Stemness, proliferation, migration

Nucleus: Gli2/LINC01106+FUS/
Gli1, Gli2

CCAT2 Oncogene CD44, Sox2 miR-145 CCAT2+pre-miR-145 Stemness
NEAT1 Oncogene ALDH1, c-Myc, CD133, Sox2,

Nanog, Oct4
ALDH1, c-Myc NEAT1/acetylation of histones in

the promoter region of ALDH1, c-
Myc

Stemness, 5-Fu resistance
n

https://www.frontiersin.org/journals/oncology
http://www.frontiersin.org/
https://www.frontiersin.org/journals/oncology#articles


TABLE 1 | Continued

effects mechanism Reference

CSCs proliferation, metastasis Post-transcriptional regulation (95, 96)
stinal stem and/or progenitor cells
liferation

NA (97)

ibition of self-renewal in CRC and
al melanoma CSCs

Histone modification regulation (98)

iation of asymmetric division of
CSCs

DNA methylation, histone
modification regulation

(99)

mness, metastasis Transcriptional regulation (100)

mness of intestinal stem cells,
stinal tumorigenesis

Transcriptional regulation (101)

mness, proliferation, apoptosis
ibition

Transcriptional regulation (102)

mness Transcriptional regulation (103)

mness Transcriptional regulation (104)
ibition of CRCSCs and their aerobic
colysis (Warburg effect)

Transcriptional regulation (105)

mness, oxaliplatin resistance Post-transcriptional regulation (106)
mness, Cetuximab resistance Post-transcriptional regulation (107)
mness, 5-Fu resistance Post-transcriptional regulation (108)

mness, oxaliplatin resistance Post-transcriptional regulation (109)

diotherapy resistance Post-transcriptional regulation (110)
mness, proliferation, cisplatin,
clitaxel resistance

Post-transcriptional regulation (111)

ibition of stemness, metastasis,
liplatin resistance

Post-transcriptional regulation (112)

Translation regulation

ibition of stemness, 5-Fu resistance Post-transcriptional regulation (113)

nslation regulation

mness, 5-Fu, adriamycin resistance NA (114)
mness, 5-Fu resistance NA (115)

mness, metastasis, oxaliplatin
istance

NA (116)
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LncRNAs Function CRCSCs subtype Targets Signaling pathway

HOTAIR Oncogene CD133+ cell sorting FLT-1 HOTAIR/miR-211-5p/FLT-1 CR
Hotair Oncogene LGR5, c-Myc NA NF-kB/circulating Hotair in the

form of exosomes/Wnt pathway
Int
pr

HotairM1 Suppressor CD133+CD44+ cell sorting, Oct4,
Sox2, Nanog

HOXA1 HotairM1/PRC2 complex/HOXA1/
Nanog

Inh
uv

Lnc34a Oncogene CD133+CD44+ALDH1+ cell sorting Notch1 Lnc34a/HDAC1+DNMT3a/miR-
34a/Notch1

Ini
CR

B4GALT1-AS1 Oncogene ALDH1, Nanog, CD110, LGR5,
CD44, CD133, EpCAM

YAP B4GALT1-AS1+YAP St

LncGata6 Oncogene LGR5+ ISCs cell sorting Ehf LncGata6+NURF complex/Ehf/
LGR4/5

St
int

WiNTRLINC1 Oncogene ASCL2 ASCL2 ASCL2/WiNTRLINC1+b-catenin-
TCF4/ASCL2

St
inh

RBM5-AS1(LUST) Oncogene CD24+CD44+ cell sorting, CD133,
CD166, ALDH1A1

SGK1, YAP1,
MYC

RBM5-AS1(LUST)+b-catenin-
TCF4/SGK1, YAP1, MYC

St

lncRNA-ATB Oncogene Sphere formation b-catenin lncRNA-ATB/b-catenin St
lincRNA-p21 Suppressor ALDH+ cell sorting, EpCAM, CD44,

LGR5, Nanog, Oct4
b-catenin miR-451/lincRNA-p21/b-catenin/

PDK1/PDH
Inh
gly

LINC00525 Oncogene CD44, Sox2, Oct4 ELK3 LINC00525/miR-507/ELK3 St
CRART16 Oncogene CD133, CD44 ERBB3 CRART16/miR-371a-5p/ERBB3 St
Linc00346 Oncogene Sphere formation WBSCR22 Linc00346/miR-509-5p/

WBSCR22
St

H19 Oncogene ALDH1, Nanog, Oct4, Sox2, CD44,
CD133

b-catenin Exosomal H19/miR-141/b-catenin St

TINCR Oncogene Oct4, Sox2 TCF4 TINCR/miR-137/TCF4 Ra
LincRNA-
ROR

Oncogene CD133+CD44+ cell sorting, Oct4,
Sox2, Nanog

Oct4, Sox2,
Nanog

LincRNA-ROR/miR-145/Oct4,
Sox2, Nanog

St
pa

MIR600HG Suppressor ALDH1A3, Sox2, CD44 ALDH1A3 MIR6S00HG/ALDH1A3 Inh
ox

FENDRR Suppressor spheroid cells, ALDH, Oct4, Sox2,
KLF4

Sox2 FENDRR/Sox2 Inh

regulation
Translation
regulation

Tr

GAS5 Oncogene spheroid cells, Oct4, Sox2 NODAL GAS5/NODAL pathway St
LncRNA-cCSC1 Oncogene CD133+CD44+ cell sorting Hedgehog

pathway
LncRNA-cCSC1/Hedgehog
pathway

St

Lnc273-31 and
lnc273-34

Oncogene spheroid cells, Sox2, Oct4, Nanog,
ALDH

Snail, ZEB1 P53-R273H mutation/lnc273-31,
lnc273-34/Snail, ZEB1

St
re

NA, data not available.
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Fan et al. LncRNAs Regulate Colorectal Cancer Stem Cells
the fate of CRCSCs by altering the ratio of symmetric and
asymmetric cell division through microRNAs. The distribution
of miR-34a, which targets Notch1, has been found to determine
the division pattern of CRCSCs. Early expression of high-level
miR-34a in CRCSCs sequesters Notch1 mRNA, thus balancing
progeny cell differentiation and self-renewal; whereas late
expression of miR-34a induces an imbalance in CRCSCs,
which undergo self-renewal (121). Lnc34a was found to initiate
asymmetric division of CRCSCs by targeting miR-34a and
tr igger ing its spat ia l imbalance . Lnc34a , which is
asymmetrically distributed during the division of CRCSCs,
recruits histone deacetylase 1 (HDAC1) and DNA
methyltransferase 3a (DNMT3a) through prohibitin-2 (PHB2).
HDAC1 deacetylates histones, whereas DNMT3a methylates
DNA in the promoter region of miR-34a, epigenetically
si lencing miR-34a expression and making miR-34a
transcription independent of its upstream regulator, the p53
protein (99).
Frontiers in Oncology | www.frontiersin.org 9
Additional studies are needed to determine the causes and
consequences of these epigenetic changes that accompany
different cancer cell states and to assess how pharmacological
activation or inhibition of these epigenetic regulators can improve
anticancer therapy.

LncRNAs Regulate CRCSCs Through
Transcription Factors
Transcription factors (TFs) are proteins in eukaryotic cells that
assist in and regulate the transcription of mRNAs by RNA
polymerase. Some core TFs are proteins encoded by oncogenes
or tumor suppressor genes and are directly involved in target
gene transcription during cell proliferation by binding to the cis-
acting elements of the target genes (122). The following section
provides a brief overview of some of the most important
lncRNAs that act as TFs in CRCSCs (Table 1, Figure 2).

YAP/TAZ, a downstream executor of the Hippo pathway, has
been shown to be a component of the b-catenin cytoplasmic
FIGURE 1 | Schematic representation of the effects of cytoplasmic lncRNAs in CRCSCs through ceRNA mechanism and the downstream pathways and mediators
involved. LncRNAs can act as a miRNA sponge. Oncogenic lncRNAs are indicated in black and tumor-suppressor lncRNAs in red.
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destruction complex. Translocation of YAP/TAZ to the nucleus
has been shown critical in cells activated by the Wnt/b-catenin
signaling pathway (123). YAP plays a key role in the
development of CSCs (124). For example, the lncRNA
B4GALT1-AS1 was shown to promote CRC stemness and
Frontiers in Oncology | www.frontiersin.org 10
metastasis by recruiting YAP to the nucleus and enhancing
YAP transcriptional activity (100). Intestinal epithelial cell
development and differentiation are dependent on the
concentration gradients of Wnt-BMP hedging signals in the
intestinal microenvironment (7). Wnt signaling is a
FIGURE 2 | Schematic representation of the effects of nuclear lncRNAs through epigenetic modifications and transcription factors in CRCSCs and the downstream
pathways and mediators involved. (1) LncRNAs can modulate transcription by transcription factors (TF) (2) LncRNAs can regulate DNA and histone modifying
proteins by recruiting chromatin remodeling complexes.
January 2022 | Volume 12 | Article 811374
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determinant of CRC stemness and controls essential stem cell
genes such as LGR4 and LGR5 (125, 126). The nucleosome
remodeling factor (NURF) complex plays an important role in
regulating normal tissue and cancer stem cells (127, 128).
LncRNAs induce carcinogenesis in normal intestinal stem cells
(ISCs) by mediating the dysregulation of signaling pathways
leading to uncontrolled cell proliferation and differentiation. Zhu
P et al. verified that LncGata6, which is highly expressed in ISCs
and CRCSCs, was shown to be involved in maintaining the
stemness of ISCs and promoting intestinal tumorigenesis.
Moreover, lncGata6-deficient intestinal epithelial cells failed to
regenerate after damage. LncGata6 localized to the nucleus
enhances LGR4/5 expression and activates the Wnt signaling
pathway by binding to the Bptf subunit in the NURF complex,
recruiting the NURF complex to the ETS homologous factor
(Ehf) promoter region and promoting its transcription (101).
GATA binding protein 6 (GATA6) is a transcription factor
important in the expansion of CSCs and in the regulation of
human CRC cell stemness, promoting the expression of LGR5 in
CSCs (129). The expression profiles of lncGata6 and the nearby
protein-encoding gene Gata6 differ, suggesting that these two
molecules may play different roles in different mouse tissues and
that the deletion of lncGata6 did not affect Gata6 expression
(101). Achaete scute-like 2 (ASCL2) is an important stemness
transcription factor that controls ISCs in response to Wnt signals
(130). ChIP-seq of RNA polymerase II revealed that the Wnt-
regulated lincRNA1 (WiNTRLINC1), which is about 60 kb away
from the ASCL2 gene, is one of the direct targets of b-catenin/
TCF4 in CRC. WiNTRLINC1 promotes the cyclization of
regulatory elements by interacting with b-catenin/TCF4,
thereby activating transcription of the ASCL2 gene in a cis
manner. The regulatory Wnt-WiNTRLINC1-ASCL2-stemness
network was further enhanced by ASCL2-induced
transcriptional activation of WiNTRLINC1 (102). Although
high expression of WiNTRLINC1 in CRC is associated with
increased metastatic potential and poorer prognosis, Snail1, a
master regulator of EMT, was found to reduce EMT-related
proliferation by directly repressing the stemness-related genes
MYB and WiNTRLINC1, while abrogating the stemness
characteristics of CRC cells (131). Thus, the relationship
between EMT and stemness varies among different tumor types.

The lncRNA RBM5-AS1 (LUST) has been shown to promote
stemness in CRC by interacting with b-catenin and promoting its
interaction with the TCF4 complex at target genes. This, in turn
activates the Wnt signaling pathway and downstream SGK1,
YAP1 and MYC (103). At the same time, lncRNA-ATB
promotes CRC stemness by enhancing the transcriptional
activity of b-catenin (104). LncRNA-ATB was shown to
promote CRC metastasis by inhibiting E-cadherin (132). In
contrast, TGF-b-activated lncRNA-ATB was found to
upregulate ZEB1 and ZEB2 by competitively binding to
members of the miR-200 family and to upregulate IL-11
expression in an autocrine manner by binding to and
stabilizing IL-11 mRNA, activating the STAT3 signaling
pathway and promoting the invasive metastatic cascade in
hepatocellular carcinoma (133). Taken together, these findings
Frontiers in Oncology | www.frontiersin.org 11
suggest that lncRNA-ATB may also be present in CRC,
promot ing metas tas i s through mult ip le pathways ,
including CSCs.

There are emerging evidences that CSCs display elevated
glycolytic metabolism, as compared to their differentiated
counte rpar t s . Rever sa l o f g lyco ly s i s to ox ida t i ve
phosphorylation was associated with impairment in the
proliferation and stem cell properties of CSCs (134–136). The
expression profile of lincRNA-p21, a direct transcriptional target
of the tumor suppressor p53, was found to be low in CRCSCs.
Overexpression of lincRNA-p21 inhibited aerobic glycolysis in
ALDH+ CSCs by suppressing the b-catenin/pyruvate
dehydrogenase kinase 1 (PDK1)/pyruvate dehydrogenase
(PDH) signaling axis. This reversal may be an effective
approach to shift the glucose metabolic program in CSCs and
may contribute to the elimination of CSCs from cancer tissues
(105). MiR-451 has been reported to negatively regulate self-
renewal, tumorigenicity and drug resistance in CRCSCs (137).
To avoid the off-target effects of lincRNA-p21, Ad-lnc-p21-
MREs were constructed by integrating the miRNA responsive
elements (MREs) of miR-451 into adenoviral vectors expressing
lincRNA-p21, allowing lincRNA-p21 to be specifically and
efficiently expressed in ALDH+ CSCs (105). Gene therapy
regulated by MREs is a promising strategy for targeted
treatment of CSCs, highlighting the need to evaluate the safety
of engineered adenoviral vectors for use in gene therapy.

LncRNAs Mediate Chemoradiation
Resistance in Colorectal
Cancer Through CRCSCs
Based on the drug resistance mechanism of CSCs, three
modalities are key to treatment of CSCs: directly targeted
killing, induction of differentiation and promotion of
proliferative phase (35). LncRNAs affect tumor resistance to
multiple drugs, including pentafluorouracil, oxaliplatin and
cetuximab, through the stemness pathway, and may become
novel targets for the clinical treatment of CSCs (Figure 3).

ELK3 has been associated with the development and
progression of different types of cancer and is a key factor in
resistance to chemotherapy (138, 139). LINC00525 was shown to
mediate the upregulation of ELK3 expression through miR-507,
promoting CRC stemness and resistance to oxaliplatin (106). V-
Erb-B2 erythroblastic leukemia viral oncogene homolog 3
(ERBB3), an important member of the human epidermal
receptors (HER), is involved in signaling crosstalk with EGFR
(140). This crosstalk is part of the mechanism by which tumors
bypass EGFR TKIs and can activate the downstream MAPK
pathway, thereby contributing to cetuximab resistance in CRC
(141, 142). A new lncRNA CRART16 was identified by targeting
miR-371a-5p to increase ERBB3 expression, thereby promoting
CRC stemness and cetuximab resistance (107). Linc00346
competes with WBSCR22 for miR-509-5p binding sites,
thereby regulating the phenotype of CRCSCs (108). WBSCR22
was found to promote oxaliplatin resistance in CRC by targeting
miR-146b-5p (143). It may well be speculated that Linc00346
may also be involved in the ability of WBSCR22 to regulate
January 2022 | Volume 12 | Article 811374
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CRCSCs, which is also associated with oxaliplatin resistance.
Cancer-associated fibroblasts (CAFs) transfer exosomal lncRNA
H19 into cancer cells. H19 has been found to activate the b-
catenin pathway in CRC cells by acting as a competitive
endogenous RNA sponge for miR-141, promoting stemness
and chemoresistance to oxaliplatin (109). TCF4 is a key
protein in the Wnt pathway of CSCs (144). LncRNA TINCR
was shown to promote radiotherapy resistance in CRC cells
by affecting the TINCR/miR-137/TCF4 axis. The stemness
Frontiers in Oncology | www.frontiersin.org 12
genes Oct4 and Sox2 are highly expressed in the radiotherapy-
resistant SW620R CRC cell line, and knockdown of TINCR
reduced the sphere-forming ability and stemness factor
expression in these cells while restoring their sensitivity to
radiotherapy (110). In another study, lincRNA-ROR was found
to affect the biological properties of CRCSCs, regulating their
proliferation and sensitivity to cisplatin and paclitaxel, by
targeting miR-145 to upregulate the expression of Oct4, Sox2
and Nanog (111).
FIGURE 3 | The network of lncRNAs that regulate CRCSC-mediated chemoradiation resistance. Oncogenic lncRNAs are indicated in black and tumor-suppressor
lncRNAs in red.
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MIR600HG was observed to inhibit stemness, metastasis and
oxaliplatin resistance in CRC by targeting ALDH1A3, and
overexpression of MIR600HG combined with oxaliplatin
treatment was found to inhibit tumor recurrence. The
MIR600HG seed sequence affects the stability and translational
activity of ALDH1A3 mRNA by binding to its 3’UTR, thereby
inhibiting ALDH1A3 mRNA and protein expression (112).
Some lncRNAs processed into miRNAs were found to repress
the expression of their target genes (145). We speculate that
miRNAs derived from MIR600HG may target and regulate the
expression of ALDH1A3 mRNA. In addition, the lncRNA
FENDRR was found to directly interact with the 3’UTR of
Sox2 mRNA, reducing its stability and inhibiting the
expression of Sox2 and CSC-like traits in CRC cells (113).

NODAL signaling plays an important role in regulating
stemness and inducing chemoresistance in CSCs (146). The
lncRNA GAS5 (growth-arrest-specific transcript 5) was found
to promote CRC stemness and resistance to 5-FU and
adriamycin in a NODAL-dependent manner. Interestingly,
overexpression of GAS5 sensitized HCT116 cells to 5-FU and
adriamycin, in contrast to the effects observed in CSCs derived
from HCT116 cells (114). The novel oncogenic lncRNA-cCSC1
was found to promote the properties of CRCSCs through
activation of the Hedgehog signaling pathway, enhancing 5-FU
resistance. Although the expression of PCNA expression was
substantially reduced in xenograft tumor tissues expressing
shlncRNA-cCSC1 (115), it may be difficult to distinguish
differences in the proliferation of liver CSCs and non-CSCs via
Ki67 staining (147). Thus, the self-renewal properties of different
cancer types may differ. TP53 is one of the most frequently
mutated genes in all types of cancer, being present in over 60% of
CRCs. The three key mutated loci in p53 are R175H, R248W and
R273H, but it is unclear whether mutant p53-regulated lncRNAs
are associated with CSCs (148). Cells bearing the p53-R273H
mutation exhibited more characteristics of CSCs than cells
bearing the p53-R175H and p53-R248W mutations. The P53-
R273H mutation enhanced Snail and ZEB1 expression and the
EMT process by upregulating the expression of lnc273-31 and
lnc273-34, thus enhancing CRC stemness. RNA-seq analysis of
spheroid cells with endogenous p53 point mutations induced
using a somatic knock-in method to establish a network of p53-
R273H-regulated lncRNAs showed that the parent gene at the
site of the lncRNA has a P53 binding site (116).

The role of some lncRNAs in CRCSCs is outlined below and
summarized in Table 1. The discovery of ncRNAs has added a
new dimension to the understanding of cancer development and
treatment, by providing a window into the effects of ncRNAs
throughout the rest of the genome.
RESEARCH PROSPECT AND
CLINICAL VALUE OF LncRNAs
TARGETING CRCSCs

The concept of CSCs has not only deepened understanding of the
mechanisms of tumorigenesis, but has suggested new ideas for
Frontiers in Oncology | www.frontiersin.org 13
research on tumor treatment. Further research on CSCs and
their abnormal microenvironments may enable the identification
of new drug targets for tumor therapy and the development of
more effective treatments. However, several aspects related to the
functions and regulatory mechanisms of CSCs must still
be addressed.

1) Studies have demonstrated the existence of multiple types of
CRCSCs that play different roles in tumor maintenance and
metastasis formation (149). This suggests the need for additional
studies on levels of cellular heterogeneity among CSCs and cellular
hierarchies in CRC. CSCs expressing different stemness markers
belong to different subpopulations and have different characteristics,
suggesting that lncRNAs may have different functions in these cells.
Identification of characteristic biomarkers of CSCs is the key to
initiating studies of the mechanisms that regulate CSCs. Isolating
and identifying CSCs are challenging without identifying CSC-
specific markers. In addition, differentially expressed lncRNAs in
CSCs are not specific for CSCs, and interfering with lncRNAs in
CSCs can also simultaneously alter tumor cells. Standard indirect
methods of identifying CSCs include in vitro tumor sphere
formation and in vivo limiting-dilution tumorigenicity assays in
immunocompromised mice (16). The major limitation of this
method is partly associated with difficulties in the ability to
distinguish between CSC and non-CSC populations of cancer
cells. In addition, differences between the microenvironments of
the original and transplanted tumors may alter CSC functions.
Thus, the identification and isolation of CSCs remain unclear due to
the lack of unique isolation and identification methods and the
complex biological properties of these cells.

Genetic-lineage tracing enables the identification and study of
stem cells in solid tissues in situ while avoiding mechanical
perturbation. This technique critically relies on the identification
of individual marker genes, for example by enabling the stable
activation of the reporter gene for LGR5 in the target cell
population, resulting in the labeling of the target cells.
Importantly, stable reporter gene expression is maintained in
all daughter cells of the marked cell. Stemness potential is
evaluated by determining the persistence, size, and
composition of cell clones generated over time (150). The best
current approaches to obtain CSCs depend on the use of a variety
of cell surface markers, including the use of FACS technology to
enrich for CSCs from primary tumor tissue and secondary
sphere formation by digestion of cells enriched in suspension.
Thus, precise characterization of a given CSC population
requires a multifaceted approach based on tumor-specific
markers combined with other analyses, such as functional
assays, to establish a distinctive phenotypic profile. To validate
the optimal CSC markers, specific combinations must be
assessed in large patient populations, and the sensitivity and
specificity of these markers must be tested by calculating areas
under receiver operating characteristic (ROC) curves.
Transcriptional and proteomic profiling of cells with
established CSC properties should enhance our knowledge of
these cells and provide such markers.

2) Determining whether CSCs are the origin of gene
mutations during colorectal carcinogenesis is key to the
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prevention, diagnosis and treatment of CRC. To date, the cellular
origin of each tumor-associated mutation, whether stem cells,
transit amplifying (TA) cells, or normal tissue cells, remains
unclear (151). CRCs originating from different cell types will
differ in cell-specific mutated genes. These cells will also differ in
specific tumor markers for pre-cancer diagnosis and loci for
clinical intervention and targeted therapy. Resolution of the
cellular origin of tumor-specific gene mutations will help in
complete tracking of tumor cell lineage. For example,
determination of their origin will clarify whether all tumor
cells are derived from CSCs, as well as helping to determine
patient prognosis at an early stage, including the ability to predict
metastasis, recurrence, overall survival and the effect of
treatment. In depth studies are therefore required to determine
the role of CSCs in tumorigenesis and development.

Almost all CRC cells are derived from intestinal epithelial
cells, and the continuous renewal capacity of intestinal
epithelium is mainly maintained by intestinal stem cells in the
glandular fossa. The microenvironment in which stem cells are
located and the signaling factors regulating stem cells play very
critical roles in maintaining stem cell proliferation,
differentiation and intestinal epithelial homeostasis (152, 153).
To date, the most studied intestinal stem cells are LGR4/5
positive stem cells (154). Because large numbers of CSCs
originate from the oncogenic transformation of intestinal stem
cells, determining the regulation of the proliferation and
differentiation of intestinal stem cells is important in
determining the pathogenesis of CRC.

Currently, the treatment of CRC consists of surgical resection
supplemented by radiotherapy, chemotherapy and targeted
therapy. The most frequently used chemotherapy regimen
consists of a combination of 5-FU, folinic acid (LV), and
oxaliplatin (mFOLFOX6 regimen). The efficacy of clinical
treatment of CRC is limited by drug resistance, susceptibility
to metastasis, low differentiation, high malignancy, and poor
prognosis (155, 156). Drug resistance is a major challenge, and
understanding the mechanisms of resistance is essential for the
development of novel drugs for CRC treatment. CSCs are highly
resistant to common anticancer drugs, due to their ability to self-
renew, as well as their pluripotency, angiogenic potential,
immune escape, symmetric and asymmetric division, and the
presence of multiple DNA repair mechanisms. Conventional
radiotherapy can only kill tumor cells and stromal cells, while
CSCs are preserved. CSCs have the ability of self-renewal and
multidirectional differentiation, with small numbers
continuously proliferating and differentiating into tumor cells,
resulting in tumor recurrence and metastasis (157).
Combinations of chemotherapeutic drugs that selectively target
CSCs and conventional radiotherapy, whether in neoadjuvant or
adjuvant setting, may result in complete tumor eradication.

In addition, CSCs are frequently characterized by high
expression of immune checkpoint proteins. The interactions of
CSCs with various components of the tumor immune
microenvironment (TME), including TAMs, MDSCs, DCs, and
Tregs, can result in CSCs evading detection by the immune
system. Simultaneously, CSCs can drive tumorigenesis and
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disease progression by regulating the balance of pro- and anti-
tumor immune cell activity in the TME. The differences in the
roles of shared signaling pathways in CSCs and immune cells
limit the ability to administer treatments that inhibit these
cascades. Thus, the use of drugs that target these pathways in
CSCs must consider their off-target effects on immune cells (158,
159). Preclinical models and clinical trials evaluating the effects
of these drugs on CSCs should also evaluate the effects of these
drugs on host immune cells. Multiple approaches to target the
interactions between CSCs and the immune system are being
actively pursued, and a variety of immunotherapies targeting
CSCs are currently in clinical development. These experimental
therapeutic strategies include efforts to stimulate tumour-
specific T cells, alter the immunosuppressive TME and target
CSCs surface markers using antibody- based treatments (160,
161). Increased understanding of the interactions of CSCs with
the immune system has laid the foundation for exploring these
complex interactions and developing targeted therapeutic
approaches. However, the optimal timing, sequence, and
combination of these CSC-specific immunotherapies require
further investigation.

Because of the multifaceted roles of lncRNAs on CRCSCs
described above, our further analyses of lncRNAs are intended to
provide a theoretical basis for clinical treatment of CRC and for
determining their mechanism of action.

LncRNAs can be released by tumor cells into the blood as
naked exosomes or vesicles (162, 163). The high specificity of
methods to detect lncRNAs, as well as the tissue-specificity of
these lncRNAs, will enable the use of circulating or secreted
lncRNAs in body fluids (e.g., plasma or urine) as biomarkers for
CRC diagnosis, prognosis, and response to treatment. These
assays will provide an ideal non-invasive method, avoiding the
need for tumor tissue biopsy in patients.

RNA-based therapeutic approaches offer advantages and
disadvantages when compared with small molecules and
biologic agents. The primary advantage is that RNA drugs are
based on nucleotide hybridization. Thus, the design of an agent
based on a specific sequence can allow the target to be
approached easily and specifically. In contrast, small molecules
and biologic agents require longer and more laborious screening
or a structure-based design approach. In addition, RNA-based
agents can easily target multiple RNAs. These approaches,
however, also have disadvantages, such as the need to consider
and optimize RNA-based drug delivery methods. Oral
formulation of RNA-based therapeutics is more difficult than
small molecules and biologics. Also, RNA-based drugs have been
associated with immune-related toxicity and other adverse
events (164). Inhibition of lncRNAs in vivo usually requires
the design of oligonucleotides targeting lncRNAs and a delivery
method. Methods such as antisense oligonucleotide (ASO)
technology can inhibit lncRNAs, leading to their RNase H-
dependent degradation (165). The stability and affinity of RNA
drugs in vivo may be improved by chemical modifications, such
as lock nucleic acid modifications (LNA). At present, liposome-
based nanocarriers are the most established method for the in
vivo delivery of RNA drugs (166).
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Research on lncRNAs is still mainly at the theoretical level
and has not yet been approved for clinical use in the treatment of
CSCs. However, several clinical trials of monotherapy and
combination therapy have been performed to assess the safety
and efficacy of treatments that target CSC pathways.
Identification of additional key lncRNAs that are involved in
CRCSCs and their regulatory mechanisms are fundamental to
improving the efficacy of new anticancer therapies. First,
transcriptome microarray analysis of CSC subpopulations
sorted from cell lines and primary cells by CSC markers and
genome-scale activation screening may be the most feasible
methods of determining the expression profile of lncRNAs in
CRCSCs (167). Second, guilt-by-association (GBA) analysis has
proposed that the function of a lncRNA can be inferred from the
known biological functions of protein-coding genes (PCGs) with
which it is co-expressed (168). Therefore, lncRNAs that are
significantly associated with the expression of stemness genes
should be studied in depth. Third, most cancer-related lncRNAs
have the same expression patterns and biological functions,
independent of the type of cancer. Thus, stemness-associated
lncRNAs identified in normal stem cells or other CSCs can lead
to the identification of novel lncRNAs in CRCSCs. Fourth, the
ceRNA mechanism has suggested that lncRNAs that bind to
known stemness miRNAs can regulate CSCs. Fifth, drug
resistance-associated lncRNAs also have the potential to
modulate CSCs.

Research on the lncRNA regulation of CSCs suggests that
mechanisms rarely reported in CRCSCs, such as lncRNA
regulation at the translational level or binding to DNA, are
worth exploring in the future. In addition, highly conserved
lncRNAs may be more likely to be functional. Notably, the
hallmarks of cancer, such as genome instability and mutation,
reprogramming energy metabolism, tumor-promoting
inflammation, and evading immune destruction, are also
applicable to CSCs, studies of these processes are important
development directions of CSCs. The current availability of data
on the expression of thousands of lncRNAs across CRCSCs can
enable the identification of new lncRNAs.
CONCLUSIONS

In summary, lncRNAs play an important regulatory role in the
biological behavior of CRCSCs, such as self-renewal,
proliferation, differentiation, metastasis and chemoradiation
resistance, by regulating the expression of molecules related to
various signaling pathways, pluripotent stem cell factors and
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other stemness genes. LncRNAs may have broad clinical
applications, not only as biomarkers for diagnosis, staging and
prognosis of patients with CRC, but also as targets for precision
tumor treatment, providing new possibilities for targeted killing
of CSCs. Targeting CSCs requires in-depth understanding of the
biology, genealogical relationships, cellular functions and
signaling mechanisms of CSCs and their derivatives in
homeostasis and disease. LncRNA-based studies will contribute
to a deeper understanding of the biology of CSCs.

However, many pressing issues remain to be addressed. First,
the actual regulatory effects of lncRNAs in cells or animals are
difficult to replicate in the complex human environment,
requiring confirmation of the up- or down-regulation of
lncRNAs in cancer. Second, because related research on
lncRNAs is still in its initial stage, studies are required to
identify factors that trigger their dysregulation. Moreover,
additional efforts are required to determine the wide range of
regulatory mechanisms and the diversity of downstream
pathways of lncRNAs. Despite many challenges, a better
understanding of the interactions between CSCs and lncRNAs
may be the key to opening a new era of oncology therapy that is
associated with a reduced propensity to develop drug resistance
and enhanced anti-metastatic activity, which can ultimately
improve patient prognosis.
AUTHOR CONTRIBUTIONS

Conceptualization, GW and NW. Methodology, QZ. Writing—
original draft preparation, BF. Writing—review and editing, BF.
All authors have read and agreed to the published version of
the manuscript.
FUNDING

The APC was funded by National Natural Science Foundation of
China, grant number 81702867; Project of Wu Jieping Medical
Foundation, grant number 320.6750.15183.
ACKNOWLEDGMENTS

We are grateful to the members of our laboratory for critical
discussion of this work.
REFERENCES

1. Dekker E, Tanis PJ, Vleugels JLA, Kasi PM, Wallace MB. Colorectal Cancer.
Lancet (2019) 394(10207):1467–80. doi: 10.1016/s0140-6736(19)32319-0

2. Siegel RL, Miller KD, Fuchs HE, Jemal A. Cancer Statistics, 2021. CA Cancer
J Clin (2021) 71(1):7–33. doi: 10.3322/caac.21654
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