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Abstract: The ability to monitor activities of daily living in the natural environments of patients
could become a valuable tool for various clinical applications. In this paper, we show that a simple
algorithm is capable of classifying manual activities of daily living (ADL) into categories using data
from wrist- and finger-worn sensors. Six participants without pathology of the upper limb performed
14 ADL. Gyroscope signals were used to analyze the angular velocity pattern for each activity. The
elaboration of the algorithm was based on the examination of the activity at the different levels (hand,
fingers and wrist) and the relationship between them for the duration of the activity. A leave-one-out
cross-validation was used to validate our algorithm. The algorithm allowed the classification of
manual activities into five different categories through three consecutive steps, based on hands ratio
(i.e., activity of one or both hands) and fingers-to-wrist ratio (i.e., finger movement independently of
the wrist). On average, the algorithm made the correct classification in 87.4% of cases. The proposed
algorithm has a high overall accuracy, yet its computational complexity is very low as it involves
only averages and ratios.

Keywords: manual activities; activity recognition; movement classification; remote health monitor-
ing; outcome assessment; questionnaires; clinical evaluation

1. Introduction

Hands can be affected in different neurologic, rheumatologic, degenerative or trau-
matic conditions. To evaluate this manual impairment, physicians rely on medical history
and clinical examination, but have also several tools at their disposal. For instance, they can
use diagnostic tests such as electromyography and patient-reported outcome measures that
reflect the patient’s point of view [1]. Motion capture analysis can also provide additional
information, though it is more commonly used in research rather than in a routine clinical
setting. Medical practice has shifted towards evidence-based treatments with the aim of
providing the best results when treating patients. Therefore, robust outcome evaluations
are needed to assess the effectiveness and reliability of a treatment [2].

An activity is defined in the International Classification of Functioning, Disability and
Health (ICF) as the execution of a task or action by an individual [3]. Measuring the activity
domain is a key point in determining the impact of different treatments on functional
recovery, as the consequences of a pathology on patients’ functioning are the most manifest
through their inability to carry out activities of daily living (ADL) [4]. Activity performance
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cannot be measured directly, but can either be inferred by direct observation, which is time
consuming in practice, or can be self-reported by patients through questionnaires.

Questionnaires can provide self-reported measures focused on the patients’ percep-
tions of their activity limitations. They inform clinicians on how well patients manage their
activity in their home environment. For example, ABILHAND is a questionnaire that mea-
sures manual ability through activities that present a common perceived difficulty among
patients [5]. It provides an invariant linear scale allowing quantitative comparisons of man-
ual ability between patients and over time. The units of this scale are expressed in logits,
and can be converted into centiles for a more intuitive clinical interpretation. The scale has
been validated in populations with various pathologies [6–11]. Other questionnaires such
as the Disabilities of the Arm, Shoulder and Hand (DASH) [12], the Patient-Rated Wrist
Evaluation (PRWE) [13] and the Carpal Tunnel Questionnaire (CTQ) [14] have been devel-
oped to measure different aspects of upper limb function. These self-reported measures are
based on the respondent’s memory of the perceived difficulty and their ability to accurately
judge their capability [15]. Items that compose these questionnaires are representative of
the patients’ daily manual activities (e.g., using a spoon or tying shoelaces).

Another complementary approach to that of the questionnaires would be a direct
assessment of the patient’s actual activities. A direct assessment could be used to monitor
a patient’s actual activity objectively, without relying on the patient’s memory, and sys-
tematically, witnessing what activities the patient actually does or does not do. The ability
to monitor activities of daily living in the patient’s natural environment could become a
valuable tool for clinical decision-making, evaluating healthcare interventions, and sup-
porting and tracking rehabilitation progress. Inertial sensors have been used for monitoring
activities as they are small, affordable, and generally unobtrusive [16]. They have been
used for upper limb motion analysis with good accuracy and reliability [17,18]. They have
been shown to be useful for clinical applications [19], and proved to be more sensitive than
questionnaires to detect changes in shoulder movement, thus adding a complementary
objective component to outcome measurement [20].

Different authors have worked on recognizing upper limb movements using ac-
celerometry alone [21,22] or in combination with surface electromyography [23], and on
building devices that could track hand use [24]. For instance, the “manumeter” determines
hand use by tracking the total angular distance traveled by the wrist and fingers using
magnetometers [24]. This device is able to track global hand use, but performs poorly for
tasks requiring small yet intensive movements such as handwriting [25]. Another limita-
tion is the interaction with ferromagnetic objects, which are commonly used in everyday
life, and can alter the device readings.

As a complementary approach to questionnaires that are common to a patient popula-
tion, a hand activity monitoring device that not only tracks the global hand use, but is also
able to categorize the manual activities that are actually performed, would offer a more
personalized approach and would have implications in many aspects of patient care. In
this paper, we show that a simple algorithm is capable of classifying manual activities of
daily living using data from wrist- and finger-worn sensors.

2. Materials and Methods
2.1. Prototype

We used a prototype device (InSense©, Arsalis, Belgium) to capture human activity
signals using inertial measurement units (IMUs). The device is shown in Figure 1A. Each
sensor integrates a triaxial accelerometer and a triaxial gyroscope. The measurement range
is ±16 g and ±2000◦/s for each axis of accelerometer and gyroscope, respectively. The
device is wired and transmits sampled sensor data to a laptop computer via a USB interface.
The sensors are small in size (9.4 × 8 × 5.5 mm) and lightweight enough (2 g) to be worn
comfortably without altering the hand movements. The inertial signals of all sensors are
sampled synchronously (inter sensor delay < 0.125 ms) with a 16-bit resolution at a rate of
500 Hz.
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Figure 1. (A). Photograph showing the device prototype, which consists of eight inertial measurement units connected to a
processor. A close-up of one of the sensors is shown. (B). Photograph showing the placement of the sensors on 3D-printed
supports on the participant’s hands.

2.2. Sensor Calibration

Accelerometers and gyroscopes were calibrated prior to performing the experiments so
that the readings were accurate and reliable. Accelerometers were calibrated by applying
0 g, 1 g and −1 g on each accelerometer of each sensor. Their calibration reported an
average absolute error of 0.18% of full scale (FS) on any axis of any sensor (range: 0.05
to 0.62 %FS). Gyroscopes were calibrated using a rotating device equipped with a 1024
point resolution optical encoder that was used to determine the reference angular speed
(Video S1 in Supplementary Materials). They were calibrated at angular speeds ranging
from −600 to +600◦/s and reported an average absolute error of 0.23 %FS on any axis
of any sensor (range: 0.13 to 0.71 %FS). Raw data were converted to physical values of
angular velocity and acceleration expressed in ◦/s and g, respectively, using individual
sensor calibration coefficients.

2.3. Participants

Six healthy adults participated in this study; their characteristics are detailed in
Table 1. Participants were included in the study if they were above 18 years old and had no
pathology that could affect the use of their upper limbs. The study was conducted according
to the guidelines of the Declaration of Helsinki, and approved by the ethics committee of
Cliniques Universitaires Saint-Luc Université catholique de Louvain (2015/26JAN/025,
N◦ B403201523492). Participants provided written informed consent to make use of their
anonymized data.

Table 1. Participants’ characteristics.

Age Sex Height (cm) Weight (kg) Work

Participant 1 31 F 152 42 Office worker
Participant 2 65 M 162 80 Dentist
Participant 3 28 M 173 74 Office worker
Participant 4 24 F 176 78 Student
Participant 5 31 M 171 70 Office worker
Participant 6 57 F 164 53 Housewife

2.4. Activities Selection

In order to explore the wide range of hand movements, activities were selected from
the different pathology-specific versions of the ABILHAND questionnaire (hand surgery,
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stroke and rheumatoid arthritis). Items from this questionnaire have been rigorously
selected to report patient-perceived difficulty unbiased by patient demographics (e.g., age,
gender) nor clinical conditions (e.g., side affected, manual ability). Twelve activities were
selected to cover the whole range of measurement of the ABILHAND scale. Two additional
items were added for their relevance in everyday life, namely “typing on a computer
keyboard” and “using a spoon”. The final list of 14 activities is shown in Table 2. We
hypothesized that these activities could be classified into five different categories, based
on the way they are actually executed. Some activities are unimanual while others are
bimanual. Bimanual activities could require the action of a stabilizing hand or involve both
hands equally. In addition, some activities require the use of the fingers (the fingers move
independently of the wrist), while others involve the whole hand (the fingers move together
with the wrist), for example, when manipulating a tool. When some manual activities
could be performed in different ways (e.g., some participants brushed their hair with both
hands while others used only their dominant hand), the experimenter’s judgement was
used to classify each activity into a category, depending on the way it was executed by
the participant.

Table 2. List of manual activities and their respective categories.

Activity Category

1 Using a spoon
Unimanual2 Drinking a cup of water

3 Brushing one’s hair

4 Writing a sentence Bimanual with a stabilizing hand and finger activity of the
active hand

5 Spreading butter on a slice of bread Bimanual with a stabilizing hand and global activity of the
active hand6 Opening a can with a can opener

7 Typing on a computer keyboard

Bimanual with finger activity of both hands
8 Shuffling and dealing cards
9 Peeling potatoes with a knife

10 Buttoning a shirt
11 Tying shoelaces

12 Opening a screw-topped jar
Bimanual with a global activity of both hands13 Lifting a full pan

14 Wringing a towel

2.5. Experimental Setup and Recordings

Participants were equipped with the prototype device sensors on the first phalanges
of the first two fingers of both hands and on the wrists (Figure 1B). Sensors were fitted on
3D-printed supports in the shape of rings for the fingers and wristbands for the wrists.
These sites were chosen to correspond to sites where everyday accessories are worn (watch
and rings) and do not hinder activities of daily living.

Participants were asked to perform the 14 activities in a random order for five repeti-
tions each, while sitting on a chair at a table. The tools used (e.g., can opener, pen) were
from the participants’ home environment. They were instructed to perform each activity
as they would do in their normal life, with no constraints except for the duration of each
activity (no more than 25 s per repetition). Each activity started and ended with the hands
still on the table, separated by five seconds of inactivity. Experiments were performed
under the supervision of the experimenter.

2.6. Data Analysis

Each recording was processed to isolate the activity period (i.e., when the participant
is actually executing the task) from inactivity periods (between two consecutive repetitions).
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The main goal was to focus on activity recognition, based on the assumption that the start
and end of an activity were known.

Gyroscope signals were used to analyze the angular velocity pattern for each activity,
as they demonstrated the most distinctive pattern compared to the accelerometers. No
filter was applied to the raw data. For each gyroscope signal, the norm of the angular
velocity vector was computed by combining the x, y and z components. Signals were
combined to compute the hand signal (mean of the three IMUs on one hand) and the
fingers signal (mean of the two IMUs placed on the fingers) for both limbs. The elaboration
of the algorithm was based on the examination of the activity at the different levels (hand,
fingers and wrist) and the relationship between them for the duration of the activity.

The hands ratio (HR) was calculated by dividing the angular velocity of the most
active hand by that of the least active one.

HR =
Most active hand
Least active hand

(1)

It was chosen as a criterion to differentiate between bimanual activities involving
both hands equally and those involving a stabilizing hand. When both hands are involved
equally, the HR is expected to be close to one. During unimanual activities or when one
hand stabilizes an object, one hand is less active than the hand performing the movement,
and the HR is expected to increase.

The fingers-to-wrist ratio (FWR) was computed by dividing the fingers’ angular
velocity (mean of both fingers) by the wrist angular velocity.

FWR =
Fingers′ angular velocity

Wrist angular velocity
(2)

When the hand moves as a whole (e.g., when manipulating a hammer), the angular
velocity in the fingers is close to that of the wrist; hence, the FWR is close to one. If the
fingers are involved in independent movements (e.g., when writing), the FWR increases.
The FWR was computed on the dominant hand for bimanual activities with a stabilizing
hand, and by taking the average of the two hands for bimanual activities.

2.7. Determining Cutoff Points

The Receiver Operating Characteristic (ROC) curve was used to determine the cutoff
points for HR and FWR that best discriminate between the different categories of activ-
ities [26]. The ROC curve is a graphical plot that illustrates the diagnostic ability of a
binary classifier system as its discrimination threshold is varied. The ROC curve plots
sensitivity (i.e., the true positive rate) against 1–specificity (i.e., the false positive rate) at
various threshold settings. The optimal cutoff value (i.e., threshold) was chosen as the
point that jointly maximized sensitivity and specificity, hence leading to the least number
of misclassifications. The area under the curve (AUC) is the measure of the ability of the
classifier to distinguish between classes. The greater the AUC, the better the criterion is
able to distinguish between the different categories. AUC values between 0.7 and 0.8 are
considered acceptable, and values above 0.8 are considered to have excellent discrimination
levels [27].

2.8. Algorithm Validation

A leave-one-out cross-validation was used to validate our algorithm [28], as detailed
in Figure 2. For each iteration of the validation, one participant was left out of the training
sample, and data from the five remaining participants were used to derive cut-off values
for the HR and FWR and establish the algorithm. The latter was then applied to the data
of the participant left out to evaluate the performance of the algorithm. Each individual
repetition was categorized using these cutoffs and following the steps laid by the algorithm.
This process was repeated six times in total to compute the validation errors. Activities
were considered correctly identified into their respective categories if both criteria (HR
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and FWR) for this category were in the right range at each step of the algorithm. The
performance of the algorithm was then calculated by comparing the activity category as
established by the experimenter and the categorization provided by the algorithm.
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3. Results
3.1. Cutoff Points

The ROC curves used to determine the cutoff points for the hands ratio (HR) and
fingers-to-wrist ratio (FWR) for the whole sample are shown in Figure 3. The sensitivity
ranged between 96% and 100%, and the specificity from 85.7% to 98.7%. The AUCs for all
criteria were above 0.978, providing excellent discrimination. The individual values for the
different iterations of the leave-one-out cross-validation are detailed in Table 3. These did
not vary substantially in comparison with values for the whole sample, demonstrating the
robustness of the approach.
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Figure 3. Receiver-operating-characteristic curve showing the cut-off points for the hands ratio
(HR) and the fingers-to-wrist ratio (FWR). The arrows show the point that maximizes sensitivity
and specificity. (A) HR for the discrimination between uni- and bimanual activities. (B) HR for
the discrimination between activities involving a stabilizing hand and those involving both hands.
(C) FWR for identifying finger activity in activities involving a stabilizing hand. (D) FWR for
identifying finger activity in activities involving both hands. AUC: Area Under the Curve.
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Table 3. Cut-off values for the hands ratio and the fingers-to-wrist ratio.

HR 1 for
Classification

between Uni- and
Bimanual Activities

HR 1 for Classification
between Bimanual

Activities Involving a
Stabilizing Hand and

Those Using both Hands

FWR 1 for Fingers
Involvement of

Bimanual Activities
Using a

Stabilizing Hand

FWR 1 for Fingers
Involvement of

Bimanual Activities
Using both Hands

Participant 1 excluded 20.96 4.25 2.68 2.50
Participant 2 excluded 20.96 4.67 2.61 2.42
Participant 3 excluded 20.96 4.67 2.61 2.26
Participant 4 excluded 22.01 4.71 2.56 2.26
Participant 5 excluded 20.96 4.67 2.61 2.42
Participant 6 excluded 20.95 4.62 2.61 2.25

Whole sample 20.96 4.67 2.61 2.26
1 HR: Hands Ratio; FWR: Fingers-to-Wrist Ratio.

3.2. Description of the Algorithm

The algorithm (Figure 4) allows the classification of manual activities into five different
categories through three different steps, based on HR and FWR. The first step of the
algorithm separates unimanual from bimanual activities based on HR. A HR greater than
20.96 is indicative of unimanual activities, i.e., one of the hands is over 20 times more
active than the other hand. For the second step of the algorithm, a cutoff HR of 4.67 can
be used to separate bimanual activities that use a stabilizing hand from those that involve
both hands equally. The HR for this second step is smaller than that of the first step, as
the stabilizing hand still performs low amplitude movements. The third step separates
activities based on whether the movement involves the fingers or not. A FWR larger than 2
(actually 2.61 for bimanual activities involving a stabilizing hand and 2.26 for bimanual
activities involving both hands equally) means that the fingers are about two times more
active than the wrists, indicating that the fingers are mainly performing the movement
such as when writing or buttoning a shirt. On the contrary, “spreading butter on a slice of
bread”, for example, involves using the hand as a whole when manipulating a tool (global
hand activity, FWR < 2). In summary, the algorithm can classify manual activities based
on the involvement of the hands relative to one another, and the presence or absence of
finger activity.

3.3. Performance of the Algorithm

Cutoff values for HR and FWR were derived from the learning sample and then tested
for validation on the participant left out using the classification algorithm. An example of
the validation method is shown in Table 4. For each repetition of each activity, the HR and
FWR were extracted for participant 3. Each one of these values was then compared to the
cutoffs derived when excluding participant 3 (see Table 3), according to the steps previously
detailed in the algorithm. When the observed value was in the expected range, the cell
was colored in green. When outside the range, it was colored in red. For example, the HR
for the first repetition of “Using a spoon” was 56.73, which is >20.96 and, thus, verified
the criteria for being a unimanual activity. The FWR for the fifth repetition of “Opening a
screw-topped jar” was 2.43, which was slightly above the expected value for a bimanual
activity with global activity of both hands (the FWR should be <2.26). The observed value
was outside the range, and the cell was colored in red. This process was repeated for each
one of the six participants, and the sum of correct classifications was computed.

The performance of the algorithm on the validation sample is detailed in Table 5.
Each column in the table represents a step in the algorithm, and the percentage of correct
classification is detailed for the classification of each activity in the correct category.
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Table 4. Validation of the algorithm for participant 3 1.

Step 1 Step 2 Step 3

HR 2 for Uni/Bimanual Activities HR 2 for Stabilizing Hand/both
Hands Active

FWR 2 for Finger
Activity/Global Hand Activity

Cutoff Rep1 2 Rep2 Rep3 Rep4 Rep 5 Cutoff Rep1 Rep2 Rep3 Rep4 Rep 5 Cutoff Rep1 Rep2 Rep3 Rep4 Rep 5

Unimanual
activities

Brushing one’s hair
HR >
20.96

32.11 54.26 66.41 68.41 83.61

N/A N/AUsing a spoon 56.73 32.44 41.81 67.44 59.21
Drinking a cup

of water 48.90 58.22 68.75 68.21 85.08

Bimanual
activities

Stabilizing
hand

Finger
activity

Writing a sentence

HR <
20.96

27.72 25.11 26.97 20.13 29.52

HR >
4.67

27.72 25.11 26.97 27.54 29.52 FWR >
2.61

2.80 2.72 2.80 2.83 2.68

Global
hand

movement

Spreading butter on
a slice of bread

7.63 8.10 11.44 10.69 16.35 7.63 8.10 11.44 10.69 16.35
FWR <

2.61

1.72 1.62 1.61 1.61 1.49

Opening a can with
a can opener 5.92 8.52 9.98 11.93 11.41 5.92 8.52 9.98 11.93 11.41 2.29 2.67 2.01 2.10 2.10

Both hands
active

Finger
activity

Typing on a
computer keyboard

3.21 2.50 2.75 3.11 2.91

HR <
4.67

3.21 2.50 2.75 3.11 2.91

FWR >
2.26

5.77 5.58 5.20 5.29 5.36

Shuffling and
dealing cards 2.80 2.44 2.58 2.59 2.58 2.80 2.44 2.58 2.59 2.58 2.97 3.28 2.93 3.23 3.24

Peeling potatoes
with a knife 1.74 1.97 1.93 1.98 1.94 1.74 1.97 1.93 1.98 1.94 2.80 2.62 2.90 3.07 3.02

Buttoning a shirt 2.20 2.01 2.42 2.16 2.67 2.20 2.01 2.42 2.16 2.67 3.00 3.13 2.88 3.27 3.16
Tying shoelaces 2.71 4.27 2.42 3.16 2.61 2.71 4.27 2.42 3.16 2.61 2.75 2.64 2.85 2.60 2.54

Global
hand

movement

Opening a
screw-topped jar

1.93 1.77 1.78 2.15 1.92 1.93 1.77 1.78 2.15 1.92
FWR <

2.26

2.02 1.98 2.18 1.94 2.43

Lifting a full pan 1.51 1.52 1.54 1.50 1.51 1.51 1.52 1.54 1.50 1.51 1.70 1.55 1.56 1.50 1.49
Wringing a towel 2.29 2.17 2.15 2.54 2.38 2.29 2.17 2.15 2.54 2.38 2.01 1.72 2.19 1.87 1.73

1 Green and red cells: when the value of the HR or FWR verifies the condition or not, respectively. 2 HR Hands Ratio; FWR: Fingers-to-Wrist Ratio; Rep: repetition.
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Table 5. Performance of the algorithm.

Step 1
HR 1 for Uni/Bimanual

Activities

Step 2
HR 1 for Stabilizing

Hand/both Hands Active

Step 3
FWR 1 for Finger

Activity/Global Hand Activity
Overall Accuracy

Accuracy per
Activity

Accuracy per
Category

Accuracy per
Activity

Accuracy per
Category

Accuracy per
Activity

Accuracy per
Category

Accuracy per
Activity

Accuracy per
Category

Unimanual
activities

Brushing one’s hair (19) 2 100%
97%

100%
97%Using a spoon 100% N/A N/A N/A N/A 100%

Drinking a cup of water 93% 93%

Bimanual
activities

Stabilizing
hand

Finger activity Writing a sentence 67%

97%

100%

95%

100% 100% 67% 67%

Global hand
movement

Spreading butter on a
slice of bread 100% 97% 100%

90%

97%

84%
Opening a screw-topped

jar (10) 2 100% 90% 40% 40%

Opening a can with a
can opener 100% 90% 97% 87%

Both hands
active

Finger activity

Typing on a computer
keyboard 100% 100%

98%

90%

89%

90%

86%

Shuffling and
dealing cards 100% 90% 100% 90%

Peeling potatoes with
a knife 100% 100% 93% 93%

Buttoning a shirt 100% 97% 87% 83%
Tying shoelaces 100% 97% 73% 73%

Global hand
movement

Opening a screw-topped
jar (20) 2 100% 100% 75%

90%

75%

90%Lifting a full pan 100% 100% 100% 100%
Wringing a towel 100% 97% 87% 87%

Brushing one’s hair (11) 2 100% 100% 100% 100%
1 HR Hands Ratio; FWR: Fingers-to-Wrist Ratio 2 When participants performed the activity differently, the number between brackets indicates the number of repetitions in the current category.
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For the first step, the algorithm was able to classify uni- from bimanual activities based
on HR with an average accuracy of 97%. The activity “writing a sentence” was incorrectly
classified in 33% of the cases as a unimanual activity. This is explained by the fact that
the stabilizing hand is only active at the beginning and the end of the movement, and
thus, has little influence on HR, especially as the activity lasts longer. This misclassification
originated almost exclusively from two subjects (nine out of ten incorrect classifications).

For the second step of the algorithm, activities requiring a stabilizing hand were
classified correctly in 95% of cases and those involving both hands equally in 98% of cases.
The third step correctly identified the presence or the absence of fingers’ involvement in 89
to 100% of cases, per category.

For an activity to be classified in the correct category, it had to verify the HR and FWR
criteria for every repetition. On average, this was achieved in 87.4% of the activities, as
shown by the overall accuracy in the last column of Table 5.

4. Discussion

In this paper, we show the applicability of a very simple algorithm for the categoriza-
tion of 14 manual ADL. Using gyroscope data from six IMUs located on the thumb, index
finger and wrist of both hands, we were able to classify manual ADL into five categories.
The proposed algorithm has a high overall accuracy, yet its computational complexity is
very low as it involves only averages and ratios of sensor measurements.

Our algorithm was able to classify manual activities into their correct category in 87.4%
of cases. The poorest performance in categorization corresponded to the activity “writing
a sentence” (category “bimanual activities with a stabilizing hand and finger activity of
the active hand”), for which the accuracy was 67% on average. Our results show that it is
a borderline activity that can be performed using only one hand if the support is stable
enough. Contrary to lower limb movements, most manual activities are complex to analyze,
mainly because they are non-cyclical and variable [29]. Differences in movement patterns
exist across individuals and across repetitions by the same individual. This was especially
evident in our study for the activity “brushing one’s hair”. Participants used either one
or both hands to brush their hair, and the activity was, thus, considered either unimanual
or bimanual depending on the actual performance. In practice, this misclassification can
be tolerated and only highlights the variability across all subjects and movement patterns
used to perform these manual ADL. Nevertheless, most activities performed in this study
were conducted in a similar manner across subjects and repetitions, which is encouraging
for the future automated applications of the algorithm.

Classifying activities into different categories is an important first step, because manual
activities that belong to the same category are likely to be equally impaired in a given
pathology since they involve the same movement pattern. Indeed, the perceived difficulty
of the activities of ABILHAND has shown that, for instance, for stroke patients, manual
activities are more challenging if they require both hands and even more challenging if
they involve the fingers of both hands [7]. In rheumatoid arthritis, challenging activities
are those that involve higher stress at the joints, whether uni- or bi-manual [6]. Therefore,
for clinical follow-up of manual activity, we can hypothesize that the achievement of a
type of activity is likely a very good indicator of recovery. In addition, some activities are
usually only seldom performed during the day (e.g., “tying shoelaces” and “buttoning a
shirt”), and grouping them as categories allows continuous monitoring whatever actual
activities are performed during the day. Another argument for grouping the activities is
the ability to target patients with different occupational profiles. For example, an office
worker would spend most of the day typing on a keyboard or writing, while a manual
worker would, rather, manipulate tools.

One strength of our study is the selection of activities that have been shown to char-
acterize manual ability in patients with various pathologies [6,7,10]. The possibility to
recognize the activity categories, or, in a later step, the execution of these individual
activities in daily life will pave the way for comparisons between the patient-reported ques-
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tionnaire scores and objective automated monitoring. Indeed, the correlations observed
between the kinematic analysis of the upper limb, questionnaire scores and observational
methods [30,31] indicate that an approach combining objective activity monitoring and
questionnaire scores could help clinicians in the selection of the optimal treatments for their
patients. Using such a combined approach, clinicians will better discern between capability,
which describes what the patient can do in their daily environment, from performance,
which refers to what the patient actually does [15].

The upper extremity is conceptualized as a single functional unit with the shoulder,
elbow and wrist joints used to position the end-effector organ, the hand, in space. The
chosen localizations for the sensors allowed the capturing of the functioning of both hands
very well. The wrist sensors are able to measure the movement of the hand in space, while
the finger sensors record the movement of the fingers. The presence of sensors on the thumb
and index finger allowed our device to be sensitive to movements of the hand involving
different types of pinches and grasps (e.g., writing and handling tools), as well as activities
involving fine finger movements (e.g., typing) [32]. The addition of sensors on other
locations, such as the third finger and the fingernails for precise manipulation, and the fifth
finger for power grasping, could possibly provide more information regarding the type of
movement. However, this additional information would come at the cost of obtrusiveness
and a plethora of data. The number of sensors used in the current study is higher than in
similar studies dealing with recognizing activities of the upper limb [21,22]. However, they
provide a very good amount of data for the development of a more complex algorithm, and
their location corresponds to that of everyday accessories (rings and wristbands), allowing
the definitive monitoring device to be unobtrusive and ergonomic.

Cut-off values were found to be quite similar across the different analyses, except
for that of the fourth participant, whose exclusion yielded slightly different results. The
stability of the HR and FWR is promising regarding the generalization of the algorithm to
a larger population. Participants performed the ADL as they would do in their normal life
and with objects of their home environment. Unconstraining the experiment in this manner
helped to generate a wide range of variability in the data, which could ultimately result in
the development of an algorithm that is more readily applicable in real life. We obtained
very good results in spite of potential measurement errors due to the small displacement of
the sensor over the skin.

Commonly used pattern recognition approaches are neural networks, structural match-
ing, template matching and statistical classification [33,34]. The latter approach was used
in the present paper, in which each pattern is represented in terms of features of mea-
surement. This has proven effective in developing a simple algorithm for hand activities’
classification. Results are encouraging and show that activities can be reliably detected in
normal subjects performing unconstrained movements. Future research should include a
larger sample size to test for the stability of our chosen cutoffs, and testing of the algorithm
on patients with an impaired hand function. Improvements in the algorithm could be
made by using artificial intelligence (e.g., machine learning and pattern recognition), which
could ultimately distinguish between individual activities. With these improvements, one
should be able to determine the benefit of recognizing individual activities compared to
categories. The simpler process of categorizing activities might prove sufficient for clinical
applications. Nonetheless, substantial impairments can alter the execution of an activity
through compensatory mechanisms, and more sophisticated algorithms might prove more
appropriate in this case. A critical development of the current prototype would be an
extension to a wireless system connected to a smartphone. This would allow recognition of
manual activities as well as the context in which they are carried out (e.g., while sitting
or walking). Recognizing the beginning and end of an activity was not addressed in this
paper, but will be an essential step for the future implementation of the monitoring device
in real life.

Using the monitoring device in combination with the questionnaires, the clinician will
be able to optimize the patient’s treatment and follow-up. A clinical improvement should
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manifest into more hand use and, thus, more ADL recorded on the device, as well as higher
scores on the questionnaires due to a decrease in perceived difficulty. The physician will
also be able to personalize the patient’s therapy by tracking and focusing on a particular
activity that is judged as important for the patient.

Ultimately, we aim at developing a manual activity monitoring device with wireless
sensors and an autonomous power supply in order to capture manual activities in the
patient’s natural environment. The compatibility of the chosen locations for the sensors
with everyday life accessories will not hinder the execution of ADL. Gathering objective
data from this device could be combined with patient-reported data from questionnaires in
order to provide a comprehensive and global approach for outcome evaluation, clinical
decision-making, patient monitoring and the tracking of rehabilitation progress.

Supplementary Materials: The following are available online at https://www.mdpi.com/article/10
.3390/s21093245/s1, Video S1: Gyroscopes’ calibration procedure.
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