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Breast cancer (BC) accounts for the highest proportion of the all cancers among women, and
necroptosis is recognized as a form of caspase-independent programmed cell death. We
created prognostic signatures using univariate survival analysis, and lasso regression, to
assess immune microenvironments between subgroups. We then used network
pharmacology to bind our drugs to target differentially expressed genes (DEGs). A
signature comprising a set of necroptosis-related genes was established to predict patient
outcomes based on median risk scores. Those above and below the median were classified
as high-risk group (HRG) and low-risk group (LRG), respectively. Patients at high risk had lower
overall survival, and poorer predicted tumor, nodes, and metastases stages (TNM). The novel
prognostic signature can effectively predict the prognosis of breast cancer patients docking of
β,β-dimethyl acryloyl shikonin (DMAS) to possible targets to cure breast cancer. We found that
all current prognostic models do not offer suitable treatment options. In additional, by docking
drugs DMAS that have been initially validated in our laboratory to treat breast cancer. We hope
that this novel approach could contribute to cancer research.
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INTRODUCTION

Necroptosis,a novel type of cell death regulated through mechanisms that do not depend on
cystathionine, is a guarder of defense against some invasions. Necrotizing apoptosis might further
fuel apoptosis and enhance anti-tumor immunity in patients (Schwabe and Luedde, 2018). In
addition, we found that PPm1b(Frontiers Editorial Office, 2021) and ZBP1 (Baik et al., 2021)have
now been shown to induce apoptosis in breast cancer cells via the necroptosis pathway. Although a
number of genes have been identified, the mechanism of action of necroptosis in breast cancer is
complex. The complete mechanism needs to be further explored.

Breast cancer is one of the most malignant human diseases in the world. (Britt et al., 2020). The
global incidence of BC increased at an annual rate of 3.1%, from 641,000 in 1980 to 1.6 million in
2010 (Flemming et al., 2021). Treatment decisions for various BC subtypes have recently been guided
by the results of microarrays, high-throughput sequencing, multi-gene prediction, gene tests, and 21-
gene recurrence scores (Kawaji et al., 2021). Polygenic prediction is applied worldwide to predict the
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effects of chemotherapy or patient prognosis (Elliott et al., 2020).
However, the treatment for BC remains a seemingly
insurmountable challenge because of the dearth of therapeutic

targets and biomarkers. Several necroptosis-related genes (NRGs)
have been identified as possible therapeutic targets for BC. Of
note, β,β-dimethyl acryloyl shikonin is an anticancer compound

FIGURE 1 | work of flow in this study.
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extracted from Lithospermum erythrorhizon roots (Xuan and Hu,
2009). Several studies have highlighted the potential clinical
relevance for DMAS. For instance, apoptosis in lung cancer
cells by activating the p38 pathway, lung adenocarcinoma can
avoid this via endoplasmic reticulum stress-mediated autophagy
(Wang and Ma, 2015). The apoptosis of melanoma is induced by
DMAS by upregulating phorbol-12-myristate-13-acetate-induced
protein 1 (NOXA) (Stallinger et al., 2020), and DMAS blocks
hepatocellular carcinoma cell cycle arrest in the G2 phase
(Tummers et al., 2020). However, the role of DMAS in BC
remains unclear. DMAS, a potential drug to treat breast
cancer, was applied to treat BC in network pharmacology.

Cyberpharmacology is a useful tool to discover candidate disease
targets and mechanisms of bioactive components for treating
diseases. At present, many prognostic models simply predict the
therapeutic effect of drugs. In this study, we investigated prognostic
models to predict the prognosis of breast cancer patients. The
mechanism of action of DMAS, at the same time, is described
and the targets are mapped in breast cancer. Notably, necroptosis
-related genes prognostic model has not yet been reported. We need
to predict the prognosis of patients and also need drugs to improve
the prognosis of patients. The biggest innovation of this study is the
addition of DMAS docking disease targets to the prognostic model.
This may hopefully improve the prognosis of breast cancer patients.

MATERIALS AND METHODS

Data Collection and Identification of NRGs
Figure 1 shows the work of flow in this study. We first obtained
the sample information from the database to derive DEGs, and
based on the DEGs, we built a prognostic model. After this, core

targets are screened from the DEGs and DMAS is docked to these
targets. The genetic matrix associated with breast cancer was
downloaded from The Cancer Genome Atlas (TCGA,https://
portal.gdc.cancer.gov/) in public databases (Table 1). Genes
associated with necroptosis were accessed from the GeneCards
https://www.genecards.org/), OMIM databases (https://omim.
org/) and the NCBI gene function module (https://www.ncbi.
nlm.nih.gov/). These databases are frequently used to find
pathway-related genes. The GSE20685 and GSE21653 datasets
(Table 1) were obtained from the public Gene Expression
Omnibus (GEO, https://www.ncbi.nlm.nih.gov/geo/). The
TCGA dataset contains all types of breast cancer patients, and
the GSE20685 is containing all types of breast cancer patients.
GSE21653 is a gene expression signature identifies two prognostic
subgroups of basal breast cancer that possesses a favorable
prognosis. The local ethics committee waived approval for this
study, which conformed to GEO and TCGA data access and
release policies. Differentially expressed genes associated with
necroptosis (NDEGs) were analyzed and DEGs were classified to
distinguish different types of population survival. To further
validate the differentially expressed genes, we added 179
normal breast tissues from the Genotype-Tissue Expression
Project (GTEx, https://commonfund.nih.gov/GTEx/). The
“limma” package in R was used to identify differentially
expressed NDEGs by comparing gene expression between
tumor and adjacent normal tissue in the TCGA cohort (log
FC > 0.5, FDR <0.05).

We selected shared DEGs between the GEO and TCGA
datasets, and the GEO dataset was batch corrected.
Differentially expressed genes were selected for prognostic
relevance based on univariate Cox regression analysis. OS was
defined as death due to BC. This process selected and narrowed
down variables by running the R package “glmnet” in the
regression panel. The survival status of patients in the cohort
from TCGA was the regression response variable, and the matrix
of intersecting genomes was the independent variable. lasso
regression analysis and lasso regression models are used in the
analytical models. This analysis is used to select the best number
of models and the coefficients of the corresponding genes. Penalty
parameters of the panel were calculated using cross-validation,
and optimal patient risk scores were calculated by multiplying the
gene expression value by its coefficient as follows:

Risk scores � coefficients(A)plus expressed values ofgene(A)
+ coefficients(B)plus expressed values of gene(B)
+ ...+

A prognostic model for genes associated with necroptosis was
developed based on patients with TCGA. With the model
developed, high-risk patients and low-risk patients were
classified according to the median risk value. After that, a
validation model was built using GSE21653and GSE20685.
The same prognostic model was applied to score the patients.
And the performance of a prognostic nomogram was then
assessed using Kaplan–Meier curves and the area under the
receiver operating characteristic curve (ROC).

TABLE 1 | Data of all patients.

TCGA GSE20685 GSE21653

Number 1098 327 252
Age (median) 58 46 55
T – – –

T1 279 101 57
T2 631 188 121
T3 137 26 66
T4 39 12 0
UNKNOW 3 0 8

N – – –

N0 497 137 116
N1 352 87 133
N2 119 63 0
N3 72 40 0
UNKNOW 17 0 3

M – – –

M0 906 319 –

M1 22 8 –

UNKNOW 161 0 –

Stage – – –

Stage I 181 – –

Stage II 619 – –

Stage III 246 – –

Stage IV 20 – –

UNKNOW 23 – –

Overall survival Days (median) 1232 1862 1800
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Identification of Independent Prognostic
Parameters for BC
SurvStat and riskscores were performed on high-risk and
low-risk patients to distinguish the distribution of the
different populations. We use univariate and multifactorial
regression analyses to assess the ability of risk scores to act as
independent predictors (van der Wal et al., 2019). In 38 genes
with T-stage, N-stage, age, gender and riskscore were
analyzed to demonstrate the genes with the lowest
p-values. GESA software was used to validate the highly
expressed pathways in HRG and LRG. The main
enrichment pathways for each of the high-risk and low-
risk samples are also plotted. Values with p < 0.05 were
considered statistically significant.

Acquisition of DMAS-Pharmacological
Target and GO and KEGG Enrichment
Analysis of Overlapping Genes in BC
The Swiss Target Prediction database (http://www.
swisstargetprediction.ch/）was used to predict the possible
drug targets connected to DMAS. Overlapping genes between
DEGs and drug targets were selected for target docking. GO and
KEGG pathway enrichment analysis to demonstrate the
pathways affected after drug action.

Selection of Core Proteins Associated with
Necroptosis in BC
The string database (https://www.string-db.org/) was used to
obtain target interaction network maps in protein-protein
interactions of the overlapping gene targets. The parameters
were analyzed using Cytoscape sofe, and the top five proteins
in degree ranking were selected for docking with drugs (Otasek
et al., 2019). Themolecular structure of DMASwas obtained from
the PubChem database (https://pubchem.ncbi.nlm.nih), and the
structure of the core protein was determined from the PDB
database (https://www.rcsb.org/). After obtaining the core
protein, the protein molecules and drug molecules are
dehydrated and hydrogenated to complete the steps prior to
molecular docking. The Drugs and core targets were docked using
AutoDock Vina software.

Analysis of TCGA Data for Immune
Microenvironment and Chromosomal
Mutations
We downloaded data from TCGA on genetic mutations in breast
cancer patients and carried out a comprehensive analysis of these
data. High-risk and low-risk patients were classified according to
the prognostic model, and these two groups were analyzed for
gene mutation status. Differences in mutations between these two
groups of patients were obtained. The difference in tumor
mutation load between HRG and LRG was analyzed, and this
difference was expressed as a K-M curve. The proportion of
immune cell composition for each patient is also shown.

Differences in estimatescore, stromalscore, and immunescore
between the high-risk group and low-risk group were
analysed. The R package “CIBERSORT” was used to analyse
five types of immune cell infiltrating cells with survival
differences in breast cancer. The R package “pRRophetic” was
used to compare the drug sensitivity of patients in the high and
low-risk groups. Information on drugs and RNAexpress date was
downloaded from CellMinerCBD (https://discover.nci.nih.gov/
cellminer/home.do) and the top 16 drugs with the highest
correlation were selected.

Statistical Analysis
All data were statistically analyzed using R software 4.1.1.
Student’s t-tests were used to examine differences in gene
expression between tumor and adjacent normal tissue. OS
was compared between patients at high and low risk using
Kaplan–Meier curves. Independent predictors were identified
using univariate and multivariate Cox regression analyses.
Differences were considered statistically significant at
p < 0.05.

RESULTS

Identifying DEGs and Corresponding
Functional Enrichment
All necroptosis-related genes that is differented expression in
TCGA samples are showed (FDR < 0.05, log FC > 0.5, p < 0.05,
Figure 2A). Heat map shows the differentially expression of the
top 50 necroptosis-associated genes in the GTEx and TCGA
samples (GTEx N = 179, T = 1109, Figure 2B). The differentially
expression of the top 50 necroptosis-associated genes in the
TCGA patients was showed (normal = 113,tumor = 1109,
Figure 2C). The mutation rates of DEGs with >3% were
showed by using cBioPortal (http://www.cbioportal.org/,
Figure 2D), and the highest rate of amplification-based
mutations was the Fas Associated Via Death Domain (FADD).
The genes of expression, including NDGEs, STAT5A, STAT5B,
TLR4, PYGL, PYGLM, MAPK10, PLA2G4A, and IL33, are
downregulated. The other genes were up-regulated. The
mainly KEGG enriched pathways of NDEGs were necroptosis,
systemic lupus erythematosus, neutrophil extracellular trap
formation, alcoholism, and measles (Figure 2E). Biological
process pathways were enriched in chromatin silencing.
Cellular component pathways enriched in nucleosomes, DNA
packaging complex, protein–DNA complex, and other pathways.
The molecular function was enriched in the protein
heterodimerization activity pathway (Figure 2F).

Classification of Individuals
There is a clear difference between these four categories of
patients (Figure 3A). There were also showed that a delta area
<0.2 (Figure 3B). When n > four, the increase in CDF is not
significant (Figure 3C) and Patients with C3 and C2 breast cancer
had a worse prognosis than those with C1 and C4 (Figure 3D, p =
0.007).
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FIGURE 2 | Differential genetic analysis. Box plots indicate genes that are abnormally expressed in tumor tissue compared to adjacent normal tissue (A), Heat map
of the top 50 different expressions gene between tumor tissue and GTEx normal breast tissue (B), Heat map of the top 50 different expressions gene between tumor
tissue and adjacent normal tissue in patients (C). Probability of chromosomal mutations in differentially expressed genes (D), The top 30 significant terms of KEGG
analysis (E) The top 30 significant terms of GO function enrichment. BP biological process, CC cellular component, MF molecular function (F).
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Development and Validation of the Model
with Necroptosis Related Genes
The prediction model was made up by the genes with p < 0.05
(Figure 4A). Lasso regression (Figure 4B) and lasso cross-validation
(Figure 4C)were used to build the prognosticmodel.Table 2 shows the
coefficients of each gene, and the training group shows a significant
difference betweenhigh and low risk (p< 0.001,Figure 4D). The testing
group also validated our model with a significant difference (p < 0.001,
Figure 4E), with higher risk patients having worse OS. The AUCs at 1,
2, and 3 years were 0.778, 0.793, and 0.804 in training group,

(Figure 4F). The AUCs at 1, 2, and 3 years reached 0.775, 0.717,
and 0.716 in testing group, respectively (Figure 4G). We then
demonstrated the riskscore (Figures 4H,I) and survstat (Figures
4J,K) in the training and validation sets and found significant
differences between the groups at high and low risk.

Independent Prognostic Value of the Risk
Score
The results of the univariate and multivariate Cox regression
analyses of TCGA verified that risk-scores could be used by an

FIGURE 3 | All patients were classified using consensus matrix = 4 (A), delta are <0.2 (B), and consensus CDF = 4 (C), and Kaplan-Meier curve of OS was
compared between them (D).
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independent predictors of OS (p < 0.001; HR= 4.459; 95% CI:
3.442–5.778, Figure 5A and p < 0.001, HR = 3.758; 95% CI:
2.873–4.917, Figure 5B, respectively). The results suggest that the
riskscore can be used as an independent prognostic factor like other
clinical traits to predict the prognosis of patients. The risk-scores
were found to be a stronger predictor than others, including age,
gender, stage, T-stage and N-stage. The AUC of the risk score was
0.794 (Figure 5C). The risk-scores were higher than the AUC for
almost all clinical features (AUC = 0.794), except for lower than age
(AUC= 0.797). The reliability of themodel was demonstrated. These
findings confirmed that the risk score could independently predict
the prognosis of patients.

Relationships Between the NRGs and
Clinical
Genes with the lowest p values related with individual clinical
traits were plotted to verify associations between NRGs and
clinical traits. Supplementary Table S1 shows relationships for
other genes. The genes with the closest relationships with age,
gender, stage, T-stage, N-stage and M-stage were those encoding
tenascin N (TNN, Figure 5D), paired box protein pax-7 (PAX7,
Figure 5E), thioesterase superfamily member 6 (THEM6,
Figure 5F), ectodysplasin A2 receptor (EDA2R, Figure 5G),
ribonucleases P/MRP protein subunit (POP1, Figure 5H), and
THEM6 (Figure 5I), respectively. The higher the riskscore, the
higher the lymph node grade (Figure 5J). Univariate analysis
associated risk scores with several clinical traits (Supplementary
Table S1).

FIGURE 4 | The forest plots indicate genes associated with prognosis-
related necroptosis as indicated by the univariate Cox regression analysis (A).

(Continued )

FIGURE 4 | Lasso regression analysis and Lasso regression model reduced
variable (B,C). Kaplan–Meier curves of OS in the high-risk and the low-risk
groups stratified by the necroptosis-related signature in the cohorts (D,E). The
number of patients in different risk groups. The ROC analysis of OS for the
signature at 1 year, 2 years, and 3 years (F,G). The number of patients in
different risk groups. Survival status of patients in different groups (H,I).
Survival status of the test patients in different groups (J,K).

TABLE 2 | All coefficients of the genes in the signature.

Gene Coef Gene Coef

SH3D21 −0.0074455 THEM6 0.020045
RFX3 −0.2490625 POTEKP −0.00695
PAX7 0.02433956 STX11 −0.05025
PLAT −0.0774654 ATP8A2 0.107139
ESRRG −0.071047 NOS1AP −0.05974
EDA2R 0.36366458 TNN −0.02845
FLT3 −0.0522195 CD52 −0.00446
CEL 0.13334125 FABP6 0.006832
CBR3 −0.0188455 PEX5L 0.132623
FOXD1 0.01485358 RBBP8 −0.14367
QPRT 0.04831453 TCN1 −0.02457
KLRB1 −0.1649283 SIX2 0.0331
ATP7B −0.0558802 POP1 0.221766
ULBP2 0.07025883 RPL38 −0.24775
MAK −0.0116256 CD24 0.008967
KRT15 −0.0343491 EIF4EBP1 0.052484
PPP1R14D 0.11970139 PLA2G2D −0.05766
SERPINA3 −0.0211194 CACNA2D1 −0.04342
CASD1 −0.0077578 DUS1L −0.16867
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FIGURE 5 | A forest plot of univariate Cox regression analysis in the cohorts (A). A forest plot of multivariate Cox regression analysis in the cohorts (B). The ROC
analysis of OS for the signature and the clinicopathologic parameters (C). Necroptosis-related-gene TNN in the cohorts stratified by age (D). Necroptosis-related-gene
PAX7 in the cohorts stratified by gender (E). Necroptosis-related-gene THEM6 in the cohorts stratified by stage (F). Necroptosis-related-gene EDA2R in the cohorts
stratified by T stage (G). Necroptosis-related-gene POP1 in the cohorts stratified by M stage (H). Necroptosis-related-gene THEM6 in the cohorts stratified by N
stage (I). The necroptosis-related signature in the cohorts stratified by N stage (J).
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Pathway Validationby GSEA and Immune
Microenvironment
The individual pathways of patients at high risk were mainly
tumor cell metabolism, survival, and cell cycle-related, such as
aminoacyl tRNA biosynthesis, and cell cycle progression
(Figure 6A). In contrast, those patients with low risk were
mainly downregulated immunological diseases, tumor cell
metastasis, promotion of tumor cell proliferation, and other
related pathways (Figure 6B).

Gain and loss analysis of NDEGs showed that FADD had the
highest frequency of copy number variations, and all genes
tended to have a copy number variation gain (Figure 7A). We
then analyzed different gene mutations between the patients at
high and low risk and found that tumor protein P53 (TP53) was
the highest mutation in those at high-risk groups (Figure 7B),
whereas it was phosphatidylinositol-4,5-bisphosphate 3-kinase
catalytic subunit alpha (PI3KCA) at low-risk groups
(Figure 7C). A comparison of the two groups then revealed a
higher tumor burden in the HRG (Figure 7D). We then
categorized the patients according to whether they had a high
(H-TMB) or a low (L-TMB) tumor burden and found it that was
significantly different OS rates (p = 0.0012, Figure 7F). We
further categorized the patients based on risk scores and
tumor load to evaluate survival differences and found that
those at high risk with a high tumor burden had the worst OS
(p < 0.0001, Figure 7G). Tumor load positively correlated with
risk score (Figure 7E, p < 2.2e-16, R = 0.27), validating that tumor
load was indeed associated with our risk model (Figure 7E).
Supplementary Figures S1–S5 demonstrate the immune
microenvironment and screening of chemotherapeutic agents
in breast cancer.

Screening out Core Targets Docking to
DMAS
There are a total of 12 overlapping genes between the docking
targets of DMAS and DEGs (Figure 8A), and the GO and KEGG
pathway enrichment of overlapping genes was then analyzed. The
GO pathways were mainly enriched in photoresponse,
phosphatidylinositol 3-kinase complex, cytokinesis, and

metalloendopeptidase activity (Figures 8B,C). The KEGG
pathway was enriched in the metabolism of key amino acids
(Figures 8D,E). We used Cytoscape to select five core targets
based on degree, including epithelial growth factor receptor
(EGFR), heat shock protein 90 alpha family class B member 1
(HSP90AA1), 90 alpha family class B member 1 (HSP90AB1),
mTRO, and cyclin-dependent kinase 4 (CDK4) (Figure 13A). We
docked drugs to core targets using AutoDock. We found that
CDK4 had the highest connecting energy and docked all four of
its conformations as follows: 6p8e and 6p8g docked to amino acid
residues Thr-120 and Gln-71 via hydrogen bonds (Figures
9B,D), 2w9z docked to Glu-69 (Figure 9C), 2w96 docked to
Trp-238 and Gln-188 connected to a hydrogen bond (Figure 9E).
Thus, we concluded that DMAS could stably dock with CDK4 via
Thr-120 and Gln-71.

DISCUSSION

BC accounts for about 30% of all cancers in women, with a 15%
ratio of mortality to incidence (Siegel et al., 2020). Over 40,000
women died of BC, while >270,000 patients were diagnosed for
the first time with BC in the United States in 2018 (Siegel et al.,
2019). The prognosis of different types of breast cancer is
different. Breast cancers of the same molecular staging can
also lead to differences in OS between patients due to tumor
heterogeneity. A high degree of BC heterogeneity implies that
patients with similar clinical features might have very different
prognoses. Therefore, other factors must be considered and
integrated to guide clinical treatment and enhance the
prognosis of patients with BC. Necroptosis, a caspase-
independent form of regulatory cellular apoptosis, is caused by
genotoxic stress and activation by various anticancer drugs and
thus offers a new strategy for treating drug-resistant cancer cells
(Della Torre et al., 2021). It is mainly metabolized in cells via Toll-
like receptors (He et al., 2011), T cells (Ch’en et al., 2011),
interferon, and the TNF receptor superfamily (Lu et al., 2014).
To distinguish between necrosis caused by physical trauma,
regulatory necrosis is referred to as programmed necrosis or
necroptosis (Moriwaki and Chan, 2013). As far as we can

FIGURE 6 | GSEA analysis results (A). GSEA validated the top 10 of enhanced activity in high-risk group (B). GSEA validated the top 10 of the downgrade in low-
risk group (C).
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FIGURE 7 |Gain and loss of all differential genes (A). Waterfall plot of eachmutation in the high-risk group in TCGA (B). Waterfall plot of eachmutation in the low-risk
group in TCGA (C). The difference of Tumor Mutation Burden between high-risk and low-risk groups (D). Correlation between tumor mutation load and risk score (E).
Kaplan–Meier curves of OS between high and low tumor mutation load (F). Kaplan–Meier curves of OS between high and low tumor mutation load and high- and low-risk
groups (G).
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FIGURE 8 | Screening for intersecting genes of drug targets and differentially expressed genes (A). The top 30 significant terms of GO function enrichment. BP
biological process, CC cellular component, MF molecular function (B,C). The all significant terms of KEGG analysis (E,F).
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ascertain, the prognosis of patients with BC has never been
predicted based on necroptosis.

We developed a newNRG signature for predicting OS in patients
with BC by analyzing the TCGA and GEO databases. Patients at low
risk survived longer than those at high risk. The reliability of our
findings was confirmed using ROC curves, PCA and t-SNE analyses,
and an independent GEO dataset. We found higher immune
functions and immune checkpoints, as well as more immune
enrichment pathways in patients at low risk than in those at high
risk. These findings mean that an important cause of the low OS
among patients at high risk is the nature of immune factors. Immune
cells mainly comprise CD8+ T, CD4+ T, regulatory T, myeloid
suppressor, and NK cells, as well as tumor-associated macrophages
and neutrophils, all of which interact to exert anti- or pro-tumor
effects. In contrast, increased expression of pro-tumor cells, such as
regulatory T cells, tumor-associated macrophages, tumor-associated
neutrophils, and myeloid-derived suppressor cells usually predicts a
poorer prognosis.

Among our signatures, SH3 domain-containing protein 21
(SH3D21) might serve as a target to improve the effects of
gemcitabine in the treatment of pancreatic cancer (Masoudi
et al., 2019). Regulatory factor X3 (RFX3) is associated with
predisposition genes in endometrial cancer (Shivakumar et al.,
2019), metastasis in BC(Legare et al., 2017), chromosomal
rearrangement in B lymphocytes (Twa et al., 2015), and the
promotion of cancer cell proliferation (Ham et al., 2019).
Ectodysplasin A2 receptor is associated with prognosis in BC

patients (Deryusheva et al., 2017). Adenosine triphosphatase
phospholipid transporting 8A2 (ATP8A2) participates in gene
methylation, reduces mRNA expression, and alters expression
to disrupt the differentiation state of precancerous cells in various
cancers, including BC (Ohara et al., 2017). Peroxisomal biogenesis
factor 5 like (PEX5L) can be an independent prognostic factor for
gastric cancer progression (Fang et al., 2021). Ribonucleases
P/MRP protein subunit can act as an oncogene in maintaining
cell viability and accelerating BC cell metastasis (Liu et al., 2021),
providing a regulatory feedback loop that shuts down excessive
inflammatory responses, thus blocking systemic inflammatory
responses (de Almeida et al., 2015). Ribosomal protein L38
(RPL38) controls proliferation and apoptosis in gastric cancer
through the miR-374b-5p/vascular endothelial growth factor
(VEGF) signaling pathway (Ji and Zhang, 2020) and is
overexpressed in a resistant BC ductal cell line (Hurvitz et al.,
2015). The cluster of differentiation CD8+ T cells in early
recurrent hepatocellular carcinoma is characterized by killer
cell lectin-like receptor B1 (KLRB1; CD161) overexpression,
mainly in an innate class, low cytotoxicity, low clonal
expansion state, and low expression of costimulatory and
checkpoint molecules (Sun et al., 2021). We assessed an NRG
signature for BC treatment and established an NRG signature and
nomogram of OS that could reliably and reproducibly determine
the prognosis of patients with BC.

The immune microenvironment is an important factor in BC.
A very low-energy diet decelerates tumor progression, whereas a

FIGURE 9 | Five core drug targets (A), DMSA docked with the 6p8g (B), 2w9z (C), 6p8e (D), and 2w96 (E) conformations of CDK4D.
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high-fat diet promotes the progression of malignant tumors (Sun
et al., 2020). The metabolism of tumor cells can influence the
immune microenvironment, ultimately affecting tumor
progression. Tumor cells compete with immune cells for
glucose, produce more lactic acid, form an acidic tumor
microenvironment, inhibit immune cell functions, and lead to
the occurrence and development of tumors. The previous
findings showed that the metabolism of immune cells changes
when stimulated to differentiate into various functional types,
which is similar to tumor cell metabolism. The metabolism of
tumor cells causes changes in the tumor microenvironment,
resulting in a decrease in immune cell function and the
formation of cancer. We found that the types of infiltrative
immune cells significantly differed between the patients at
high and low risk; immune functional status is better in the
LRG. The immune microenvironment might contribute to the
inconsistent OS between these two groups of patients. We plan to
investigate how metabolic changes in tumor cells and immune
cells affect the progression of BC. We found that the treatment
component was missing from all prognostic models now. But
improving the patient’s OS through treatment is our aim, hence
the association to link the two components through DEGs.

In our study, a prognostic model of necroptosis genes was
developed to predict the prognosis of breast cancer patients, and
drugs were used to treat the genes associated with necroptosis.
However, our study did not validate our analysis through a
complete experimental process and the underlying DMAS trial
for breast cancer was not demonstrated. In our group, however,
we have demonstrated a clear therapeutic effect of DMAS in
triple-negative breast cancer, and the mechanism of DMAS
treatment in breast cancer will be shown in full in a separate
article. This is the biggest gap in this study and an area for
improvement.

CONCLUSION

This study builds a prognostic model through the differential
expression of genes in necroptosis, a model that efficiently
predicts survival time of patients, while applying DMAS to
target targets in breast cancer. By establishing a new research
paradigm: the combination of prognostic modelling and network
pharmacology.
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